1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
|
//
// Copyright 2013-2016 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "x300_impl.hpp"
#include "x300_claim.hpp"
#include "x300_eth_mgr.hpp"
#include "x300_mb_eeprom.hpp"
#include "x300_mb_eeprom_iface.hpp"
#include "x300_mboard_type.hpp"
#include "x300_pcie_mgr.hpp"
#include <uhd/transport/if_addrs.hpp>
#include <uhd/types/sid.hpp>
#include <uhd/usrp/subdev_spec.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <uhd/utils/paths.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhd/utils/static.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/make_shared.hpp>
#include <chrono>
#include <fstream>
#include <thread>
uhd::uart_iface::sptr x300_make_uart_iface(uhd::wb_iface::sptr iface);
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::rfnoc;
using namespace uhd::usrp::x300;
namespace asio = boost::asio;
/***********************************************************************
* Discovery over the udp and pcie transport
**********************************************************************/
device_addrs_t x300_find(const device_addr_t& hint_)
{
// handle the multi-device discovery
device_addrs_t hints = separate_device_addr(hint_);
if (hints.size() > 1) {
device_addrs_t found_devices;
std::string error_msg;
for (const device_addr_t& hint_i : hints) {
device_addrs_t found_devices_i = x300_find(hint_i);
if (found_devices_i.size() != 1)
error_msg +=
str(boost::format(
"Could not resolve device hint \"%s\" to a single device.")
% hint_i.to_string());
else
found_devices.push_back(found_devices_i[0]);
}
if (found_devices.empty())
return device_addrs_t();
if (not error_msg.empty())
throw uhd::value_error(error_msg);
return device_addrs_t(1, combine_device_addrs(found_devices));
}
// initialize the hint for a single device case
UHD_ASSERT_THROW(hints.size() <= 1);
hints.resize(1); // in case it was empty
device_addr_t hint = hints[0];
device_addrs_t addrs;
if (hint.has_key("type") and hint["type"] != "x300") {
return addrs;
}
// use the address given
if (hint.has_key("addr")) {
device_addrs_t reply_addrs;
try {
reply_addrs = eth_manager::find(hint);
} catch (const std::exception& ex) {
UHD_LOGGER_ERROR("X300") << "X300 Network discovery error " << ex.what();
} catch (...) {
UHD_LOGGER_ERROR("X300") << "X300 Network discovery unknown error ";
}
return reply_addrs;
}
if (!hint.has_key("resource")) {
// otherwise, no address was specified, send a broadcast on each interface
for (const transport::if_addrs_t& if_addrs : transport::get_if_addrs()) {
// avoid the loopback device
if (if_addrs.inet == asio::ip::address_v4::loopback().to_string())
continue;
// create a new hint with this broadcast address
device_addr_t new_hint = hint;
new_hint["addr"] = if_addrs.bcast;
// call discover with the new hint and append results
device_addrs_t new_addrs = x300_find(new_hint);
// if we are looking for a serial, only add the one device with a matching
// serial
if (hint.has_key("serial")) {
bool found_serial = false; // signal to break out of the interface loop
for (device_addrs_t::iterator new_addr_it = new_addrs.begin();
new_addr_it != new_addrs.end();
new_addr_it++) {
if ((*new_addr_it)["serial"] == hint["serial"]) {
addrs.insert(addrs.begin(), *new_addr_it);
found_serial = true;
break;
}
}
if (found_serial)
break;
} else {
// Otherwise, add all devices we find
addrs.insert(addrs.begin(), new_addrs.begin(), new_addrs.end());
}
}
}
device_addrs_t pcie_addrs = pcie_manager::find(hint, hint.has_key("resource"));
if (not pcie_addrs.empty()) {
addrs.insert(addrs.end(), pcie_addrs.begin(), pcie_addrs.end());
}
return addrs;
}
/***********************************************************************
* Make
**********************************************************************/
static device::sptr x300_make(const device_addr_t& device_addr)
{
return device::sptr(new x300_impl(device_addr));
}
UHD_STATIC_BLOCK(register_x300_device)
{
device::register_device(&x300_find, &x300_make, device::USRP);
}
static void x300_load_fw(wb_iface::sptr fw_reg_ctrl, const std::string& file_name)
{
UHD_LOGGER_INFO("X300") << "Loading firmware " << file_name;
// load file into memory
std::ifstream fw_file(file_name.c_str());
uint32_t fw_file_buff[X300_FW_NUM_BYTES / sizeof(uint32_t)];
fw_file.read((char*)fw_file_buff, sizeof(fw_file_buff));
fw_file.close();
// Poke the fw words into the WB boot loader
fw_reg_ctrl->poke32(SR_ADDR(BOOT_LDR_BASE, BL_ADDRESS), 0);
for (size_t i = 0; i < X300_FW_NUM_BYTES; i += sizeof(uint32_t)) {
//@TODO: FIXME: Since x300_ctrl_iface acks each write and traps exceptions, the
// first try for the last word
// written will print an error because it triggers a FW reload and
// fails to reply.
