1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
|
//
// Copyright 2013-2015 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "x300_clock_ctrl.hpp"
#include "lmk04816_regs.hpp"
#include "x300_defaults.hpp"
#include <uhd/utils/math.hpp>
#include <uhd/utils/safe_call.hpp>
#include <stdint.h>
#include <boost/format.hpp>
#include <cmath>
#include <cstdlib>
#include <stdexcept>
static const double X300_REF_CLK_OUT_RATE = 10e6;
static const uint16_t X300_MAX_CLKOUT_DIV = 1045;
constexpr double MIN_VCO_FREQ = 2370e6;
constexpr double MAX_VCO_FREQ = 2600e6;
constexpr double VCXO_FREQ = 96.0e6; // VCXO runs at 96MHz
constexpr int VCXO_PLL2_N = 2; // Assume that the PLL2 N predivider is set to /2.
struct x300_clk_delays
{
x300_clk_delays()
: fpga_dly_ns(0.0)
, adc_dly_ns(0.0)
, dac_dly_ns(0.0)
, db_rx_dly_ns(0.0)
, db_tx_dly_ns(0.0)
{
}
x300_clk_delays(double fpga, double adc, double dac, double db_rx, double db_tx)
: fpga_dly_ns(fpga)
, adc_dly_ns(adc)
, dac_dly_ns(dac)
, db_rx_dly_ns(db_rx)
, db_tx_dly_ns(db_tx)
{
}
double fpga_dly_ns;
double adc_dly_ns;
double dac_dly_ns;
double db_rx_dly_ns;
double db_tx_dly_ns;
};
// Tune the FPGA->ADC clock delay to ensure a safe ADC_SSCLK -> RADIO_CLK crossing.
// If the FPGA_CLK is delayed, we also need to delay the reference clocks going to the DAC
// because the data interface clock is generated from FPGA_CLK.
static const x300_clk_delays X300_REV0_6_CLK_DELAYS = x300_clk_delays(
/*fpga=*/0.000, /*adc=*/2.200, /*dac=*/0.000, /*db_rx=*/0.000, /*db_tx=*/0.000);
static const x300_clk_delays X300_REV7_CLK_DELAYS = x300_clk_delays(
/*fpga=*/0.000, /*adc=*/0.000, /*dac=*/0.000, /*db_rx=*/0.000, /*db_tx=*/0.000);
using namespace uhd;
using namespace uhd::math::fp_compare;
x300_clock_ctrl::~x300_clock_ctrl(void)
{
/* NOP */
}
class x300_clock_ctrl_impl : public x300_clock_ctrl
{
public:
~x300_clock_ctrl_impl(void) override {}
x300_clock_ctrl_impl(uhd::spi_iface::sptr spiface,
const size_t slaveno,
const size_t hw_rev,
const double master_clock_rate,
const double dboard_clock_rate,
const double system_ref_rate)
: _spiface(spiface)
, _slaveno(static_cast<int>(slaveno))
, _hw_rev(hw_rev)
, _master_clock_rate(master_clock_rate)
, _dboard_clock_rate(dboard_clock_rate)
, _system_ref_rate(system_ref_rate)
{
init();
}
void reset_clocks() override
{
_lmk04816_regs.RESET = lmk04816_regs_t::RESET_RESET;
this->write_regs(0);
_lmk04816_regs.RESET = lmk04816_regs_t::RESET_NO_RESET;
for (uint8_t i = 0; i <= 16; ++i) {
this->write_regs(i);
}
for (uint8_t i = 24; i <= 31; ++i) {
this->write_regs(i);
}
sync_clocks();
}
void sync_clocks(void)
{
// soft sync:
// put the sync IO into output mode - FPGA must be input
// write low, then write high - this triggers a soft sync
_lmk04816_regs.SYNC_POL_INV = lmk04816_regs_t::SYNC_POL_INV_SYNC_LOW;
this->write_regs(11);
_lmk04816_regs.SYNC_POL_INV = lmk04816_regs_t::SYNC_POL_INV_SYNC_HIGH;
this->write_regs(11);
}
double get_master_clock_rate(void) override
{
return _master_clock_rate;
}
double get_sysref_clock_rate(void) override
{
return _system_ref_rate;
}
double get_refout_clock_rate(void) override
{
// We support only one reference output rate
return X300_REF_CLK_OUT_RATE;
}
void set_dboard_rate(const x300_clock_which_t which, double rate) override
{
uint16_t div = uint16_t(_vco_freq / rate);
uint16_t* reg = NULL;
uint8_t addr = 0xFF;
// Make sure requested rate is an even divisor of the VCO frequency
if (not math::frequencies_are_equal(_vco_freq / div, rate))
throw uhd::value_error("invalid dboard rate requested");
switch (which) {
case X300_CLOCK_WHICH_DB0_RX:
case X300_CLOCK_WHICH_DB1_RX:
reg = &_lmk04816_regs.CLKout2_3_DIV;
addr = 1;
break;
case X300_CLOCK_WHICH_DB0_TX:
case X300_CLOCK_WHICH_DB1_TX:
reg = &_lmk04816_regs.CLKout4_5_DIV;
addr = 2;
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
if (*reg == div)
return;
// Since the clock rate on one daughter board cannot be changed without
// affecting the other daughter board, don't allow it.
throw uhd::not_implemented_error(
"x3xx set dboard clock rate does not support changing the clock rate");
// This is open source code and users may need to enable this function
// to support other daughterboards. If so, comment out the line above
// that throws the error and allow the program to reach the code below.
