aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/x300/x300_clock_ctrl.cpp
blob: 21411e651f4739a610bcada1e3e4e8371b19867a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
//
// Copyright 2013-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include "lmk04816_regs.hpp"
#include "x300_clock_ctrl.hpp"
#include <uhd/utils/safe_call.hpp>
#include <boost/cstdint.hpp>
#include <boost/format.hpp>
#include <stdexcept>
#include <cmath>
#include <cstdlib>

static const double X300_REF_CLK_OUT_RATE  = 10e6;

using namespace uhd;

x300_clock_ctrl::~x300_clock_ctrl(void){
    /* NOP */
}

class x300_clock_ctrl_impl : public x300_clock_ctrl    {

public:

~x300_clock_ctrl_impl(void) {}

x300_clock_ctrl_impl(uhd::spi_iface::sptr spiface,
    const size_t slaveno,
    const size_t hw_rev,
    const double master_clock_rate,
    const double system_ref_rate):
    _spiface(spiface),
    _slaveno(slaveno),
    _hw_rev(hw_rev),
    _master_clock_rate(master_clock_rate),
    _system_ref_rate(system_ref_rate)
{
    set_master_clock_rate(master_clock_rate);
}

void reset_clocks() {
    set_master_clock_rate(_master_clock_rate);
}

void sync_clocks(void) {
    //soft sync:
    //put the sync IO into output mode - FPGA must be input
    //write low, then write high - this triggers a soft sync
    _lmk04816_regs.SYNC_POL_INV = lmk04816_regs_t::SYNC_POL_INV_SYNC_LOW;
    this->write_regs(11);
    _lmk04816_regs.SYNC_POL_INV = lmk04816_regs_t::SYNC_POL_INV_SYNC_HIGH;
    this->write_regs(11);
}

double get_master_clock_rate(void) {
    return _master_clock_rate;
}

double get_sysref_clock_rate(void) {
    return _system_ref_rate;
}

double get_refout_clock_rate(void) {
    //We support only one reference output rate
    return X300_REF_CLK_OUT_RATE;
}

void set_dboard_rate(const x300_clock_which_t, double rate) {
    if(not doubles_are_equal(rate, get_master_clock_rate())) {
        throw uhd::not_implemented_error("x3xx set dboard clock rate does not support setting an arbitrary clock rate");
    }
}

std::vector<double> get_dboard_rates(const x300_clock_which_t) {
    /* Right now, the only supported daughterboard clock rate is the master clock
    * rate. TODO Implement divider settings for lower clock rates for legacy
    * daughterboard support. */

    std::vector<double> rates;
    rates.push_back(get_master_clock_rate());
    return rates;
}

void set_ref_out(const bool enable) {
    // TODO  Implement divider configuration to allow for configurable output
    // rates
    if (enable)
        _lmk04816_regs.CLKout10_TYPE = lmk04816_regs_t::CLKOUT10_TYPE_LVDS;
    else
        _lmk04816_regs.CLKout10_TYPE = lmk04816_regs_t::CLKOUT10_TYPE_P_DOWN;
    this->write_regs(8);
}

void write_regs(boost::uint8_t addr) {
    boost::uint32_t data = _lmk04816_regs.get_reg(addr);
    _spiface->write_spi(_slaveno, spi_config_t::EDGE_RISE, data,32);
}


private:

void set_master_clock_rate(double clock_rate) {
    /* The X3xx has two primary rates. The first is the
     * _system_ref_rate, which is sourced from the "clock_source"/"value" field
     * of the property tree, and whose value can be 10e6, 30.72e6, or 200e6.
     * The _system_ref_rate is the input to the clocking system, and
     * what comes out is a disciplined master clock running at the
     * _master_clock_rate. As such, only certain combinations of
     * system reference rates and master clock rates are supported.
     * Additionally, a subset of these will operate in "zero delay" mode. */

    enum opmode_t { INVALID,
                    m10M_200M_NOZDEL,      // used for debug purposes only
                    m10M_200M_ZDEL,        // Normal mode
                    m30_72M_184_32M_ZDEL,  // LTE with external ref, aka CPRI Mode
                    m10M_184_32M_NOZDEL,   // LTE with 10 MHz ref
                    m10M_120M_ZDEL };       // NI USRP 120 MHz Clocking