fw_reg_ctrl->poke32(SR_ADDR(BOOT_LDR_BASE, BL_DATA),
uhd::byteswap(fw_file_buff[i / sizeof(uint32_t)]));
}
// Wait for fimrware to reboot. 3s is an upper bound
std::this_thread::sleep_for(std::chrono::milliseconds(3000));
UHD_LOGGER_INFO("X300") << "Firmware loaded!";
}
x300_impl::x300_impl(const uhd::device_addr_t& dev_addr) : device3_impl(), _sid_framer(0)
{
UHD_LOGGER_INFO("X300") << "X300 initialization sequence...";
_tree->create<std::string>("/name").set("X-Series Device");
const device_addrs_t device_args = separate_device_addr(dev_addr);
_mb.resize(device_args.size());
// Serialize the initialization process
if (dev_addr.has_key("serialize_init") or device_args.size() == 1) {
for (size_t i = 0; i < device_args.size(); i++) {
this->setup_mb(i, device_args[i]);
}
return;
}
// Initialize groups of USRPs in parallel
size_t total_usrps = device_args.size();
size_t num_usrps = 0;
while (num_usrps < total_usrps) {
size_t init_usrps = std::min(total_usrps - num_usrps, x300::MAX_INIT_THREADS);
boost::thread_group setup_threads;
for (size_t i = 0; i < init_usrps; i++) {
const size_t index = num_usrps + i;
setup_threads.create_thread([this, index, device_args]() {
this->setup_mb(index, device_args[index]);
});
}
setup_threads.join_all();
num_usrps += init_usrps;
}
}
void x300_impl::setup_mb(const size_t mb_i, const uhd::device_addr_t& dev_addr)
{
const fs_path mb_path = fs_path("/mboards") / mb_i;
mboard_members_t& mb = _mb[mb_i];
mb.args.parse(dev_addr);
mb.xport_path = dev_addr.has_key("resource") ? xport_path_t::NIRIO
: xport_path_t::ETH;
for (const std::string& key : dev_addr.keys()) {
if (key.find("recv") != std::string::npos)
mb.recv_args[key] = dev_addr[key];
if (key.find("send") != std::string::npos)
mb.send_args[key] = dev_addr[key];
}
UHD_LOGGER_DEBUG("X300") << "Setting up basic communication...";
if (mb.xport_path == xport_path_t::NIRIO) {
mb.conn_mgr = std::make_shared<pcie_manager>(mb.args, _tree, mb_path);
} else {
mb.conn_mgr = std::make_shared<eth_manager>(mb.args, _tree, mb_path);
}
mb.zpu_ctrl = mb.conn_mgr->get_ctrl_iface();
// Claim device
if (not try_to_claim(mb.zpu_ctrl)) {
throw uhd::runtime_error("Failed to claim device");
}
mb.claimer_task =
uhd::task::make([&mb]() { claimer_loop(mb.zpu_ctrl); }, "x300_claimer");
// extract the FW path for the X300
// and live load fw over ethernet link
if (mb.args.has_fw_file()) {
const std::string x300_fw_image = find_image_path(mb.args.get_fw_file());
x300_load_fw(mb.zpu_ctrl, x300_fw_image);
}
// check compat numbers
// check fpga compat before fw compat because the fw is a subset of the fpga image
this->check_fpga_compat(mb_path, mb);
this->check_fw_compat(mb_path, mb);
mb.fw_regmap = boost::make_shared<fw_regmap_t>();
mb.fw_regmap->initialize(*mb.zpu_ctrl.get(), true);
// store which FPGA image is loaded
mb.loaded_fpga_image = get_fpga_option(mb.zpu_ctrl);
// low speed perif access
mb.zpu_spi = spi_core_3000::make(
mb.zpu_ctrl, SR_ADDR(SET0_BASE, ZPU_SR_SPI), SR_ADDR(SET0_BASE, ZPU_RB_SPI));
mb.zpu_i2c = i2c_core_100_wb32::make(mb.zpu_ctrl, I2C1_BASE);
mb.zpu_i2c->set_clock_rate(x300::BUS_CLOCK_RATE / 2);
////////////////////////////////////////////////////////////////////
// print network routes mapping
////////////////////////////////////////////////////////////////////
/*
const uint32_t routes_addr = mb.zpu_ctrl->peek32(SR_ADDR(X300_FW_SHMEM_BASE,
X300_FW_SHMEM_ROUTE_MAP_ADDR)); const uint32_t routes_len =
mb.zpu_ctrl->peek32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_ROUTE_MAP_LEN));
UHD_VAR(routes_len);
for (size_t i = 0; i < routes_len; i+=1)
{
