aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/x300/x300_adc_dac_utils.cpp
blob: e0882574909ecfbf44aeb005ee5b9f9b48eaed85 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
//
// Copyright 2015 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include "x300_impl.hpp"
#include <boost/date_time/posix_time/posix_time_io.hpp>

using namespace uhd::usrp::x300;

/***********************************************************************
 * DAC: Reset and synchronization operations
 **********************************************************************/

void x300_impl::synchronize_dacs(const std::vector<radio_perifs_t*>& radios)
{
    if (radios.size() < 2) return;  //Nothing to synchronize

    //**PRECONDITION**
    //This function assumes that all the VITA times in "radios" are synchronized
    //to a common reference. Currently, this function is called in get_tx_stream
    //which also has the same precondition.

    //Reinitialize and resync all DACs
    for (size_t i = 0; i < radios.size(); i++) {
        radios[i]->dac->reset_and_resync();
    }

    //Get a rough estimate of the cumulative command latency
    boost::posix_time::ptime t_start = boost::posix_time::microsec_clock::local_time();
    for (size_t i = 0; i < radios.size(); i++) {
        radios[i]->ctrl->peek64(uhd::usrp::radio::RB64_TIME_NOW); //Discard value. We are just timing the call
    }
    boost::posix_time::time_duration t_elapsed =
        boost::posix_time::microsec_clock::local_time() - t_start;

    //Add 100% of headroom + uncertaintly to the command time
    boost::uint64_t t_sync_us = (t_elapsed.total_microseconds() * 2) + 13000 /*Scheduler latency*/;

    //Pick radios[0] as the time reference.
    uhd::time_spec_t sync_time =
        radios[0]->time64->get_time_now() + uhd::time_spec_t(((double)t_sync_us)/1e6);

    //Send the sync command
    for (size_t i = 0; i < radios.size(); i++) {
        radios[i]->ctrl->set_time(sync_time);
        radios[i]->ctrl->poke32(uhd::usrp::radio::sr_addr(uhd::usrp::radio::DACSYNC), 0x1);    //Arm FRAMEP/N sync pulse
        radios[i]->ctrl->set_time(uhd::time_spec_t(0.0));   //Clear command time
    }

    //Wait and check status
    boost::this_thread::sleep(boost::posix_time::microseconds(t_sync_us));
    for (size_t i = 0; i < radios.size(); i++) {
        radios[i]->dac->verify_sync();
    }
}

/***********************************************************************
 * ADC: Self-test operations
 **********************************************************************/

static void check_adc(uhd::wb_iface::sptr iface, const boost::uint32_t val, const boost::uint32_t i)
{
    boost::uint32_t adc_rb = iface->peek32(uhd::usrp::radio::RB32_RX);
    adc_rb ^= 0xfffc0000; //adapt for I inversion in FPGA
    if (val != adc_rb) {
        throw uhd::runtime_error(
            (boost::format("ADC self-test failed for Radio%d. (Exp=0x%x, Got=0x%x)")%i%val%adc_rb).str());
    }
}

void x300_impl::self_test_adcs(mboard_members_t& mb, boost::uint32_t ramp_time_ms) {
    for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) {
        radio_perifs_t &perif = mb.radio_perifs[r];

        //First test basic patterns
        perif.adc->set_test_word("ones", "ones"); check_adc(perif.ctrl, 0xfffcfffc,r);
        perif.adc->set_test_word("zeros", "zeros"); check_adc(perif.ctrl, 0x00000000,r);
        perif.adc->set_test_word("ones", "zeros"); check_adc(perif.ctrl, 0xfffc0000,r);
        perif.adc->set_test_word("zeros", "ones"); check_adc(perif.ctrl, 0x0000fffc,r);
        for (size_t k = 0; k < 14; k++)
        {
            perif.adc->set_test_word("zeros", "custom", 1 << k);
            check_adc(perif.ctrl, 1 << (k+2),r);
        }
        for (size_t k = 0; k < 14; k++)
        {
            perif.adc->set_test_word("custom", "zeros", 1 << k);
            check_adc(perif.ctrl, 1 << (k+18),r);
        }