    /* The default clocking mode is 10MHz reference generating a 200 MHz master
     * clock, in zero-delay mode. */
    opmode_t clocking_mode = INVALID;

    if(doubles_are_equal(_system_ref_rate, 10e6)) {
        if(doubles_are_equal(clock_rate, 184.32e6)) {
            /* 10MHz reference, 184.32 MHz master clock out, NOT Zero Delay. */
            clocking_mode = m10M_184_32M_NOZDEL;
        } else if(doubles_are_equal(clock_rate, 200e6)) {
            /* 10MHz reference, 200 MHz master clock out, Zero Delay */
            clocking_mode = m10M_200M_ZDEL;
        } else if(doubles_are_equal(clock_rate, 120e6)) {
            /* 10MHz reference, 120 MHz master clock rate, Zero Delay */
            clocking_mode = m10M_120M_ZDEL;
        }
    } else if(doubles_are_equal(_system_ref_rate, 30.72e6)) {
        if(doubles_are_equal(clock_rate, 184.32e6)) {
            /* 30.72MHz reference, 184.32 MHz master clock out, Zero Delay */
            clocking_mode = m30_72M_184_32M_ZDEL;
        }
    }

    if(clocking_mode == INVALID) {
        throw uhd::runtime_error(str(boost::format("A master clock rate of %f cannot be derived from a system reference rate of %f") % clock_rate % _system_ref_rate));
    }

    // For 200 MHz output, the VCO is run at 2400 MHz
    // For the LTE/CPRI rate of 184.32 MHz, the VCO runs at 2580.48 MHz

    int vco_div = 0;

    // Note: PLL2 N2 prescaler is enabled for all cases
    //       PLL2 reference doubler is enabled for all cases

    /* All LMK04816 settings are from the LMK datasheet for our clocking
     * architecture. Please refer to the datasheet for more information. */
    switch (clocking_mode) {
        case m10M_200M_NOZDEL:
            vco_div = 12;
            _lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT;

            // PLL1 - 2 MHz compare frequency
            _lmk04816_regs.PLL1_N_28 = 48;
            _lmk04816_regs.PLL1_R_27 = 5;
            _lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_100UA;

            // PLL2 - 48 MHz compare frequency
            _lmk04816_regs.PLL2_N_30 = 25;
            _lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_2A;
            _lmk04816_regs.PLL2_R_28 = 4;
            _lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_3200UA;

            break;

        case m10M_200M_ZDEL:
            vco_div = 12;
            _lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT_ZER_DELAY;

            // PLL1 - 2 MHz compare frequency
            _lmk04816_regs.PLL1_N_28 = 100;
            _lmk04816_regs.PLL1_R_27 = 5;
            _lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_100UA;

            // PLL2 - 96 MHz compare frequency
            _lmk04816_regs.PLL2_N_30 = 5;
            _lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_5;
            _lmk04816_regs.PLL2_R_28 = 2;

            if(_hw_rev <= 4)
                _lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_1600UA;
            else
                _lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_400UA;

            break;

        case m30_72M_184_32M_ZDEL:
            vco_div=14;
            _lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT_ZER_DELAY;

            // PLL1 - 2.048 MHz compare frequency
            _lmk04816_regs.PLL1_N_28 = 90;
            _lmk04816_regs.PLL1_R_27 = 15;
            _lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_100UA;

            // PLL2 - 7.68 MHz compare frequency
            _lmk04816_regs.PLL2_N_30 = 168;
            _lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_2A;
            _lmk04816_regs.PLL2_R_28 = 25;
            _lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_3200UA;

            _lmk04816_regs.PLL2_R3_LF = lmk04816_regs_t::PLL2_R3_LF_1KILO_OHM;
            _lmk04816_regs.PLL2_C3_LF = lmk04816_regs_t::PLL2_C3_LF_39PF;