const uint32_t node_addr = mb.zpu_ctrl->peek32(SR_ADDR(routes_addr, i*2+0));
const uint32_t nbor_addr = mb.zpu_ctrl->peek32(SR_ADDR(routes_addr, i*2+1));
if (node_addr != 0 and nbor_addr != 0)
{
UHD_LOGGER_INFO("X300") << boost::format("%u: %s -> %s")
% i
% asio::ip::address_v4(node_addr).to_string()
% asio::ip::address_v4(nbor_addr).to_string();
}
}
*/
////////////////////////////////////////////////////////////////////
// setup the mboard eeprom
////////////////////////////////////////////////////////////////////
UHD_LOGGER_DEBUG("X300") << "Loading values from EEPROM...";
x300_mb_eeprom_iface::sptr eeprom16 =
x300_mb_eeprom_iface::make(mb.zpu_ctrl, mb.zpu_i2c);
if (mb.args.get_blank_eeprom()) {
UHD_LOGGER_WARNING("X300") << "Obliterating the motherboard EEPROM...";
eeprom16->write_eeprom(0x50, 0, byte_vector_t(256, 0xff));
}
const mboard_eeprom_t mb_eeprom = get_mb_eeprom(eeprom16);
_tree
->create<mboard_eeprom_t>(mb_path / "eeprom")
// Initialize the property with a current copy of the EEPROM contents
.set(mb_eeprom)
// Whenever this property is written, update the chip
.add_coerced_subscriber([eeprom16](const mboard_eeprom_t& mb_eeprom) {
set_mb_eeprom(eeprom16, mb_eeprom);
});
if (mb.args.get_recover_mb_eeprom()) {
UHD_LOGGER_WARNING("X300")
<< "UHD is operating in EEPROM Recovery Mode which disables hardware version "
"checks.\nOperating in this mode may cause hardware damage and unstable "
"radio performance!";
return;
}
////////////////////////////////////////////////////////////////////
// parse the product number
////////////////////////////////////////////////////////////////////
const std::string product_name =
map_mb_type_to_product_name(get_mb_type_from_eeprom(mb_eeprom), "X300?");
if (product_name == "X300?") {
if (not mb.args.get_recover_mb_eeprom()) {
throw uhd::runtime_error(
"Unrecognized product type.\n"
"Either the software does not support this device in which "
"case please update your driver software to the latest version "
"and retry OR\n"
"The product code in the EEPROM is corrupt and may require "
"reprogramming.");
}
}
_tree->create<std::string>(mb_path / "name").set(product_name);
_tree->create<std::string>(mb_path / "codename").set("Yetti");
////////////////////////////////////////////////////////////////////
// discover interfaces, frame sizes, and link rates
////////////////////////////////////////////////////////////////////
if (mb.xport_path == xport_path_t::NIRIO) {
std::dynamic_pointer_cast<pcie_manager>(mb.conn_mgr)->init_link();
} else if (mb.xport_path == xport_path_t::ETH) {
std::dynamic_pointer_cast<eth_manager>(mb.conn_mgr)
->init_link(mb_eeprom, mb.loaded_fpga_image);
}
////////////////////////////////////////////////////////////////////
// read hardware revision and compatibility number
////////////////////////////////////////////////////////////////////
mb.hw_rev = get_and_check_hw_rev(mb_eeprom);
////////////////////////////////////////////////////////////////////
// create clock control objects
////////////////////////////////////////////////////////////////////
UHD_LOGGER_DEBUG("X300") << "Setting up RF frontend clocking...";
// Initialize clock control registers. NOTE: This does not configure the LMK yet.
mb.clock = x300_clock_ctrl::make(mb.zpu_spi,
1 /*slaveno*/,
mb.hw_rev,
mb.args.get_master_clock_rate(),
mb.args.get_dboard_clock_rate(),
mb.args.get_system_ref_rate());
mb.fw_regmap->ref_freq_reg.write(
fw_regmap_t::ref_freq_reg_t::REF_FREQ, uint32_t(mb.args.get_system_ref_rate()));
// Initialize clock source to use internal reference and generate
// a valid radio clock. This may change after configuration is done.