        //Turn on ramp pattern test
        perif.adc->set_test_word("ramp", "ramp");
        perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
        perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
    }
    boost::this_thread::sleep(boost::posix_time::milliseconds(ramp_time_ms));

    bool passed = true;
    std::string status_str;
    for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) {
        radio_perifs_t &perif = mb.radio_perifs[r];
        perif.regmap->misc_ins_reg.refresh();

        std::string i_status, q_status;
        if (perif.regmap->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_LOCKED))
            if (perif.regmap->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_ERROR))
                i_status = "Bit Errors!";
            else
                i_status = "Good";
        else
            i_status = "Not Locked!";

        if (perif.regmap->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_LOCKED))
            if (perif.regmap->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_ERROR))
                q_status = "Bit Errors!";
            else
                q_status = "Good";
        else
            q_status = "Not Locked!";

        passed = passed && (i_status == "Good") && (q_status == "Good");
        status_str += (boost::format(", ADC%d_I=%s, ADC%d_Q=%s")%r%i_status%r%q_status).str();

        //Return to normal mode
        perif.adc->set_test_word("normal", "normal");
    }

    if (not passed) {
        throw uhd::runtime_error(
            (boost::format("ADC self-test failed! Ramp checker status: {%s}")%status_str.substr(2)).str());
    }
}

void x300_impl::extended_adc_test(mboard_members_t& mb, double duration_s)
{
    static const size_t SECS_PER_ITER = 5;
    UHD_MSG(status) << boost::format("Running Extended ADC Self-Test (Duration=%.0fs, %ds/iteration)...\n")
        % duration_s % SECS_PER_ITER;

    size_t num_iters = static_cast<size_t>(ceil(duration_s/SECS_PER_ITER));
    size_t num_failures = 0;
    for (size_t iter = 0; iter < num_iters; iter++) {
        //Print date and time
        boost::posix_time::time_facet *facet = new boost::posix_time::time_facet("%d-%b-%Y %H:%M:%S");
        std::ostringstream time_strm;
        time_strm.imbue(std::locale(std::locale::classic(), facet));
        time_strm << boost::posix_time::second_clock::local_time();
        //Run self-test
        UHD_MSG(status) << boost::format("-- [%s] Iteration %06d... ") % time_strm.str() % (iter+1);
        try {
            self_test_adcs(mb, SECS_PER_ITER*1000);
            UHD_MSG(status) << "passed" << std::endl;
        } catch(std::exception &e) {
            num_failures++;
            UHD_MSG(status) << e.what() << std::endl;
        }

    }
    if (num_failures == 0) {
        UHD_MSG(status) << "Extended ADC Self-Test PASSED\n";
    } else {
        throw uhd::runtime_error(
                (boost::format("Extended ADC Self-Test FAILED!!! (%d/%d failures)\n") % num_failures % num_iters).str());
    }
}

/***********************************************************************
 * ADC: Self-calibration operations
 **********************************************************************/

void x300_impl::self_cal_adc_capture_delay(mboard_members_t& mb, const size_t radio_i, bool print_status)
{
    radio_perifs_t& perif = mb.radio_perifs[radio_i];
    if (print_status) UHD_MSG(status) << "Running ADC capture delay self-cal..." << std::flush;

    static const boost::uint32_t NUM_DELAY_STEPS = 32;   //The IDELAYE2 element has 32 steps
    static const boost::uint32_t NUM_RETRIES     = 2;    //Retry self-cal if it fails in warmup situations
    static const boost::int32_t  MIN_WINDOW_LEN  = 4;

    boost::int32_t win_start = -1, win_stop = -1;
    boost::uint32_t iter = 0;
    while (iter++ < NUM_RETRIES) {
        for (boost::uint32_t dly_tap = 0; dly_tap < NUM_DELAY_STEPS; dly_tap++) {
            //Apply delay
            perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_VAL, dly_tap);
            perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 1);
            perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 0);

            boost::uint32_t err_code = 0;

            // -- Test I Channel --
            //Put ADC in ramp test mode. Tie the other channel to all ones.
            perif.adc->set_test_word("ramp", "ones");
            //Turn on the pattern checker in the FPGA. It will lock when it sees a zero
            //and count deviations from the expected value
            perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
            perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
            //10ms @ 200MHz = 2 million samples
            boost::this_thread::sleep(boost::posix_time::milliseconds(10));
            if (perif.regmap->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_I_LOCKED)) {
                err_code += perif.regmap->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_I_ERROR);
            } else {
                err_code += 100;    //Increment error code by 100 to indicate no lock
            }