// The LMK04816 datasheet says the register must be written twice if SYNC is
// enabled
*reg = div;
write_regs(addr);
write_regs(addr);
sync_clocks();
}
double get_dboard_rate(const x300_clock_which_t which) override
{
double rate = 0.0;
switch (which) {
case X300_CLOCK_WHICH_DB0_RX:
case X300_CLOCK_WHICH_DB1_RX:
rate = _vco_freq / _lmk04816_regs.CLKout2_3_DIV;
break;
case X300_CLOCK_WHICH_DB0_TX:
case X300_CLOCK_WHICH_DB1_TX:
rate = _vco_freq / _lmk04816_regs.CLKout4_5_DIV;
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
return rate;
}
std::vector<double> get_dboard_rates(const x300_clock_which_t) override
{
std::vector<double> rates;
for (size_t div = size_t(_vco_freq / _master_clock_rate);
div <= X300_MAX_CLKOUT_DIV;
div++)
rates.push_back(_vco_freq / div);
return rates;
}
void enable_dboard_clock(const x300_clock_which_t which, const bool enable) override
{
switch (which) {
case X300_CLOCK_WHICH_DB0_RX:
if (enable
!= (_lmk04816_regs.CLKout2_TYPE
== lmk04816_regs_t::CLKOUT2_TYPE_LVPECL_700MVPP)) {
_lmk04816_regs.CLKout2_TYPE =
enable ? lmk04816_regs_t::CLKOUT2_TYPE_LVPECL_700MVPP
: lmk04816_regs_t::CLKOUT2_TYPE_P_DOWN;
write_regs(6);
}
break;
case X300_CLOCK_WHICH_DB1_RX:
if (enable
!= (_lmk04816_regs.CLKout3_TYPE
== lmk04816_regs_t::CLKOUT3_TYPE_LVPECL_700MVPP)) {
_lmk04816_regs.CLKout3_TYPE =
enable ? lmk04816_regs_t::CLKOUT3_TYPE_LVPECL_700MVPP
: lmk04816_regs_t::CLKOUT3_TYPE_P_DOWN;
write_regs(6);
}
break;
case X300_CLOCK_WHICH_DB0_TX:
if (enable
!= (_lmk04816_regs.CLKout5_TYPE
== lmk04816_regs_t::CLKOUT5_TYPE_LVPECL_700MVPP)) {
_lmk04816_regs.CLKout5_TYPE =
enable ? lmk04816_regs_t::CLKOUT5_TYPE_LVPECL_700MVPP
: lmk04816_regs_t::CLKOUT5_TYPE_P_DOWN;
write_regs(7);
}
break;
case X300_CLOCK_WHICH_DB1_TX:
if (enable
!= (_lmk04816_regs.CLKout4_TYPE
== lmk04816_regs_t::CLKOUT4_TYPE_LVPECL_700MVPP)) {
_lmk04816_regs.CLKout4_TYPE =
enable ? lmk04816_regs_t::CLKOUT4_TYPE_LVPECL_700MVPP
: lmk04816_regs_t::CLKOUT4_TYPE_P_DOWN;
write_regs(7);
}
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
void set_ref_out(const bool enable) override
{
// TODO Implement divider configuration to allow for configurable output
// rates
if (enable)
_lmk04816_regs.CLKout10_TYPE = lmk04816_regs_t::CLKOUT10_TYPE_LVDS;
else
_lmk04816_regs.CLKout10_TYPE = lmk04816_regs_t::CLKOUT10_TYPE_P_DOWN;
this->write_regs(8);
}
void write_regs(uint8_t addr)
{
uint32_t data = _lmk04816_regs.get_reg(addr);
_spiface->write_spi(_slaveno, spi_config_t::EDGE_RISE, data, 32);
}
double set_clock_delay(const x300_clock_which_t which,
const double delay_ns,
const bool resync = true) override
{
// All dividers have are delayed by 5 taps by default. The delay
// set by this function is relative to the 5 tap delay
static const uint16_t DDLY_MIN_TAPS = 5;
static const uint16_t DDLY_MAX_TAPS = 522; // Extended mode
// The resolution and range of the analog delay is fixed
static const double ADLY_RES_NS = 0.025;
static const double ADLY_MIN_NS = 0.500;
static const double ADLY_MAX_NS = 0.975;
// Each digital tap delays the clock by one VCO period
double vco_period_ns = 1.0e9 / _vco_freq;
double half_vco_period_ns = vco_period_ns / 2.0;
// Implement as much of the requested delay using digital taps. Whatever is
// leftover will be made up using the analog delay element and the half-cycle
// digital tap. A caveat here is that the analog delay starts at ADLY_MIN_NS, so
// we need to back off by that much when coming up with the digital taps so that
// the difference can be made up using the analog delay.
uint16_t ddly_taps = 0;
if (delay_ns < ADLY_MIN_NS) {
ddly_taps = static_cast<uint16_t>(std::floor((delay_ns) / vco_period_ns));
} else {
ddly_taps = static_cast<uint16_t>(
std::floor((delay_ns - ADLY_MIN_NS) / vco_period_ns));
}
double leftover_delay = delay_ns - (vco_period_ns * ddly_taps);
// Compute settings
uint16_t ddly_value = ddly_taps + DDLY_MIN_TAPS;
bool adly_en = false;
uint8_t adly_value = 0;
uint8_t half_shift_en = 0;
if (ddly_value > DDLY_MAX_TAPS) {
throw uhd::value_error("set_clock_delay: Requested delay is out of range.");
}
double coerced_delay = (vco_period_ns * ddly_taps);
if (leftover_delay > ADLY_MAX_NS) {
// The VCO is running too slowly for us to compensate the digital delay
// difference using analog delay. Do the best we can.