// This will configure the LMK and wait for lock
update_clock_source(mb, mb.args.get_clock_source());
////////////////////////////////////////////////////////////////////
// create clock properties
////////////////////////////////////////////////////////////////////
_tree->create<double>(mb_path / "master_clock_rate").set_publisher([&mb]() {
return mb.clock->get_master_clock_rate();
});
UHD_LOGGER_INFO("X300") << "Radio 1x clock: "
<< (mb.clock->get_master_clock_rate() / 1e6) << " MHz";
////////////////////////////////////////////////////////////////////
// Create the GPSDO control
////////////////////////////////////////////////////////////////////
static constexpr uint32_t dont_look_for_gpsdo = 0x1234abcdul;
// otherwise if not disabled, look for the internal GPSDO
if (mb.zpu_ctrl->peek32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_GPSDO_STATUS))
!= dont_look_for_gpsdo) {
UHD_LOG_DEBUG("X300", "Detecting internal GPSDO....");
try {
// gps_ctrl will print its own log statements if a GPSDO was found
mb.gps = gps_ctrl::make(x300_make_uart_iface(mb.zpu_ctrl));
} catch (std::exception& e) {
UHD_LOGGER_ERROR("X300")
<< "An error occurred making GPSDO control: " << e.what();
}
if (mb.gps and mb.gps->gps_detected()) {
for (const std::string& name : mb.gps->get_sensors()) {
_tree->create<sensor_value_t>(mb_path / "sensors" / name)
.set_publisher([&mb, name]() { return mb.gps->get_sensor(name); });
}
} else {
mb.zpu_ctrl->poke32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_GPSDO_STATUS),
dont_look_for_gpsdo);
}
}
////////////////////////////////////////////////////////////////////
// setup time sources and properties
////////////////////////////////////////////////////////////////////
_tree->create<std::string>(mb_path / "time_source" / "value")
.set(mb.args.get_time_source())
.add_coerced_subscriber([this, &mb](const std::string& time_source) {
this->update_time_source(mb, time_source);
});
_tree->create<std::vector<std::string>>(mb_path / "time_source" / "options")
.set(TIME_SOURCE_OPTIONS);
// setup the time output, default to ON
_tree->create<bool>(mb_path / "time_source" / "output")
.add_coerced_subscriber([this, &mb](const bool time_output) {
this->set_time_source_out(mb, time_output);
})
.set(true);
////////////////////////////////////////////////////////////////////
// setup clock sources and properties
////////////////////////////////////////////////////////////////////
_tree->create<std::string>(mb_path / "clock_source" / "value")
.set(mb.args.get_clock_source())
.add_coerced_subscriber([this, &mb](const std::string& clock_source) {
this->update_clock_source(mb, clock_source);
});
_tree->create<std::vector<std::string>>(mb_path / "clock_source" / "options")
.set(CLOCK_SOURCE_OPTIONS);
// setup external reference options. default to 10 MHz input reference
_tree->create<std::string>(mb_path / "clock_source" / "external");
_tree
->create<std::vector<double>>(
mb_path / "clock_source" / "external" / "freq" / "options")
.set(x300::EXTERNAL_FREQ_OPTIONS);
_tree->create<double>(mb_path / "clock_source" / "external" / "value")
.set(mb.clock->get_sysref_clock_rate());
// FIXME the external clock source settings need to be more robust
// setup the clock output, default to ON
_tree->create<bool>(mb_path / "clock_source" / "output")
.add_coerced_subscriber(
[&mb](const bool clock_output) { mb.clock->set_ref_out(clock_output); });
// Initialize tick rate (must be done before setting time)
// Note: The master tick rate can't be changed at runtime!
const double master_clock_rate = mb.clock->get_master_clock_rate();
_tree->create<double>(mb_path / "tick_rate")
.set_coercer([master_clock_rate](const double rate) {
// The contract of multi_usrp::set_master_clock_rate() is to coerce
// and not throw, so we'll follow that behaviour here.
