1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
|
//
// Copyright 2010-2012,2014,2017 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "usrp2_impl.hpp"
#include "fw_common.h"
#include <uhd/exception.hpp>
#include <uhd/transport/if_addrs.hpp>
#include <uhd/transport/udp_zero_copy.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/utils/byteswap.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhd/utils/static.hpp>
#include <uhdlib/usrp/common/apply_corrections.hpp>
#include <boost/asio.hpp>
#include <boost/asio/ip/address_v4.hpp>
#include <boost/format.hpp>
#include <cmath>
#include <functional>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
// A reasonable number of frames for send/recv and async/sync
static const size_t DEFAULT_NUM_FRAMES = 32;
/***********************************************************************
* Discovery over the udp transport
**********************************************************************/
device_addrs_t usrp2_find(const device_addr_t& hint_)
{
// handle the multi-device discovery
device_addrs_t hints = separate_device_addr(hint_);
if (hints.size() > 1) {
device_addrs_t found_devices;
std::string error_msg;
for (const device_addr_t& hint_i : hints) {
device_addrs_t found_devices_i = usrp2_find(hint_i);
if (found_devices_i.size() != 1)
error_msg +=
str(boost::format(
"Could not resolve device hint \"%s\" to a single device.")
% hint_i.to_string());
else
found_devices.push_back(found_devices_i[0]);
}
if (found_devices.empty())
return device_addrs_t();
if (not error_msg.empty())
throw uhd::value_error(error_msg);
return device_addrs_t(1, combine_device_addrs(found_devices));
}
// initialize the hint for a single device case
UHD_ASSERT_THROW(hints.size() <= 1);
hints.resize(1); // in case it was empty
device_addr_t hint = hints[0];
device_addrs_t usrp2_addrs;
// return an empty list of addresses when type is set to non-usrp2
if (hint.has_key("type") and hint["type"] != "usrp2")
return usrp2_addrs;
// Return an empty list of addresses when a resource is specified,
// since a resource is intended for a different, non-USB, device.
if (hint.has_key("resource"))
return usrp2_addrs;
// if no address was specified, send a broadcast on each interface
if (not hint.has_key("addr")) {
for (const if_addrs_t& if_addrs : get_if_addrs()) {
// avoid the loopback device
if (if_addrs.inet == boost::asio::ip::address_v4::loopback().to_string())
continue;
// create a new hint with this broadcast address
device_addr_t new_hint = hint;
new_hint["addr"] = if_addrs.bcast;
// call discover with the new hint and append results
device_addrs_t new_usrp2_addrs = usrp2_find(new_hint);
usrp2_addrs.insert(
usrp2_addrs.begin(), new_usrp2_addrs.begin(), new_usrp2_addrs.end());
}
return usrp2_addrs;
}
// Create a UDP transport to communicate:
// Some devices will cause a throw when opened for a broadcast address.
// We print and recover so the caller can loop through all bcast addrs.
udp_simple::sptr udp_transport;
try {
udp_transport = udp_simple::make_broadcast(
hint["addr"], BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT));
} catch (const std::exception& e) {
UHD_LOGGER_ERROR("USRP2")
<< "Cannot open UDP transport on " << hint["addr"] << ": " << e.what();
return usrp2_addrs; // dont throw, but return empty address so caller can insert
}
// send a hello control packet
usrp2_ctrl_data_t ctrl_data_out = usrp2_ctrl_data_t();
ctrl_data_out.proto_ver = uhd::htonx<uint32_t>(USRP2_FW_COMPAT_NUM);
ctrl_data_out.id = uhd::htonx<uint32_t>(USRP2_CTRL_ID_WAZZUP_BRO);
try {
udp_transport->send(boost::asio::buffer(&ctrl_data_out, sizeof(ctrl_data_out)));
} catch (const std::exception& ex) {
UHD_LOGGER_ERROR("USRP2") << "USRP2 Network discovery error " << ex.what();
} catch (...) {
UHD_LOGGER_ERROR("USRP2") << "USRP2 Network discovery unknown error ";
}
// loop and recieve until the timeout
uint8_t usrp2_ctrl_data_in_mem[udp_simple::mtu]; // allocate max bytes for recv
const usrp2_ctrl_data_t* ctrl_data_in =
reinterpret_cast<const usrp2_ctrl_data_t*>(usrp2_ctrl_data_in_mem);
while (true) {
size_t len = udp_transport->recv(boost::asio::buffer(usrp2_ctrl_data_in_mem));
if (len > offsetof(usrp2_ctrl_data_t, data)
and ntohl(ctrl_data_in->id) == USRP2_CTRL_ID_WAZZUP_DUDE) {
// make a boost asio ipv4 with the raw addr in host byte order
device_addr_t new_addr;
new_addr["type"] = "usrp2";
// We used to get the address from the control packet.