adly_en = true;
adly_value = static_cast<uint8_t>(
std::lround((ADLY_MAX_NS - ADLY_MIN_NS) / ADLY_RES_NS));
coerced_delay += ADLY_MAX_NS;
} else if (leftover_delay >= ADLY_MIN_NS && leftover_delay <= ADLY_MAX_NS) {
// The leftover delay can be compensated by the analog delay up to the analog
// delay resolution
adly_en = true;
adly_value = static_cast<uint8_t>(
std::lround((leftover_delay - ADLY_MIN_NS) / ADLY_RES_NS));
coerced_delay += ADLY_MIN_NS + (ADLY_RES_NS * adly_value);
} else if (leftover_delay >= (ADLY_MIN_NS - half_vco_period_ns)
&& leftover_delay < ADLY_MIN_NS) {
// The leftover delay if less than the minimum supported analog delay but if
// we move the digital delay back by half a VCO cycle then it will be in the
// range of the analog delay. So do that!
adly_en = true;
adly_value = static_cast<uint8_t>(std::lround(
(leftover_delay + half_vco_period_ns - ADLY_MIN_NS) / ADLY_RES_NS));
half_shift_en = 1;
coerced_delay +=
ADLY_MIN_NS + (ADLY_RES_NS * adly_value) - half_vco_period_ns;
} else {
// Even after moving the digital delay back by half a cycle, we cannot make up
// the difference so give up on compensating for the difference from the
// digital delay tap. If control reaches here then the value of leftover_delay
// is possible very small and will still be close to what the client
// requested.
}
UHD_LOG_DEBUG("X300",
boost::format(
"x300_clock_ctrl::set_clock_delay: Which=%d, Requested=%f, Digital "
"Taps=%d, Half Shift=%d, Analog Delay=%d (%s), Coerced Delay=%fns")
% which % delay_ns % ddly_value % (half_shift_en ? "ON" : "OFF")
% ((int)adly_value) % (adly_en ? "ON" : "OFF") % coerced_delay)
// Apply settings
switch (which) {
case X300_CLOCK_WHICH_FPGA:
_lmk04816_regs.CLKout0_1_DDLY = ddly_value;
_lmk04816_regs.CLKout0_1_HS = half_shift_en;
if (adly_en) {
_lmk04816_regs.CLKout0_ADLY_SEL =
lmk04816_regs_t::CLKOUT0_ADLY_SEL_D_BOTH;
_lmk04816_regs.CLKout1_ADLY_SEL =
lmk04816_regs_t::CLKOUT1_ADLY_SEL_D_BOTH;
_lmk04816_regs.CLKout0_1_ADLY = adly_value;
} else {
_lmk04816_regs.CLKout0_ADLY_SEL =
lmk04816_regs_t::CLKOUT0_ADLY_SEL_D_PD;
_lmk04816_regs.CLKout1_ADLY_SEL =
lmk04816_regs_t::CLKOUT1_ADLY_SEL_D_PD;
}
write_regs(0);
write_regs(6);
_delays.fpga_dly_ns = coerced_delay;
break;
case X300_CLOCK_WHICH_DB0_RX:
case X300_CLOCK_WHICH_DB1_RX:
_lmk04816_regs.CLKout2_3_DDLY = ddly_value;
_lmk04816_regs.CLKout2_3_HS = half_shift_en;
if (adly_en) {
_lmk04816_regs.CLKout2_ADLY_SEL =
lmk04816_regs_t::CLKOUT2_ADLY_SEL_D_BOTH;
_lmk04816_regs.CLKout3_ADLY_SEL =
lmk04816_regs_t::CLKOUT3_ADLY_SEL_D_BOTH;
_lmk04816_regs.CLKout2_3_ADLY = adly_value;
} else {
_lmk04816_regs.CLKout2_ADLY_SEL =
lmk04816_regs_t::CLKOUT2_ADLY_SEL_D_PD;
_lmk04816_regs.CLKout3_ADLY_SEL =
lmk04816_regs_t::CLKOUT3_ADLY_SEL_D_PD;
}
write_regs(1);
write_regs(6);
_delays.db_rx_dly_ns = coerced_delay;
break;
case X300_CLOCK_WHICH_DB0_TX:
case X300_CLOCK_WHICH_DB1_TX:
_lmk04816_regs.CLKout4_5_DDLY = ddly_value;
_lmk04816_regs.CLKout4_5_HS = half_shift_en;
if (adly_en) {
_lmk04816_regs.CLKout4_ADLY_SEL =
lmk04816_regs_t::CLKOUT4_ADLY_SEL_D_BOTH;
_lmk04816_regs.CLKout5_ADLY_SEL =
lmk04816_regs_t::CLKOUT5_ADLY_SEL_D_BOTH;
_lmk04816_regs.CLKout4_5_ADLY = adly_value;
} else {
_lmk04816_regs.CLKout4_ADLY_SEL =