if (!uhd::math::frequencies_are_equal(rate, master_clock_rate)) {
UHD_LOGGER_WARNING("X300")
<< "Cannot update master clock rate! X300 Series does not "
"allow changing the clock rate during runtime.";
}
return master_clock_rate;
})
.add_coerced_subscriber([this](const double) { this->update_tx_streamers(); })
.add_coerced_subscriber([this](const double) { this->update_rx_streamers(); })
.set(master_clock_rate);
////////////////////////////////////////////////////////////////////
// and do the misc mboard sensors
////////////////////////////////////////////////////////////////////
_tree->create<sensor_value_t>(mb_path / "sensors" / "ref_locked")
.set_publisher([this, &mb]() { return this->get_ref_locked(mb); });
//////////////// RFNOC /////////////////
const size_t n_rfnoc_blocks = mb.zpu_ctrl->peek32(SR_ADDR(SET0_BASE, ZPU_RB_NUM_CE));
enumerate_rfnoc_blocks(mb_i,
n_rfnoc_blocks,
x300::XB_DST_PCI + 1, /* base port */
uhd::sid_t(x300::SRC_ADDR0, 0, x300::DST_ADDR + mb_i, 0),
dev_addr);
//////////////// RFNOC /////////////////
// If we have a radio, we must configure its codec control:
const std::string radio_blockid_hint = str(boost::format("%d/Radio") % mb_i);
std::vector<rfnoc::block_id_t> radio_ids =
find_blocks<rfnoc::x300_radio_ctrl_impl>(radio_blockid_hint);
if (not radio_ids.empty()) {
if (radio_ids.size() > 2) {
UHD_LOGGER_WARNING("X300")
<< "Too many Radio Blocks found. Using only the first two.";
radio_ids.resize(2);
}
for (const rfnoc::block_id_t& id : radio_ids) {
rfnoc::x300_radio_ctrl_impl::sptr radio(
get_block_ctrl<rfnoc::x300_radio_ctrl_impl>(id));
mb.radios.push_back(radio);
radio->setup_radio(mb.zpu_i2c,
mb.clock,
mb.args.get_ignore_cal_file(),
mb.args.get_self_cal_adc_delay());
}
////////////////////////////////////////////////////////////////////
// ADC test and cal
////////////////////////////////////////////////////////////////////
if (mb.args.get_self_cal_adc_delay()) {
rfnoc::x300_radio_ctrl_impl::self_cal_adc_xfer_delay(mb.radios,
mb.clock,
[this, &mb](const double timeout) {
return this->wait_for_clk_locked(
mb, fw_regmap_t::clk_status_reg_t::LMK_LOCK, timeout);
},
true /* Apply ADC delay */);
}
if (mb.args.get_ext_adc_self_test()) {
rfnoc::x300_radio_ctrl_impl::extended_adc_test(
mb.radios, mb.args.get_ext_adc_self_test_duration());
} else {
for (size_t i = 0; i < mb.radios.size(); i++) {
mb.radios.at(i)->self_test_adc();
}
}
////////////////////////////////////////////////////////////////////
// Synchronize times (dboard initialization can desynchronize them)
////////////////////////////////////////////////////////////////////
if (radio_ids.size() == 2) {
this->sync_times(mb, mb.radios[0]->get_time_now());
}
} else {
UHD_LOGGER_INFO("X300") << "No Radio Block found. Assuming radio-less operation.";
} /* end of radio block(s) initialization */
mb.initialization_done = true;
}
x300_impl::~x300_impl(void)
{
try {
for (mboard_members_t& mb : _mb) {
// kill the claimer task and unclaim the device
mb.claimer_task.reset();
if (mb.xport_path == xport_path_t::NIRIO) {
std::dynamic_pointer_cast<pcie_manager>(mb.conn_mgr)
->release_ctrl_iface([&mb]() { release(mb.zpu_ctrl); });
} else {
release(mb.zpu_ctrl);
}
}
} catch (...) {
UHD_SAFE_CALL(throw;)
}
}
uhd::both_xports_t x300_impl::make_transport(const uhd::sid_t& address,
const xport_type_t xport_type,
const uhd::device_addr_t& args)
{
const size_t mb_index = address.get_dst_addr() - x300::DST_ADDR;
mboard_members_t& mb = _mb[mb_index];
both_xports_t xports;
// Calculate MTU based on MTU in args and device limitations
const size_t send_mtu = args.cast<size_t>("mtu",
get_mtu(mb_index, uhd::TX_DIRECTION));
const size_t recv_mtu = args.cast<size_t>("mtu",
get_mtu(mb_index, uhd::RX_DIRECTION));
if (mb.xport_path == xport_path_t::NIRIO) {
xports.send_sid =
this->allocate_sid(mb, address, x300::SRC_ADDR0, x300::XB_DST_PCI);
xports.recv_sid = xports.send_sid.reversed();
return std::dynamic_pointer_cast<pcie_manager>(mb.conn_mgr)
->make_transport(xports, xport_type, args, send_mtu, recv_mtu);
} else if (mb.xport_path == xport_path_t::ETH) {
xports = std::dynamic_pointer_cast<eth_manager>(mb.conn_mgr)
->make_transport(xports,
xport_type,
args,
send_mtu,
recv_mtu,
[this, &mb, address](
const uint32_t src_addr, const uint32_t src_dst) {
return this->allocate_sid(mb, address, src_addr, src_dst);
});
// reprogram the ethernet dispatcher's udp port (should be safe to always set)
UHD_LOGGER_TRACE("X300")
<< "reprogram the ethernet dispatcher's udp port to " << X300_VITA_UDP_PORT;
mb.zpu_ctrl->poke32(
SR_ADDR(SET0_BASE, (ZPU_SR_ETHINT0 + 8 + 3)), X300_VITA_UDP_PORT);
mb.zpu_ctrl->poke32(
SR_ADDR(SET0_BASE, (ZPU_SR_ETHINT1 + 8 + 3)), X300_VITA_UDP_PORT);
// Do a peek to an arbitrary address to guarantee that the
// ethernet framer has been programmed before we return.