            // -- Test Q Channel --
            //Put ADC in ramp test mode. Tie the other channel to all ones.
            perif.adc->set_test_word("ones", "ramp");
            //Turn on the pattern checker in the FPGA. It will lock when it sees a zero
            //and count deviations from the expected value
            perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
            perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
            //10ms @ 200MHz = 2 million samples
            boost::this_thread::sleep(boost::posix_time::milliseconds(10));
            if (perif.regmap->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_Q_LOCKED)) {
                err_code += perif.regmap->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER0_Q_ERROR);
            } else {
                err_code += 100;    //Increment error code by 100 to indicate no lock
            }

            if (err_code == 0) {
                if (win_start == -1) {      //This is the first window
                    win_start = dly_tap;
                    win_stop = dly_tap;
                } else {                    //We are extending the window
                    win_stop = dly_tap;
                }
            } else {
                if (win_start != -1) {      //A valid window turned invalid
                    if (win_stop - win_start >= MIN_WINDOW_LEN) {
                        break;              //Valid window found
                    } else {
                        win_start = -1;     //Reset window
                    }
                }
            }
            //UHD_MSG(status) << (boost::format("CapTap=%d, Error=%d\n") % dly_tap % err_code);
        }

        //Retry the self-cal if it fails
        if ((win_start == -1 || (win_stop - win_start) < MIN_WINDOW_LEN) && iter < NUM_RETRIES /*not last iteration*/) {
            win_start = -1;
            win_stop = -1;
            boost::this_thread::sleep(boost::posix_time::milliseconds(2000));
        } else {
            break;
        }
    }
    perif.adc->set_test_word("normal", "normal");
    perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);

    if (win_start == -1) {
        throw uhd::runtime_error("self_cal_adc_capture_delay: Self calibration failed. Convergence error.");
    }

    if (win_stop-win_start < MIN_WINDOW_LEN) {
        throw uhd::runtime_error("self_cal_adc_capture_delay: Self calibration failed. Valid window too narrow.");
    }

    boost::uint32_t ideal_tap = (win_stop + win_start) / 2;
    perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_VAL, ideal_tap);
    perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 1);
    perif.regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_DATA_DLY_STB, 0);

    if (print_status) {
        double tap_delay = (1.0e12 / mb.clock->get_master_clock_rate()) / (2*32); //in ps
        UHD_MSG(status) << boost::format(" done (Tap=%d, Window=%d, TapDelay=%.3fps, Iter=%d)\n") % ideal_tap % (win_stop-win_start) % tap_delay % iter;
    }
}

double x300_impl::self_cal_adc_xfer_delay(mboard_members_t& mb, bool apply_delay)
{
    UHD_MSG(status) << "Running ADC transfer delay self-cal: " << std::flush;

    //Effective resolution of the self-cal.
    static const size_t NUM_DELAY_STEPS = 100;

    double master_clk_period = (1.0e9 / mb.clock->get_master_clock_rate()); //in ns
    double delay_start = 0.0;
    double delay_range = 2 * master_clk_period;
    double delay_incr = delay_range / NUM_DELAY_STEPS;

    UHD_MSG(status) << "Measuring..." << std::flush;
    double cached_clk_delay = mb.clock->get_clock_delay(X300_CLOCK_WHICH_ADC0);
    double fpga_clk_delay = mb.clock->get_clock_delay(X300_CLOCK_WHICH_FPGA);

    //Iterate through several values of delays and measure ADC data integrity
    std::vector< std::pair<double,bool> > results;
    for (size_t i = 0; i < NUM_DELAY_STEPS; i++) {
        //Delay the ADC clock (will set both Ch0 and Ch1 delays)
        double delay = mb.clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, delay_incr*i + delay_start);
        wait_for_clk_locked(mb, fw_regmap_t::clk_status_reg_t::LMK_LOCK, 0.1);

        boost::uint32_t err_code = 0;
        for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) {
            //Test each channel (I and Q) individually so as to not accidentally trigger
            //on the data from the other channel if there is a swap

            // -- Test I Channel --
            //Put ADC in ramp test mode. Tie the other channel to all ones.
            mb.radio_perifs[r].adc->set_test_word("ramp", "ones");
            //Turn on the pattern checker in the FPGA. It will lock when it sees a zero
            //and count deviations from the expected value
            mb.radio_perifs[r].regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
            mb.radio_perifs[r].regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
            //50ms @ 200MHz = 10 million samples
            boost::this_thread::sleep(boost::posix_time::milliseconds(50));
            if (mb.radio_perifs[r].regmap->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_LOCKED)) {
                err_code += mb.radio_perifs[r].regmap->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_I_ERROR);
            } else {
                err_code += 100;    //Increment error code by 100 to indicate no lock
            }