            _lmk04816_regs.PLL2_R4_LF = lmk04816_regs_t::PLL2_R4_LF_1KILO_OHM;
            _lmk04816_regs.PLL2_C4_LF = lmk04816_regs_t::PLL2_C4_LF_34PF;

            break;

        case m10M_184_32M_NOZDEL:
            vco_div=14;
            _lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT;

            // PLL1 - 2 MHz compare frequency
            _lmk04816_regs.PLL1_N_28 = 48;
            _lmk04816_regs.PLL1_R_27 = 5;
            _lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_100UA;

            // PLL2 - 7.68 MHz compare frequency
            _lmk04816_regs.PLL2_N_30 = 168;
            _lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_2A;
            _lmk04816_regs.PLL2_R_28 = 25;
            _lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_3200UA;

            _lmk04816_regs.PLL2_R3_LF = lmk04816_regs_t::PLL2_R3_LF_4KILO_OHM;
            _lmk04816_regs.PLL2_C3_LF = lmk04816_regs_t::PLL2_C3_LF_39PF;

            _lmk04816_regs.PLL2_R4_LF = lmk04816_regs_t::PLL2_R4_LF_1KILO_OHM;
            _lmk04816_regs.PLL2_C4_LF = lmk04816_regs_t::PLL2_C4_LF_71PF;

            break;

        case m10M_120M_ZDEL:
            vco_div = 20;
            _lmk04816_regs.MODE = lmk04816_regs_t::MODE_DUAL_INT_ZER_DELAY;

            // PLL1 - 2 MHz compare frequency
            _lmk04816_regs.PLL1_N_28 = 60;
            _lmk04816_regs.PLL1_R_27 = 5;
            _lmk04816_regs.PLL1_CP_GAIN_27 = lmk04816_regs_t::PLL1_CP_GAIN_27_100UA;

            // PLL2 - 96 MHz compare frequency
            _lmk04816_regs.PLL2_N_30 = 5;
            _lmk04816_regs.PLL2_P_30 = lmk04816_regs_t::PLL2_P_30_DIV_5;
            _lmk04816_regs.PLL2_R_28 = 2;

            if(_hw_rev <= 4)
                _lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_1600UA;
            else
                _lmk04816_regs.PLL2_CP_GAIN_26 = lmk04816_regs_t::PLL2_CP_GAIN_26_400UA;

            break;

        default:
            UHD_THROW_INVALID_CODE_PATH();
            break;
    };

    /* Reset the LMK clock controller. */
    _lmk04816_regs.RESET = lmk04816_regs_t::RESET_RESET;
    this->write_regs(0);
    _lmk04816_regs.RESET = lmk04816_regs_t::RESET_NO_RESET;
    this->write_regs(0);

    /* Initial power-up */
    _lmk04816_regs.CLKout0_1_PD = lmk04816_regs_t::CLKOUT0_1_PD_POWER_UP;
    this->write_regs(0);
    _lmk04816_regs.CLKout0_1_DIV = vco_div;
    _lmk04816_regs.CLKout0_ADLY_SEL = lmk04816_regs_t::CLKOUT0_ADLY_SEL_D_EV_X;
    this->write_regs(0);

    // Register 1
    _lmk04816_regs.CLKout2_3_PD = lmk04816_regs_t::CLKOUT2_3_PD_POWER_UP;
    _lmk04816_regs.CLKout2_3_DIV = vco_div;
    // Register 2
    _lmk04816_regs.CLKout4_5_PD = lmk04816_regs_t::CLKOUT4_5_PD_POWER_UP;
    _lmk04816_regs.CLKout4_5_DIV = vco_div;
    // Register 3
    _lmk04816_regs.CLKout6_7_DIV = vco_div;
    _lmk04816_regs.CLKout6_7_OSCin_Sel = lmk04816_regs_t::CLKOUT6_7_OSCIN_SEL_VCO;
    // Register 4
    _lmk04816_regs.CLKout8_9_DIV = vco_div;
    // Register 5
    _lmk04816_regs.CLKout10_11_PD = lmk04816_regs_t::CLKOUT10_11_PD_NORMAL;
    _lmk04816_regs.CLKout10_11_DIV = vco_div * static_cast<int>(clock_rate/X300_REF_CLK_OUT_RATE);