mb.zpu_ctrl->peek32(0);
return xports;
}
UHD_THROW_INVALID_CODE_PATH();
}
uhd::sid_t x300_impl::allocate_sid(mboard_members_t& mb,
const uhd::sid_t& address,
const uint32_t src_addr,
const uint32_t src_dst)
{
uhd::sid_t sid = address;
sid.set_src_addr(src_addr);
sid.set_src_endpoint(_sid_framer++); // increment for next setup
// TODO Move all of this setup_mb()
// Program the X300 to recognise it's own local address.
mb.zpu_ctrl->poke32(SR_ADDR(SET0_BASE, ZPU_SR_XB_LOCAL), address.get_dst_addr());
// Program CAM entry for outgoing packets matching a X300 resource (for example a
// Radio) This type of packet matches the XB_LOCAL address and is looked up in the
// upper half of the CAM
mb.zpu_ctrl->poke32(SR_ADDR(SETXB_BASE, 256 + address.get_dst_endpoint()),
address.get_dst_xbarport());
// Program CAM entry for returning packets to us (for example GR host via Eth0)
// This type of packet does not match the XB_LOCAL address and is looked up in the
// lower half of the CAM
mb.zpu_ctrl->poke32(SR_ADDR(SETXB_BASE, 0 + src_addr), src_dst);
UHD_LOGGER_TRACE("X300") << "done router config for sid " << sid;
return sid;
}
/***********************************************************************
* clock and time control logic
**********************************************************************/
void x300_impl::set_time_source_out(mboard_members_t& mb, const bool enb)
{
mb.fw_regmap->clock_ctrl_reg.write(
fw_regmap_t::clk_ctrl_reg_t::PPS_OUT_EN, enb ? 1 : 0);
}
void x300_impl::update_clock_source(mboard_members_t& mb, const std::string& source)
{
// Optimize for the case when the current source is internal and we are trying
// to set it to internal. This is the only case where we are guaranteed that
// the clock has not gone away so we can skip setting the MUX and reseting the LMK.
const bool reconfigure_clks = (mb.current_refclk_src != "internal")
or (source != "internal");
if (reconfigure_clks) {
// Update the clock MUX on the motherboard to select the requested source
if (source == "internal") {
mb.fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::CLK_SOURCE,
fw_regmap_t::clk_ctrl_reg_t::SRC_INTERNAL);
mb.fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::TCXO_EN, 1);
} else if (source == "external") {
mb.fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::CLK_SOURCE,
fw_regmap_t::clk_ctrl_reg_t::SRC_EXTERNAL);
mb.fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::TCXO_EN, 0);
} else if (source == "gpsdo") {
mb.fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::CLK_SOURCE,
fw_regmap_t::clk_ctrl_reg_t::SRC_GPSDO);
mb.fw_regmap->clock_ctrl_reg.set(fw_regmap_t::clk_ctrl_reg_t::TCXO_EN, 0);
} else {
throw uhd::key_error("update_clock_source: unknown source: " + source);
}
mb.fw_regmap->clock_ctrl_reg.flush();
// Reset the LMK to make sure it re-locks to the new reference
mb.clock->reset_clocks();
}
// Wait for the LMK to lock (always, as a sanity check that the clock is useable)
//* Currently the LMK can take as long as 30 seconds to lock to a reference but we
// don't
//* want to wait that long during initialization.
// TODO: Need to verify timeout and settings to make sure lock can be achieved in
// < 1.0 seconds
double timeout = mb.initialization_done ? 30.0 : 1.0;
// The programming code in x300_clock_ctrl is not compatible with revs <= 4 and may
// lead to locking issues. So, disable the ref-locked check for older (unsupported)
// boards.
if (mb.hw_rev > 4) {
if (not wait_for_clk_locked(
mb, fw_regmap_t::clk_status_reg_t::LMK_LOCK, timeout)) {
// failed to lock on reference
if (mb.initialization_done) {
throw uhd::runtime_error(
(boost::format("Reference Clock PLL failed to lock to %s source.")
% source)
.str());
} else {
// TODO: Re-enable this warning when we figure out a reliable lock time
// UHD_LOGGER_WARNING("X300") << "Reference clock failed to lock to " +
// source + " during device initialization. " <<
// "Check for the lock before operation or ignore this warning if using
// another clock source." ;
}
}
}
if (reconfigure_clks) {
// Reset the radio clock PLL in the FPGA
mb.zpu_ctrl->poke32(
SR_ADDR(SET0_BASE, ZPU_SR_SW_RST), ZPU_SR_SW_RST_RADIO_CLK_PLL);
mb.zpu_ctrl->poke32(SR_ADDR(SET0_BASE, ZPU_SR_SW_RST), 0);
// Wait for radio clock PLL to lock
if (not wait_for_clk_locked(
mb, fw_regmap_t::clk_status_reg_t::RADIO_CLK_LOCK, 0.01)) {
throw uhd::runtime_error(
(boost::format("Reference Clock PLL in FPGA failed to lock to %s source.")