// Now now uses the socket itself to yield the address.
// boost::asio::ip::address_v4 ip_addr(ntohl(ctrl_data_in->data.ip_addr));
// new_addr["addr"] = ip_addr.to_string();
new_addr["addr"] = udp_transport->get_recv_addr();
// Attempt a simple 2-way communication with a connected socket.
// Reason: Although the USRP will respond the broadcast above,
// we may not be able to communicate directly (non-broadcast).
udp_simple::sptr ctrl_xport = udp_simple::make_connected(
new_addr["addr"], BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT));
ctrl_xport->send(boost::asio::buffer(&ctrl_data_out, sizeof(ctrl_data_out)));
size_t len = ctrl_xport->recv(boost::asio::buffer(usrp2_ctrl_data_in_mem));
if (len > offsetof(usrp2_ctrl_data_t, data)
and ntohl(ctrl_data_in->id) == USRP2_CTRL_ID_WAZZUP_DUDE) {
// found the device, open up for communication!
} else {
// otherwise we don't find it...
continue;
}
// Attempt to read the name from the EEPROM and perform filtering.
// This operation can throw due to compatibility mismatch.
try {
usrp2_iface::sptr iface = usrp2_iface::make(ctrl_xport);
if (iface->is_device_locked())
continue; // ignore locked devices
mboard_eeprom_t mb_eeprom = iface->mb_eeprom;
new_addr["name"] = mb_eeprom["name"];
new_addr["serial"] = mb_eeprom["serial"];
} catch (const std::exception&) {
// set these values as empty string so the device may still be found
// and the filter's below can still operate on the discovered device
new_addr["name"] = "";
new_addr["serial"] = "";
}
// filter the discovered device below by matching optional keys
if ((not hint.has_key("name") or hint["name"] == new_addr["name"])
and (not hint.has_key("serial")
or hint["serial"] == new_addr["serial"])) {
usrp2_addrs.push_back(new_addr);
}
// dont break here, it will exit the while loop
// just continue on to the next loop iteration
}
if (len == 0)
break; // timeout
}
return usrp2_addrs;
}
/***********************************************************************
* Make
**********************************************************************/
static device::sptr usrp2_make(const device_addr_t& device_addr)
{
return device::sptr(new usrp2_impl(device_addr));
}
UHD_STATIC_BLOCK(register_usrp2_device)
{
device::register_device(&usrp2_find, &usrp2_make, device::USRP);
}
/***********************************************************************
* MTU Discovery
**********************************************************************/
struct mtu_result_t
{
size_t recv_mtu, send_mtu;
};
static mtu_result_t determine_mtu(const std::string& addr, const mtu_result_t& user_mtu)
{
udp_simple::sptr udp_sock =
udp_simple::make_connected(addr, BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT));
// The FPGA offers 4K buffers, and the user may manually request this.
// However, multiple simultaneous receives (2DSP slave + 2DSP master),
// require that buffering to be used internally, and this is a safe setting.
std::vector<uint8_t> buffer(std::max(user_mtu.recv_mtu, user_mtu.send_mtu));
usrp2_ctrl_data_t* ctrl_data = reinterpret_cast<usrp2_ctrl_data_t*>(&buffer.front());
static const double echo_timeout = 0.020; // 20 ms
// test holler - check if its supported in this fw version
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(sizeof(usrp2_ctrl_data_t));
udp_sock->send(boost::asio::buffer(buffer, sizeof(usrp2_ctrl_data_t)));
udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (ntohl(ctrl_data->id) != USRP2_CTRL_ID_HOLLER_BACK_DUDE)
throw uhd::not_implemented_error("holler protocol not implemented");
size_t min_recv_mtu = sizeof(usrp2_ctrl_data_t), max_recv_mtu = user_mtu.recv_mtu;
size_t min_send_mtu = sizeof(usrp2_ctrl_data_t), max_send_mtu = user_mtu.send_mtu;
while (min_recv_mtu < max_recv_mtu) {
size_t test_mtu = (max_recv_mtu / 2 + min_recv_mtu / 2 + 3) & ~3;
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(test_mtu);
udp_sock->send(boost::asio::buffer(buffer, sizeof(usrp2_ctrl_data_t)));
size_t len = udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (len >= test_mtu)
min_recv_mtu = test_mtu;
else
max_recv_mtu = test_mtu - 4;
}
while (min_send_mtu < max_send_mtu) {
size_t test_mtu = (max_send_mtu / 2 + min_send_mtu / 2 + 3) & ~3;