lmk04816_regs_t::CLKOUT4_ADLY_SEL_D_PD;
_lmk04816_regs.CLKout5_ADLY_SEL =
lmk04816_regs_t::CLKOUT5_ADLY_SEL_D_PD;
}
write_regs(2);
write_regs(7);
_delays.db_tx_dly_ns = coerced_delay;
break;
case X300_CLOCK_WHICH_DAC0:
case X300_CLOCK_WHICH_DAC1:
_lmk04816_regs.CLKout6_7_DDLY = ddly_value;
_lmk04816_regs.CLKout6_7_HS = half_shift_en;
if (adly_en) {
_lmk04816_regs.CLKout6_ADLY_SEL =
lmk04816_regs_t::CLKOUT6_ADLY_SEL_D_BOTH;
_lmk04816_regs.CLKout7_ADLY_SEL =
lmk04816_regs_t::CLKOUT7_ADLY_SEL_D_BOTH;
_lmk04816_regs.CLKout6_7_ADLY = adly_value;
} else {
_lmk04816_regs.CLKout6_ADLY_SEL =
lmk04816_regs_t::CLKOUT6_ADLY_SEL_D_PD;
_lmk04816_regs.CLKout7_ADLY_SEL =
lmk04816_regs_t::CLKOUT7_ADLY_SEL_D_PD;
}
write_regs(3);
write_regs(7);
_delays.dac_dly_ns = coerced_delay;
break;
case X300_CLOCK_WHICH_ADC0:
case X300_CLOCK_WHICH_ADC1:
_lmk04816_regs.CLKout8_9_DDLY = ddly_value;
_lmk04816_regs.CLKout8_9_HS = half_shift_en;
if (adly_en) {
_lmk04816_regs.CLKout8_ADLY_SEL =
lmk04816_regs_t::CLKOUT8_ADLY_SEL_D_BOTH;
_lmk04816_regs.CLKout9_ADLY_SEL =
lmk04816_regs_t::CLKOUT9_ADLY_SEL_D_BOTH;
_lmk04816_regs.CLKout8_9_ADLY = adly_value;
} else {
_lmk04816_regs.CLKout8_ADLY_SEL =
lmk04816_regs_t::CLKOUT8_ADLY_SEL_D_PD;
_lmk04816_regs.CLKout9_ADLY_SEL =
lmk04816_regs_t::CLKOUT9_ADLY_SEL_D_PD;
}
write_regs(4);
write_regs(8);
_delays.adc_dly_ns = coerced_delay;
break;
default:
throw uhd::value_error("set_clock_delay: Requested source is invalid.");
}
// Delays are applied only on a sync event
if (resync)
sync_clocks();
return coerced_delay;
}
double get_clock_delay(const x300_clock_which_t which) override
{
switch (which) {
case X300_CLOCK_WHICH_FPGA:
return _delays.fpga_dly_ns;
case X300_CLOCK_WHICH_DB0_RX:
case X300_CLOCK_WHICH_DB1_RX:
return _delays.db_rx_dly_ns;
case X300_CLOCK_WHICH_DB0_TX:
case X300_CLOCK_WHICH_DB1_TX:
return _delays.db_tx_dly_ns;
case X300_CLOCK_WHICH_DAC0:
case X300_CLOCK_WHICH_DAC1:
return _delays.dac_dly_ns;
case X300_CLOCK_WHICH_ADC0:
case X300_CLOCK_WHICH_ADC1:
return _delays.adc_dly_ns;
default:
throw uhd::value_error("get_clock_delay: Requested source is invalid.");
}
}
private:
double autoset_pll2_config(const double output_freq)
{
// VCXO runs at 96MHz, assume PLL2 reference doubler is enabled
const double ref = VCXO_FREQ * 2;
const int lowest_vcodiv = static_cast<int>(std::ceil(MIN_VCO_FREQ / output_freq));
const int highest_vcodiv =
static_cast<int>(std::floor(MAX_VCO_FREQ / output_freq));
// Find the PLL2 configuration with the lowest frequency error, favoring
// higher phase comparison frequencies.
double best_error = 1e10;
double best_mcr = 0.0;
double best_vco_freq = _vco_freq;
int best_N = _lmk04816_regs.PLL2_N_30;
int best_R = _lmk04816_regs.PLL2_R_28;
for (int vcodiv = lowest_vcodiv; vcodiv <= highest_vcodiv; vcodiv++) {
const double try_vco_freq = vcodiv * output_freq;
// Start at R=2: with a min value of 2 for R, we don't have to worry
// about exceeding the maximum phase comparison frequency for PLL2.
for (int r = 2; r <= 50; r++) {
// Note: We could accomplish somewhat higher resolution if we change
// the N predivider to odd values as well, and we may be able to get
// better spur performance by balancing the predivider and the
// divider.