% source)
.str());
}
// Reset the IDELAYCTRL used to calibrate the data interface delays
mb.zpu_ctrl->poke32(
SR_ADDR(SET0_BASE, ZPU_SR_SW_RST), ZPU_SR_SW_RST_ADC_IDELAYCTRL);
mb.zpu_ctrl->poke32(SR_ADDR(SET0_BASE, ZPU_SR_SW_RST), 0);
// Wait for the ADC IDELAYCTRL to be ready
if (not wait_for_clk_locked(
mb, fw_regmap_t::clk_status_reg_t::IDELAYCTRL_LOCK, 0.01)) {
throw uhd::runtime_error(
(boost::format(
"ADC Calibration Clock in FPGA failed to lock to %s source.")
% source)
.str());
}
// Reset ADCs and DACs
for (rfnoc::x300_radio_ctrl_impl::sptr r : mb.radios) {
r->reset_codec();
}
}
// Update cache value
mb.current_refclk_src = source;
}
void x300_impl::update_time_source(mboard_members_t& mb, const std::string& source)
{
if (source == "internal") {
mb.fw_regmap->clock_ctrl_reg.write(fw_regmap_t::clk_ctrl_reg_t::PPS_SELECT,
fw_regmap_t::clk_ctrl_reg_t::SRC_INTERNAL);
} else if (source == "external") {
mb.fw_regmap->clock_ctrl_reg.write(fw_regmap_t::clk_ctrl_reg_t::PPS_SELECT,
fw_regmap_t::clk_ctrl_reg_t::SRC_EXTERNAL);
} else if (source == "gpsdo") {
mb.fw_regmap->clock_ctrl_reg.write(fw_regmap_t::clk_ctrl_reg_t::PPS_SELECT,
fw_regmap_t::clk_ctrl_reg_t::SRC_GPSDO);
} else {
throw uhd::key_error("update_time_source: unknown source: " + source);
}
/* TODO - Implement intelligent PPS detection
//check for valid pps
if (!is_pps_present(mb)) {
throw uhd::runtime_error((boost::format("The %d PPS was not detected. Please
check the PPS source and try again.") % source).str());
}
*/
}
void x300_impl::sync_times(mboard_members_t& mb, const uhd::time_spec_t& t)
{
std::vector<rfnoc::block_id_t> radio_ids =
find_blocks<rfnoc::x300_radio_ctrl_impl>("Radio");
for (const rfnoc::block_id_t& id : radio_ids) {
get_block_ctrl<rfnoc::x300_radio_ctrl_impl>(id)->set_time_sync(t);
}
mb.fw_regmap->clock_ctrl_reg.write(fw_regmap_t::clk_ctrl_reg_t::TIME_SYNC, 0);
mb.fw_regmap->clock_ctrl_reg.write(fw_regmap_t::clk_ctrl_reg_t::TIME_SYNC, 1);
mb.fw_regmap->clock_ctrl_reg.write(fw_regmap_t::clk_ctrl_reg_t::TIME_SYNC, 0);
}
bool x300_impl::wait_for_clk_locked(mboard_members_t& mb, uint32_t which, double timeout)
{
const auto timeout_time = std::chrono::steady_clock::now()
+ std::chrono::milliseconds(int64_t(timeout * 1000));
do {
if (mb.fw_regmap->clock_status_reg.read(which) == 1) {
return true;
}
std::this_thread::sleep_for(std::chrono::milliseconds(1));
} while (std::chrono::steady_clock::now() < timeout_time);
// Check one last time
return (mb.fw_regmap->clock_status_reg.read(which) == 1);
}
sensor_value_t x300_impl::get_ref_locked(mboard_members_t& mb)
{
mb.fw_regmap->clock_status_reg.refresh();
const bool lock =
(mb.fw_regmap->clock_status_reg.get(fw_regmap_t::clk_status_reg_t::LMK_LOCK) == 1)
&& (mb.fw_regmap->clock_status_reg.get(
fw_regmap_t::clk_status_reg_t::RADIO_CLK_LOCK)
== 1)
&& (mb.fw_regmap->clock_status_reg.get(
fw_regmap_t::clk_status_reg_t::IDELAYCTRL_LOCK)
== 1);
return sensor_value_t("Ref", lock, "locked", "unlocked");
}
bool x300_impl::is_pps_present(mboard_members_t& mb)
{
// The ZPU_RB_CLK_STATUS_PPS_DETECT bit toggles with each rising edge of the PPS.