ctrl_data->id = htonl(USRP2_CTRL_ID_HOLLER_AT_ME_BRO);
ctrl_data->proto_ver = htonl(USRP2_FW_COMPAT_NUM);
ctrl_data->data.echo_args.len = htonl(sizeof(usrp2_ctrl_data_t));
udp_sock->send(boost::asio::buffer(buffer, test_mtu));
size_t len = udp_sock->recv(boost::asio::buffer(buffer), echo_timeout);
if (len >= sizeof(usrp2_ctrl_data_t))
len = ntohl(ctrl_data->data.echo_args.len);
if (len >= test_mtu)
min_send_mtu = test_mtu;
else
max_send_mtu = test_mtu - 4;
}
mtu_result_t mtu;
mtu.recv_mtu = min_recv_mtu;
mtu.send_mtu = min_send_mtu;
return mtu;
}
/***********************************************************************
* Helpers
**********************************************************************/
static zero_copy_if::sptr make_xport(const std::string& addr,
const std::string& port,
const device_addr_t& hints,
const std::string& filter)
{
// only copy hints that contain the filter word
device_addr_t filtered_hints;
for (const std::string& key : hints.keys()) {
if (key.find(filter) == std::string::npos)
continue;
filtered_hints[key] = hints[key];
}
zero_copy_xport_params default_buff_args;
default_buff_args.send_frame_size = transport::udp_simple::mtu;
default_buff_args.recv_frame_size = transport::udp_simple::mtu;
default_buff_args.num_send_frames = DEFAULT_NUM_FRAMES;
default_buff_args.num_recv_frames = DEFAULT_NUM_FRAMES;
// make the transport object with the filtered hints
udp_zero_copy::buff_params ignored_params;
zero_copy_if::sptr xport = udp_zero_copy::make(
addr, port, default_buff_args, ignored_params, filtered_hints);
// Send a small data packet so the usrp2 knows the udp source port.
// This setup must happen before further initialization occurs
// or the async update packets will cause ICMP destination unreachable.
static const uint32_t data[2] = {uhd::htonx(uint32_t(0 /* don't care seq num */)),
uhd::htonx(uint32_t(USRP2_INVALID_VRT_HEADER))};
transport::managed_send_buffer::sptr send_buff = xport->get_send_buff();
std::memcpy(send_buff->cast<void*>(), &data, sizeof(data));
send_buff->commit(sizeof(data));
return xport;
}
/***********************************************************************
* Structors
**********************************************************************/
usrp2_impl::usrp2_impl(const device_addr_t& _device_addr)
: device_addr(_device_addr), _pirate_task_exit(false)
{
UHD_LOGGER_INFO("USRP2") << "Opening a USRP2/N-Series device...";
// setup the dsp transport hints (default to a large recv buff)
if (not device_addr.has_key("recv_buff_size")) {
#if defined(UHD_PLATFORM_MACOS) || defined(UHD_PLATFORM_BSD)
// limit buffer resize on macos or it will error
device_addr["recv_buff_size"] = "1e6";
#elif defined(UHD_PLATFORM_LINUX) || defined(UHD_PLATFORM_WIN32)
// set to half-a-second of buffering at max rate
device_addr["recv_buff_size"] = "50e6";
#endif
}
if (not device_addr.has_key("send_buff_size")) {
// The buffer should be the size of the SRAM on the device,
// because we will never commit more than the SRAM can hold.
device_addr["send_buff_size"] = std::to_string(USRP2_SRAM_BYTES);
}
device_addrs_t device_args = separate_device_addr(device_addr);
// extract the user's requested MTU size or default
mtu_result_t user_mtu;
user_mtu.recv_mtu =
size_t(device_addr.cast<double>("recv_frame_size", udp_simple::mtu));
user_mtu.send_mtu =
size_t(device_addr.cast<double>("send_frame_size", udp_simple::mtu));
try {
// calculate the minimum send and recv mtu of all devices
mtu_result_t mtu = determine_mtu(device_args[0]["addr"], user_mtu);
for (size_t i = 1; i < device_args.size(); i++) {
mtu_result_t mtu_i = determine_mtu(device_args[i]["addr"], user_mtu);
mtu.recv_mtu = std::min(mtu.recv_mtu, mtu_i.recv_mtu);
mtu.send_mtu = std::min(mtu.send_mtu, mtu_i.send_mtu);
}
device_addr["recv_frame_size"] = std::to_string(mtu.recv_mtu);
device_addr["send_frame_size"] = std::to_string(mtu.send_mtu);
UHD_LOGGER_INFO("USRP2")
<< "Current recv frame size: " << mtu.recv_mtu << " bytes";
UHD_LOGGER_INFO("USRP2")
<< "Current send frame size: " << mtu.send_mtu << " bytes";
} catch (const uhd::not_implemented_error&) {
// just ignore this error, makes older fw work...