const int n = static_cast<int>(
std::lround((r * try_vco_freq) / (VCXO_PLL2_N * ref)));
const double actual_mcr = (ref * VCXO_PLL2_N * n) / (vcodiv * r);
const double error = std::abs(actual_mcr - output_freq);
if (error < best_error) {
best_error = error;
best_mcr = actual_mcr;
best_vco_freq = try_vco_freq;
best_N = n;
best_R = r;
}
}
}
UHD_ASSERT_THROW(best_mcr > 0.0);
_vco_freq = best_vco_freq;
_lmk04816_regs.PLL2_N_30 = best_N;
_lmk04816_regs.PLL2_R_28 = best_R;
_lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_2A;
if (fp_compare_epsilon<double>(best_error) > 0.0) {
UHD_LOGGER_WARNING("X300")
<< boost::format("Attempted master clock rate %0.2f MHz, got %0.2f MHz")
% (output_freq / 1e6) % (best_mcr / 1e6);
}
UHD_LOGGER_TRACE("X300")
<< boost::format("Using automatic LMK04816 PLL2 config: N=%d, R=%d, "
"VCO=%0.2f MHz, MCR=%0.2f MHz")
% _lmk04816_regs.PLL2_N_30 % _lmk04816_regs.PLL2_R_28
% (_vco_freq / 1e6) % (best_mcr / 1e6);
return best_mcr;
}
void init()
{
/* The X3xx has two primary rates. The first is the
* _system_ref_rate, which is sourced from the "clock_source"/"value" field
* of the property tree, and whose value can be 10e6, 11.52e6, 23.04e6,
* or 30.72e6. The _system_ref_rate is the input to the clocking system, and what
* comes out is a disciplined master clock running at the _master_clock_rate. As
* such, only certain combinations of system reference rates and master clock
* rates are supported. Additionally, a subset of these will operate in "zero
* delay" mode. */
enum opmode_t {
INVALID,
m10M_200M_NOZDEL, // used for debug purposes only
m10M_200M_ZDEL, // Normal mode
m11_52M_184_32M_ZDEL, // LTE with 11.52 MHz ref
m23_04M_184_32M_ZDEL, // LTE with 23.04 MHz ref
m30_72M_184_32M_ZDEL, // LTE with external ref, aka CPRI Mode
m10M_184_32M_NOZDEL, // LTE with 10 MHz ref
m10M_120M_ZDEL, // NI USRP 120 MHz Clocking
m10M_AUTO_NOZDEL
}; // automatic for arbitrary clock from 10MHz ref
/* The default clocking mode is 10MHz reference generating a 200 MHz master
* clock, in zero-delay mode. */
opmode_t clocking_mode = INVALID;
using namespace uhd::math::fp_compare;
if (math::frequencies_are_equal(_system_ref_rate, 10e6)) {
if (math::frequencies_are_equal(_master_clock_rate, 184.32e6)) {
/* 10MHz reference, 184.32 MHz master clock out, NOT Zero Delay. */
clocking_mode = m10M_184_32M_NOZDEL;
} else if (math::frequencies_are_equal(_master_clock_rate, 200e6)) {
/* 10MHz reference, 200 MHz master clock out, Zero Delay */
clocking_mode = m10M_200M_ZDEL;
} else if (math::frequencies_are_equal(_master_clock_rate, 120e6)) {
/* 10MHz reference, 120 MHz master clock rate, Zero Delay */
clocking_mode = m10M_120M_ZDEL;
} else if (fp_compare_delta<double>(
_master_clock_rate, math::FREQ_COMPARISON_DELTA_HZ)
>= uhd::usrp::x300::MIN_TICK_RATE
&& fp_compare_delta<double>(
_master_clock_rate, math::FREQ_COMPARISON_DELTA_HZ)
<= uhd::usrp::x300::MAX_TICK_RATE) {
/* 10MHz reference, attempt to automatically configure PLL
* for arbitrary master clock rate, Zero Delay */
UHD_LOGGER_WARNING("X300") << "Using automatic master clock PLL config. "
"This is an experimental feature.";
clocking_mode = m10M_AUTO_NOZDEL;
} else {
throw uhd::runtime_error(
str(boost::format("Invalid master clock rate: %.2f MHz.\n"
"Valid master clock rates when using a %f MHz "
"reference clock are:\n"
"120 MHz, 184.32 MHz and 200 MHz.")
% (_master_clock_rate / 1e6) % (_system_ref_rate / 1e6)));
}
} else if (math::frequencies_are_equal(_system_ref_rate, 11.52e6)) {
if (math::frequencies_are_equal(_master_clock_rate, 184.32e6)) {
/* 11.52MHz reference, 184.32 MHz master clock out, Zero Delay */
clocking_mode = m11_52M_184_32M_ZDEL;
} else {
throw uhd::runtime_error(
str(boost::format("Invalid master clock rate: %.2f MHz.\n"
"Valid master clock rate when using a %.2f MHz "
"reference clock is: 184.32 MHz.")
% (_master_clock_rate / 1e6) % (_system_ref_rate / 1e6)));
}
} else if (math::frequencies_are_equal(_system_ref_rate, 23.04e6)) {
if (math::frequencies_are_equal(_master_clock_rate, 184.32e6)) {
/* 11.52MHz reference, 184.32 MHz master clock out, Zero Delay */
clocking_mode = m23_04M_184_32M_ZDEL;
} else {
throw uhd::runtime_error(
str(boost::format("Invalid master clock rate: %.2f MHz.\n"
"Valid master clock rate when using a %.2f MHz "
"reference clock is: 184.32 MHz.")
% (_master_clock_rate / 1e6) % (_system_ref_rate / 1e6)));
}
} else if (math::frequencies_are_equal(_system_ref_rate, 30.72e6)) {
if (math::frequencies_are_equal(_master_clock_rate, 184.32e6)) {
/* 30.72MHz reference, 184.32 MHz master clock out, Zero Delay */
clocking_mode = m30_72M_184_32M_ZDEL;
} else {
throw uhd::runtime_error(
str(boost::format("Invalid master clock rate: %.2f MHz.\n"
"Valid master clock rate when using a %.2f MHz "
"reference clock is: 184.32 MHz.")
% (_master_clock_rate / 1e6) % (_system_ref_rate / 1e6)));
}
} else {
throw uhd::runtime_error(
str(boost::format("Invalid system reference rate: %.2f MHz.\nValid "
"reference frequencies are: 10 MHz, 11.52 MHz, "
"23.04 MHz, 30.72 MHz.")