            // -- Test Q Channel --
            //Put ADC in ramp test mode. Tie the other channel to all ones.
            mb.radio_perifs[r].adc->set_test_word("ones", "ramp");
            //Turn on the pattern checker in the FPGA. It will lock when it sees a zero
            //and count deviations from the expected value
            mb.radio_perifs[r].regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
            mb.radio_perifs[r].regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 1);
            //50ms @ 200MHz = 10 million samples
            boost::this_thread::sleep(boost::posix_time::milliseconds(50));
            if (mb.radio_perifs[r].regmap->misc_ins_reg.read(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_LOCKED)) {
                err_code += mb.radio_perifs[r].regmap->misc_ins_reg.get(radio_regmap_t::misc_ins_reg_t::ADC_CHECKER1_Q_ERROR);
            } else {
                err_code += 100;    //Increment error code by 100 to indicate no lock
            }
        }
        //UHD_MSG(status) << (boost::format("XferDelay=%fns, Error=%d\n") % delay % err_code);
        results.push_back(std::pair<double,bool>(delay, err_code==0));
    }

    //Calculate the valid window
    int win_start_idx = -1, win_stop_idx = -1, cur_start_idx = -1, cur_stop_idx = -1;
    for (size_t i = 0; i < results.size(); i++) {
        std::pair<double,bool>& item = results[i];
        if (item.second) {  //If data is stable
            if (cur_start_idx == -1) {  //This is the first window
                cur_start_idx = i;
                cur_stop_idx = i;
            } else {                    //We are extending the window
                cur_stop_idx = i;
            }
        } else {
            if (cur_start_idx == -1) {  //We haven't yet seen valid data
                //Do nothing
            } else if (win_start_idx == -1) {   //We passed the first valid window
                win_start_idx = cur_start_idx;
                win_stop_idx = cur_stop_idx;
            } else {                    //Update cached window if current window is larger
                double cur_win_len = results[cur_stop_idx].first - results[cur_start_idx].first;
                double cached_win_len = results[win_stop_idx].first - results[win_start_idx].first;
                if (cur_win_len > cached_win_len) {
                    win_start_idx = cur_start_idx;
                    win_stop_idx = cur_stop_idx;
                }
            }
            //Reset current window
            cur_start_idx = -1;
            cur_stop_idx = -1;
        }
    }
    if (win_start_idx == -1) {
        throw uhd::runtime_error("self_cal_adc_xfer_delay: Self calibration failed. Convergence error.");
    }

    double win_center = (results[win_stop_idx].first + results[win_start_idx].first) / 2.0;
    double win_length = results[win_stop_idx].first - results[win_start_idx].first;
    if (win_length < master_clk_period/4) {
        throw uhd::runtime_error("self_cal_adc_xfer_delay: Self calibration failed. Valid window too narrow.");
    }

    //Cycle slip the relative delay by a clock cycle to prevent sample misalignment
    //fpga_clk_delay > 0 and 0 < win_center < 2*(1/MCR) so one cycle slip is all we need
    bool cycle_slip = (win_center-fpga_clk_delay >= master_clk_period);
    if (cycle_slip) {
        win_center -= master_clk_period;
    }

    if (apply_delay) {
        UHD_MSG(status) << "Validating..." << std::flush;
        //Apply delay
        win_center = mb.clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, win_center);  //Sets ADC0 and ADC1
        wait_for_clk_locked(mb, fw_regmap_t::clk_status_reg_t::LMK_LOCK, 0.1);
        //Validate
        self_test_adcs(mb, 2000);
    } else {
        //Restore delay
        mb.clock->set_clock_delay(X300_CLOCK_WHICH_ADC0, cached_clk_delay);  //Sets ADC0 and ADC1
    }

    //Teardown
    for (size_t r = 0; r < mboard_members_t::NUM_RADIOS; r++) {
        mb.radio_perifs[r].adc->set_test_word("normal", "normal");
        mb.radio_perifs[r].regmap->misc_outs_reg.write(radio_regmap_t::misc_outs_reg_t::ADC_CHECKER_ENABLED, 0);
    }
    UHD_MSG(status) << (boost::format(" done (FPGA->ADC=%.3fns%s, Window=%.3fns)\n") %
        (win_center-fpga_clk_delay) % (cycle_slip?" +cyc":"") % win_length);

    return win_center;
}