// We monitor it for up to 1.5 seconds looking for it to toggle.
uint32_t pps_detect =
mb.fw_regmap->clock_status_reg.read(fw_regmap_t::clk_status_reg_t::PPS_DETECT);
for (int i = 0; i < 15; i++) {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
if (pps_detect
!= mb.fw_regmap->clock_status_reg.read(
fw_regmap_t::clk_status_reg_t::PPS_DETECT))
return true;
}
return false;
}
/***********************************************************************
* Frame size detection
**********************************************************************/
size_t x300_impl::get_mtu(const size_t mb_index, const uhd::direction_t dir)
{
auto& mb = _mb.at(mb_index);
return mb.conn_mgr->get_mtu(dir);
}
/***********************************************************************
* compat checks
**********************************************************************/
void x300_impl::check_fw_compat(const fs_path& mb_path, const mboard_members_t& members)
{
auto iface = members.zpu_ctrl;
const uint32_t compat_num =
iface->peek32(SR_ADDR(X300_FW_SHMEM_BASE, X300_FW_SHMEM_COMPAT_NUM));
const uint32_t compat_major = (compat_num >> 16);
const uint32_t compat_minor = (compat_num & 0xffff);
if (compat_major != X300_FW_COMPAT_MAJOR) {
const std::string image_loader_path =
(fs::path(uhd::get_pkg_path()) / "bin" / "uhd_image_loader").string();
const std::string image_loader_cmd = str(
boost::format("\"%s\" --args=\"type=x300,%s=%s\"") % image_loader_path
% (members.xport_path == xport_path_t::ETH ? "addr" : "resource")
% (members.xport_path == xport_path_t::ETH ? members.args.get_first_addr()
: members.args.get_resource()));
throw uhd::runtime_error(
str(boost::format(
"Expected firmware compatibility number %d, but got %d:\n"
"The FPGA/firmware image on your device is not compatible with this "
"host code build.\n"
"Download the appropriate FPGA images for this version of UHD.\n"
"%s\n\n"
"Then burn a new image to the on-board flash storage of your\n"
"USRP X3xx device using the image loader utility. "
"Use this command:\n\n%s\n\n"
"For more information, refer to the UHD manual:\n\n"
" http://files.ettus.com/manual/page_usrp_x3x0.html#x3x0_flash")
% int(X300_FW_COMPAT_MAJOR) % compat_major
% print_utility_error("uhd_images_downloader.py") % image_loader_cmd));
}
_tree->create<std::string>(mb_path / "fw_version")
.set(str(boost::format("%u.%u") % compat_major % compat_minor));
}
void x300_impl::check_fpga_compat(const fs_path& mb_path, const mboard_members_t& members)
{
uint32_t compat_num = members.zpu_ctrl->peek32(SR_ADDR(SET0_BASE, ZPU_RB_COMPAT_NUM));
uint32_t compat_major = (compat_num >> 16);
uint32_t compat_minor = (compat_num & 0xffff);
if (compat_major != X300_FPGA_COMPAT_MAJOR) {
std::string image_loader_path =
(fs::path(uhd::get_pkg_path()) / "bin" / "uhd_image_loader").string();
std::string image_loader_cmd = str(
boost::format("\"%s\" --args=\"type=x300,%s=%s\"") % image_loader_path
% (members.xport_path == xport_path_t::ETH ? "addr" : "resource")
% (members.xport_path == xport_path_t::ETH ? members.args.get_first_addr()
: members.args.get_resource()));
throw uhd::runtime_error(
str(boost::format(
"Expected FPGA compatibility number %d, but got %d:\n"
"The FPGA image on your device is not compatible with this host code "
"build.\n"
"Download the appropriate FPGA images for this version of UHD.\n"
"%s\n\n"
"Then burn a new image to the on-board flash storage of your\n"
"USRP X3xx device using the image loader utility. Use this "
"command:\n\n%s\n\n"
"For more information, refer to the UHD manual:\n\n"
" http://files.ettus.com/manual/page_usrp_x3x0.html#x3x0_flash")
% int(X300_FPGA_COMPAT_MAJOR) % compat_major
% print_utility_error("uhd_images_downloader.py") % image_loader_cmd));
}
_tree->create<std::string>(mb_path / "fpga_version")
.set(str(boost::format("%u.%u") % compat_major % compat_minor));
const uint32_t git_hash =
members.zpu_ctrl->peek32(SR_ADDR(SET0_BASE, ZPU_RB_GIT_HASH));
const std::string git_hash_str = str(boost::format("%07x%s") % (git_hash & 0x0FFFFFFF)
% ((git_hash & 0xF0000000) ? "-dirty" : ""));
_tree->create<std::string>(mb_path / "fpga_version_hash").set(git_hash_str);
UHD_LOG_DEBUG("X300",
"Using FPGA version: " << compat_major << "." << compat_minor
<< " git hash: " << git_hash_str);
}
|