% (_system_ref_rate / 1e6)));
}
UHD_ASSERT_THROW(clocking_mode != INVALID);
// For 200 MHz output, the VCO is run at 2400 MHz
// For the LTE/CPRI rate of 184.32 MHz, the VCO runs at 2580.48 MHz
// Note: PLL2 N2 prescaler is enabled for all cases
// PLL2 reference doubler is enabled for all cases
/* All LMK04816 settings are from the LMK datasheet for our clocking
* architecture. Please refer to the datasheet for more information. */
switch (clocking_mode) {
case m10M_200M_NOZDEL:
_vco_freq = 2400e6;
_lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT;
// PLL1 - 2 MHz compare frequency
_lmk04816_regs.PLL1_N_28 = 48;
_lmk04816_regs.PLL1_R_27 = 5;
_lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_100UA;
// PLL2 - 48 MHz compare frequency
_lmk04816_regs.PLL2_N_30 = 25;
_lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_2A;
_lmk04816_regs.PLL2_R_28 = 4;
_lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_3200UA;
break;
case m10M_200M_ZDEL:
_vco_freq = 2400e6;
_lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT_ZER_DELAY;
// PLL1 - 2 MHz compare frequency
_lmk04816_regs.PLL1_N_28 = 5;
_lmk04816_regs.PLL1_R_27 = 5;
_lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_1600UA;
// PLL2 - 96 MHz compare frequency
_lmk04816_regs.PLL2_N_30 = 5;
_lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_5;
_lmk04816_regs.PLL2_R_28 = 2;
if (_hw_rev <= 4)
_lmk04816_regs.PLL2_CP_GAIN_26 =
lmk04816_regs_t::PLL2_CP_GAIN_26_1600UA;
else
_lmk04816_regs.PLL2_CP_GAIN_26 =
lmk04816_regs_t::PLL2_CP_GAIN_26_400UA;
break;
case m10M_184_32M_NOZDEL:
_vco_freq = 2580.48e6;
_lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT;
// PLL1 - 2 MHz compare frequency
_lmk04816_regs.PLL1_N_28 = 48;
_lmk04816_regs.PLL1_R_27 = 5;
// Since this is not a zero-dealy mode, it is not intended for phase
// synchronization. The charge pump current for PLL1 is lowered to
// reduce phase noise.
_lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_100UA;
// PLL2 - 7.68 MHz compare frequency
_lmk04816_regs.PLL2_N_30 = 168;
_lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_2A;
_lmk04816_regs.PLL2_R_28 = 25;
_lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_3200UA;
_lmk04816_regs.PLL2_R3_LF = lmk04816_regs_t::PLL2_R3_LF_4KILO_OHM;
_lmk04816_regs.PLL2_C3_LF = lmk04816_regs_t::PLL2_C3_LF_39PF;
_lmk04816_regs.PLL2_R4_LF = lmk04816_regs_t::PLL2_R4_LF_1KILO_OHM;
_lmk04816_regs.PLL2_C4_LF = lmk04816_regs_t::PLL2_C4_LF_71PF;
break;
case m11_52M_184_32M_ZDEL:
_vco_freq = 2580.48e6;
_lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT_ZER_DELAY;
// PLL1 - 1.92 MHz compare frequency
_lmk04816_regs.PLL1_N_28 = 6;
_lmk04816_regs.PLL1_R_27 = 6;
_lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_1600UA;
// PLL2 - 7.68 MHz compare frequency
_lmk04816_regs.PLL2_N_30 = 168;
_lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_2A;
_lmk04816_regs.PLL2_R_28 = 25;
_lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_100UA;
_lmk04816_regs.PLL2_R3_LF = lmk04816_regs_t::PLL2_R3_LF_1KILO_OHM;
_lmk04816_regs.PLL2_C3_LF = lmk04816_regs_t::PLL2_C3_LF_39PF;
_lmk04816_regs.PLL2_R4_LF = lmk04816_regs_t::PLL2_R4_LF_1KILO_OHM;
_lmk04816_regs.PLL2_C4_LF = lmk04816_regs_t::PLL2_C4_LF_34PF;
break;
case m23_04M_184_32M_ZDEL:
_vco_freq = 2580.48e6;
_lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT_ZER_DELAY;
// PLL1 - 1.92 MHz compare frequency
_lmk04816_regs.PLL1_N_28 = 12;
_lmk04816_regs.PLL1_R_27 = 12;
_lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_1600UA;
// PLL2 - 7.68 MHz compare frequency
_lmk04816_regs.PLL2_N_30 = 168;
_lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_2A;
_lmk04816_regs.PLL2_R_28 = 25;
_lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_100UA;
_lmk04816_regs.PLL2_R3_LF = lmk04816_regs_t::PLL2_R3_LF_1KILO_OHM;
_lmk04816_regs.PLL2_C3_LF = lmk04816_regs_t::PLL2_C3_LF_39PF;
_lmk04816_regs.PLL2_R4_LF = lmk04816_regs_t::PLL2_R4_LF_1KILO_OHM;
_lmk04816_regs.PLL2_C4_LF = lmk04816_regs_t::PLL2_C4_LF_34PF;
break;
case m30_72M_184_32M_ZDEL:
_vco_freq = 2580.48e6;
_lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT_ZER_DELAY;
// PLL1 - 2.048 MHz compare frequency
_lmk04816_regs.PLL1_N_28 = 15;
_lmk04816_regs.PLL1_R_27 = 15;
_lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_1600UA;
// PLL2 - 7.68 MHz compare frequency
_lmk04816_regs.PLL2_N_30 = 168;
_lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_2A;
_lmk04816_regs.PLL2_R_28 = 25;
_lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_100UA;
_lmk04816_regs.PLL2_R3_LF = lmk04816_regs_t::PLL2_R3_LF_1KILO_OHM;
_lmk04816_regs.PLL2_C3_LF = lmk04816_regs_t::PLL2_C3_LF_39PF;
_lmk04816_regs.PLL2_R4_LF = lmk04816_regs_t::PLL2_R4_LF_1KILO_OHM;
_lmk04816_regs.PLL2_C4_LF = lmk04816_regs_t::PLL2_C4_LF_34PF;
break;
case m10M_120M_ZDEL:
_vco_freq = 2400e6;
_lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT_ZER_DELAY;
// PLL1 - 2 MHz compare frequency
_lmk04816_regs.PLL1_N_28 = 5;
_lmk04816_regs.PLL1_R_27 = 5;
_lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_100UA;
// PLL2 - 96 MHz compare frequency
_lmk04816_regs.PLL2_N_30 = 5;
_lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_5;
_lmk04816_regs.PLL2_R_28 = 2;
if (_hw_rev <= 4)
_lmk04816_regs.PLL2_CP_GAIN_26 =
lmk04816_regs_t::PLL2_CP_GAIN_26_1600UA;
else
_lmk04816_regs.PLL2_CP_GAIN_26 =
lmk04816_regs_t::PLL2_CP_GAIN_26_400UA;
break;
case m10M_AUTO_NOZDEL:
_lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT;
// PLL1 - 2MHz compare frequency
_lmk04816_regs.PLL1_N_28 = 48;
_lmk04816_regs.PLL1_R_27 = 5;
_lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_100UA;
// PLL2 - this call will set _vco_freq and PLL2 P/N/R registers.