    // Register 6
    _lmk04816_regs.CLKout0_TYPE = lmk04816_regs_t::CLKOUT0_TYPE_LVDS; //FPGA
    _lmk04816_regs.CLKout1_TYPE = lmk04816_regs_t::CLKOUT1_TYPE_P_DOWN; //CPRI feedback clock, use LVDS
    _lmk04816_regs.CLKout2_TYPE = lmk04816_regs_t::CLKOUT2_TYPE_LVPECL_700MVPP; //DB_0_RX
    _lmk04816_regs.CLKout3_TYPE = lmk04816_regs_t::CLKOUT3_TYPE_LVPECL_700MVPP; //DB_1_RX
    // Analog delay of 900ps to synchronize the radio clock with the source synchronous ADC clocks.
    // This delay may need to vary due to temperature.  Tested and verified at room temperature only.
    _lmk04816_regs.CLKout0_1_ADLY = 0x10;

    // Register 7
    _lmk04816_regs.CLKout4_TYPE = lmk04816_regs_t::CLKOUT4_TYPE_LVPECL_700MVPP; //DB_1_TX
    _lmk04816_regs.CLKout5_TYPE = lmk04816_regs_t::CLKOUT5_TYPE_LVPECL_700MVPP; //DB_0_TX
    _lmk04816_regs.CLKout6_TYPE = lmk04816_regs_t::CLKOUT6_TYPE_LVPECL_700MVPP; //DB0_DAC
    _lmk04816_regs.CLKout7_TYPE = lmk04816_regs_t::CLKOUT7_TYPE_LVPECL_700MVPP; //DB1_DAC
    _lmk04816_regs.CLKout8_TYPE = lmk04816_regs_t::CLKOUT8_TYPE_LVPECL_700MVPP; //DB0_ADC

    // Register 8
    _lmk04816_regs.CLKout9_TYPE = lmk04816_regs_t::CLKOUT9_TYPE_LVPECL_700MVPP; //DB1_ADC
    _lmk04816_regs.CLKout10_TYPE = lmk04816_regs_t::CLKOUT10_TYPE_LVDS; //REF_CLKOUT
    _lmk04816_regs.CLKout11_TYPE = lmk04816_regs_t::CLKOUT11_TYPE_P_DOWN; //Debug header, use LVPECL


    // Register 10
    _lmk04816_regs.EN_OSCout0 = lmk04816_regs_t::EN_OSCOUT0_DISABLED; //Debug header
    _lmk04816_regs.FEEDBACK_MUX = 0; //use output 0 (FPGA clock) for feedback
    _lmk04816_regs.EN_FEEDBACK_MUX = lmk04816_regs_t::EN_FEEDBACK_MUX_ENABLED;

    // Register 11
    // MODE set in individual cases above
    _lmk04816_regs.SYNC_QUAL = lmk04816_regs_t::SYNC_QUAL_FB_MUX;
    _lmk04816_regs.EN_SYNC = lmk04816_regs_t::EN_SYNC_ENABLE;
    _lmk04816_regs.NO_SYNC_CLKout0_1 = lmk04816_regs_t::NO_SYNC_CLKOUT0_1_CLOCK_XY_SYNC;
    _lmk04816_regs.NO_SYNC_CLKout2_3 = lmk04816_regs_t::NO_SYNC_CLKOUT2_3_CLOCK_XY_SYNC;
    _lmk04816_regs.NO_SYNC_CLKout4_5 = lmk04816_regs_t::NO_SYNC_CLKOUT4_5_CLOCK_XY_SYNC;
    _lmk04816_regs.NO_SYNC_CLKout6_7 = lmk04816_regs_t::NO_SYNC_CLKOUT6_7_CLOCK_XY_SYNC;
    _lmk04816_regs.NO_SYNC_CLKout8_9 = lmk04816_regs_t::NO_SYNC_CLKOUT8_9_CLOCK_XY_SYNC;
    _lmk04816_regs.NO_SYNC_CLKout10_11 = lmk04816_regs_t::NO_SYNC_CLKOUT10_11_CLOCK_XY_SYNC;
    _lmk04816_regs.SYNC_EN_AUTO = lmk04816_regs_t::SYNC_EN_AUTO_SYNC_INT_GEN;
    _lmk04816_regs.SYNC_POL_INV = lmk04816_regs_t::SYNC_POL_INV_SYNC_LOW;
    _lmk04816_regs.SYNC_TYPE = lmk04816_regs_t::SYNC_TYPE_INPUT;