_master_clock_rate = autoset_pll2_config(_master_clock_rate);
break;
default:
UHD_THROW_INVALID_CODE_PATH();
break;
};
uint16_t master_clock_div =
static_cast<uint16_t>(std::ceil(_vco_freq / _master_clock_rate));
uint16_t dboard_div =
static_cast<uint16_t>(std::ceil(_vco_freq / _dboard_clock_rate));
/* Reset the LMK clock controller. */
_lmk04816_regs.RESET = lmk04816_regs_t::RESET_RESET;
this->write_regs(0);
_lmk04816_regs.RESET = lmk04816_regs_t::RESET_NO_RESET;
this->write_regs(0);
/* Initial power-up */
_lmk04816_regs.CLKout0_1_PD = lmk04816_regs_t::CLKOUT0_1_PD_POWER_UP;
this->write_regs(0);
_lmk04816_regs.CLKout0_1_DIV = master_clock_div;
this->write_regs(0);
// Register 1
_lmk04816_regs.CLKout2_3_PD = lmk04816_regs_t::CLKOUT2_3_PD_POWER_UP;
_lmk04816_regs.CLKout2_3_DIV = dboard_div;
// Register 2
_lmk04816_regs.CLKout4_5_PD = lmk04816_regs_t::CLKOUT4_5_PD_POWER_UP;
_lmk04816_regs.CLKout4_5_DIV = dboard_div;
// Register 3
_lmk04816_regs.CLKout6_7_DIV = master_clock_div;
_lmk04816_regs.CLKout6_7_OSCin_Sel = lmk04816_regs_t::CLKOUT6_7_OSCIN_SEL_VCO;
// Register 4
_lmk04816_regs.CLKout8_9_DIV = master_clock_div;
// Register 5
_lmk04816_regs.CLKout10_11_PD = lmk04816_regs_t::CLKOUT10_11_PD_NORMAL;
_lmk04816_regs.CLKout10_11_DIV =
static_cast<uint16_t>(std::ceil(_vco_freq / _system_ref_rate));
// Register 6
_lmk04816_regs.CLKout0_TYPE = lmk04816_regs_t::CLKOUT0_TYPE_LVDS; // FPGA
_lmk04816_regs.CLKout1_TYPE =
lmk04816_regs_t::CLKOUT1_TYPE_P_DOWN; // CPRI feedback clock, use LVDS
_lmk04816_regs.CLKout2_TYPE =
lmk04816_regs_t::CLKOUT2_TYPE_LVPECL_700MVPP; // DB_0_RX
_lmk04816_regs.CLKout3_TYPE =
lmk04816_regs_t::CLKOUT3_TYPE_LVPECL_700MVPP; // DB_1_RX
// Register 7
_lmk04816_regs.CLKout4_TYPE =
lmk04816_regs_t::CLKOUT4_TYPE_LVPECL_700MVPP; // DB_1_TX
_lmk04816_regs.CLKout5_TYPE =
lmk04816_regs_t::CLKOUT5_TYPE_LVPECL_700MVPP; // DB_0_TX
_lmk04816_regs.CLKout6_TYPE =
lmk04816_regs_t::CLKOUT6_TYPE_LVPECL_700MVPP; // DB0_DAC
_lmk04816_regs.CLKout7_TYPE =
lmk04816_regs_t::CLKOUT7_TYPE_LVPECL_700MVPP; // DB1_DAC
_lmk04816_regs.CLKout8_TYPE =
lmk04816_regs_t::CLKOUT8_TYPE_LVPECL_700MVPP; // DB0_ADC
// Register 8
_lmk04816_regs.CLKout9_TYPE =
lmk04816_regs_t::CLKOUT9_TYPE_LVPECL_700MVPP; // DB1_ADC
_lmk04816_regs.CLKout10_TYPE = lmk04816_regs_t::CLKOUT10_TYPE_LVDS; // REF_CLKOUT
_lmk04816_regs.CLKout11_TYPE =
lmk04816_regs_t::CLKOUT11_TYPE_P_DOWN; // Debug header, use LVPECL
// Register 10
_lmk04816_regs.EN_OSCout0 = lmk04816_regs_t::EN_OSCOUT0_DISABLED; // Debug header
_lmk04816_regs.FEEDBACK_MUX = 5; // use output 10 (REF OUT) for feedback
_lmk04816_regs.EN_FEEDBACK_MUX = lmk04816_regs_t::EN_FEEDBACK_MUX_ENABLED;
// Register 11
// MODE set in individual cases above
_lmk04816_regs.SYNC_QUAL = lmk04816_regs_t::SYNC_QUAL_FB_MUX;
_lmk04816_regs.EN_SYNC = lmk04816_regs_t::EN_SYNC_ENABLE;
_lmk04816_regs.NO_SYNC_CLKout0_1 =
lmk04816_regs_t::NO_SYNC_CLKOUT0_1_CLOCK_XY_SYNC;
_lmk04816_regs.NO_SYNC_CLKout2_3 =
lmk04816_regs_t::NO_SYNC_CLKOUT2_3_CLOCK_XY_SYNC;
_lmk04816_regs.NO_SYNC_CLKout4_5 =
lmk04816_regs_t::NO_SYNC_CLKOUT4_5_CLOCK_XY_SYNC;
_lmk04816_regs.NO_SYNC_CLKout6_7 =