    // Register 12
    _lmk04816_regs.LD_MUX = lmk04816_regs_t::LD_MUX_BOTH;

    /* Input Clock Configurations */
    // Register 13
    _lmk04816_regs.EN_CLKin0 = lmk04816_regs_t::EN_CLKIN0_NO_VALID_USE;  // This is not connected
    _lmk04816_regs.EN_CLKin2 = lmk04816_regs_t::EN_CLKIN2_NO_VALID_USE;  // Used only for CPRI
    _lmk04816_regs.Status_CLKin1_MUX = lmk04816_regs_t::STATUS_CLKIN1_MUX_UWIRE_RB;
    _lmk04816_regs.CLKin_Select_MODE = lmk04816_regs_t::CLKIN_SELECT_MODE_CLKIN1_MAN;
    _lmk04816_regs.HOLDOVER_MUX = lmk04816_regs_t::HOLDOVER_MUX_PLL1_R;
    // Register 14
    _lmk04816_regs.Status_CLKin1_TYPE = lmk04816_regs_t::STATUS_CLKIN1_TYPE_OUT_PUSH_PULL;
    _lmk04816_regs.Status_CLKin0_TYPE = lmk04816_regs_t::STATUS_CLKIN0_TYPE_OUT_PUSH_PULL;

    // Register 26
    // PLL2_CP_GAIN_26 set above in individual cases
    _lmk04816_regs.PLL2_CP_POL_26 = lmk04816_regs_t::PLL2_CP_POL_26_NEG_SLOPE;
    _lmk04816_regs.EN_PLL2_REF_2X = lmk04816_regs_t::EN_PLL2_REF_2X_DOUBLED_FREQ_REF;

    // Register 27
    // PLL1_CP_GAIN_27 set in individual cases above
    // PLL1_R_27 set in the individual cases above

    // Register 28
    // PLL1_N_28 and PLL2_R_28 are set in the individual cases above

    // Register 29
    _lmk04816_regs.PLL2_N_CAL_29 = _lmk04816_regs.PLL2_N_30;  // N_CAL should always match N
    _lmk04816_regs.OSCin_FREQ_29 = lmk04816_regs_t::OSCIN_FREQ_29_63_TO_127MHZ;

    // Register 30
    // PLL2_P_30 set in individual cases above
    // PLL2_N_30 set in individual cases above

    /* Write the configuration values into the LMK */
    for (size_t i = 1; i <= 16; ++i) {
        this->write_regs(i);
    }
    for (size_t i = 24; i <= 31; ++i) {
        this->write_regs(i);
    }

    this->sync_clocks();
}

UHD_INLINE bool doubles_are_equal(double a, double b) {
    return  (std::fabs(a - b) < std::numeric_limits<double>::epsilon());
}

const spi_iface::sptr _spiface;
const size_t _slaveno;
const size_t _hw_rev;
const double _master_clock_rate;
const double _system_ref_rate;
lmk04816_regs_t _lmk04816_regs;
};

x300_clock_ctrl::sptr x300_clock_ctrl::make(uhd::spi_iface::sptr spiface,
        const size_t slaveno,
        const size_t hw_rev,
        const double master_clock_rate,
        const double system_ref_rate) {
    return sptr(new x300_clock_ctrl_impl(spiface, slaveno, hw_rev,
                master_clock_rate, system_ref_rate));
}