lmk04816_regs_t::NO_SYNC_CLKOUT6_7_CLOCK_XY_SYNC;
_lmk04816_regs.NO_SYNC_CLKout8_9 =
lmk04816_regs_t::NO_SYNC_CLKOUT8_9_CLOCK_XY_SYNC;
_lmk04816_regs.NO_SYNC_CLKout10_11 =
lmk04816_regs_t::NO_SYNC_CLKOUT10_11_CLOCK_XY_SYNC;
_lmk04816_regs.SYNC_TYPE = lmk04816_regs_t::SYNC_TYPE_INPUT;
// Register 12
_lmk04816_regs.LD_MUX = lmk04816_regs_t::LD_MUX_BOTH;
/* Input Clock Configurations */
// Register 13
_lmk04816_regs.EN_CLKin0 =
lmk04816_regs_t::EN_CLKIN0_NO_VALID_USE; // This is not connected
_lmk04816_regs.EN_CLKin2 =
lmk04816_regs_t::EN_CLKIN2_NO_VALID_USE; // Used only for CPRI
_lmk04816_regs.Status_CLKin1_MUX = lmk04816_regs_t::STATUS_CLKIN1_MUX_UWIRE_RB;
_lmk04816_regs.CLKin_Select_MODE = lmk04816_regs_t::CLKIN_SELECT_MODE_CLKIN1_MAN;
_lmk04816_regs.HOLDOVER_MUX = lmk04816_regs_t::HOLDOVER_MUX_PLL1_R;
// Register 14
_lmk04816_regs.Status_CLKin1_TYPE =
lmk04816_regs_t::STATUS_CLKIN1_TYPE_OUT_PUSH_PULL;
_lmk04816_regs.Status_CLKin0_TYPE =
lmk04816_regs_t::STATUS_CLKIN0_TYPE_OUT_PUSH_PULL;
// Register 26
// PLL2_CP_GAIN_26 set above in individual cases
_lmk04816_regs.PLL2_CP_POL_26 = lmk04816_regs_t::PLL2_CP_POL_26_NEG_SLOPE;
_lmk04816_regs.EN_PLL2_REF_2X = lmk04816_regs_t::EN_PLL2_REF_2X_DOUBLED_FREQ_REF;
// Register 27
// PLL1_CP_GAIN_27 set in individual cases above
// PLL1_R_27 set in the individual cases above
// Register 28
// PLL1_N_28 and PLL2_R_28 are set in the individual cases above
// Register 29
_lmk04816_regs.PLL2_N_CAL_29 =
_lmk04816_regs.PLL2_N_30; // N_CAL should always match N
_lmk04816_regs.OSCin_FREQ_29 = lmk04816_regs_t::OSCIN_FREQ_29_63_TO_127MHZ;
// Register 30
// PLL2_P_30 set in individual cases above
// PLL2_N_30 set in individual cases above
if (_hw_rev >= 7) {
_delays = X300_REV7_CLK_DELAYS;
} else {
_delays = X300_REV0_6_CLK_DELAYS;
}
// Apply delay values
set_clock_delay(X300_CLOCK_WHICH_FPGA, _delays.fpga_dly_ns, false);
set_clock_delay(X300_CLOCK_WHICH_DB0_RX,
_delays.db_rx_dly_ns,
false); // Sets both Ch0 and Ch1
set_clock_delay(X300_CLOCK_WHICH_DB0_TX,
_delays.db_tx_dly_ns,
false); // Sets both Ch0 and Ch1
set_clock_delay(
X300_CLOCK_WHICH_ADC0, _delays.adc_dly_ns, false); // Sets both Ch0 and Ch1
set_clock_delay(
X300_CLOCK_WHICH_DAC0, _delays.dac_dly_ns, false); // Sets both Ch0 and Ch1
/* Write the configuration values into the LMK */
for (uint8_t i = 1; i <= 16; ++i) {
this->write_regs(i);
}
for (uint8_t i = 24; i <= 31; ++i) {
this->write_regs(i);
}
this->sync_clocks();
}
const spi_iface::sptr _spiface;
const int _slaveno;
const size_t _hw_rev;
// This is technically constant, but it can be coerced during initialization
double _master_clock_rate;
const double _dboard_clock_rate;
const double _system_ref_rate;
lmk04816_regs_t _lmk04816_regs;
double _vco_freq;
x300_clk_delays _delays;
};
x300_clock_ctrl::sptr x300_clock_ctrl::make(uhd::spi_iface::sptr spiface,
const size_t slaveno,
const size_t hw_rev,
const double master_clock_rate,
const double dboard_clock_rate,
const double system_ref_rate)
{
return sptr(new x300_clock_ctrl_impl(
spiface, slaveno, hw_rev, master_clock_rate, dboard_clock_rate, system_ref_rate));
}
|