}
device_args = separate_device_addr(device_addr); // update args for new frame sizes
////////////////////////////////////////////////////////////////////
// create controller objects and initialize the properties tree
////////////////////////////////////////////////////////////////////
_tree = property_tree::make();
_type = device::USRP;
_ignore_cal_file = device_addr.has_key("ignore-cal-file");
_tree->create<std::string>("/name").set("USRP2 / N-Series Device");
for (size_t mbi = 0; mbi < device_args.size(); mbi++) {
const device_addr_t device_args_i = device_args[mbi];
const std::string mb = std::to_string(mbi);
const std::string addr = device_args_i["addr"];
const fs_path mb_path = "/mboards/" + mb;
////////////////////////////////////////////////////////////////
// create the iface that controls i2c, spi, uart, and wb
////////////////////////////////////////////////////////////////
_mbc[mb].iface = usrp2_iface::make(
udp_simple::make_connected(addr, BOOST_STRINGIZE(USRP2_UDP_CTRL_PORT)));
_tree->create<std::string>(mb_path / "name").set(_mbc[mb].iface->get_cname());
_tree->create<std::string>(mb_path / "fw_version")
.set(_mbc[mb].iface->get_fw_version_string());
// check the fpga compatibility number
const uint32_t fpga_compat_num = _mbc[mb].iface->peek32(U2_REG_COMPAT_NUM_RB);
uint16_t fpga_major = fpga_compat_num >> 16,
fpga_minor = fpga_compat_num & 0xffff;
if (fpga_major == 0) { // old version scheme
fpga_major = fpga_minor;
fpga_minor = 0;
}
int expected_fpga_compat_num =
std::min(USRP2_FPGA_COMPAT_NUM, N200_FPGA_COMPAT_NUM);
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP2_REV3:
case usrp2_iface::USRP2_REV4:
expected_fpga_compat_num = USRP2_FPGA_COMPAT_NUM;
break;
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N210_R4:
expected_fpga_compat_num = N200_FPGA_COMPAT_NUM;
break;
default:
// handle case where the MB EEPROM is not programmed
if (fpga_major == USRP2_FPGA_COMPAT_NUM
or fpga_major == N200_FPGA_COMPAT_NUM) {
UHD_LOGGER_WARNING("USRP2")
<< "Unable to identify device - assuming USRP2/N-Series device";
expected_fpga_compat_num = fpga_major;
}
}
if (fpga_major != expected_fpga_compat_num) {
throw uhd::runtime_error(
str(boost::format(
"\nPlease update the firmware and FPGA images for your device.\n"
"See the application notes for USRP2/N-Series for instructions.\n"
"Expected FPGA compatibility number %d, but got %d:\n"
"The FPGA build is not compatible with the host code build.\n"
"%s\n")
% expected_fpga_compat_num % fpga_major
% _mbc[mb].iface->images_warn_help_message()));
}
_tree->create<std::string>(mb_path / "fpga_version")
.set(str(boost::format("%u.%u") % fpga_major % fpga_minor));
// lock the device/motherboard to this process
_mbc[mb].iface->lock_device(true);
////////////////////////////////////////////////////////////////
// construct transports for RX and TX DSPs
////////////////////////////////////////////////////////////////
UHD_LOGGER_TRACE("USRP2") << "Making transport for RX DSP0...";
_mbc[mb].rx_dsp_xports.push_back(make_xport(
addr, BOOST_STRINGIZE(USRP2_UDP_RX_DSP0_PORT), device_args_i, "recv"));
UHD_LOGGER_TRACE("USRP2") << "Making transport for RX DSP1...";
_mbc[mb].rx_dsp_xports.push_back(make_xport(
addr, BOOST_STRINGIZE(USRP2_UDP_RX_DSP1_PORT), device_args_i, "recv"));
UHD_LOGGER_TRACE("USRP2") << "Making transport for TX DSP0...";
_mbc[mb].tx_dsp_xport = make_xport(
addr, BOOST_STRINGIZE(USRP2_UDP_TX_DSP0_PORT), device_args_i, "send");
UHD_LOGGER_TRACE("USRP2") << "Making transport for Control...";
_mbc[mb].fifo_ctrl_xport = make_xport(
addr, BOOST_STRINGIZE(USRP2_UDP_FIFO_CRTL_PORT), device_addr_t(), "");
// set the filter on the router to take dsp data from this port
_mbc[mb].iface->poke32(U2_REG_ROUTER_CTRL_PORTS,
(USRP2_UDP_FIFO_CRTL_PORT << 16) | USRP2_UDP_TX_DSP0_PORT);
// create the fifo control interface for high speed register access
_mbc[mb].fifo_ctrl = usrp2_fifo_ctrl::make(_mbc[mb].fifo_ctrl_xport);
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
_mbc[mb].wbiface = _mbc[mb].fifo_ctrl;
_mbc[mb].spiface = _mbc[mb].fifo_ctrl;
break;
default:
_mbc[mb].wbiface = _mbc[mb].iface;
_mbc[mb].spiface = _mbc[mb].iface;
break;
}
_tree->create<double>(mb_path / "link_max_rate").set(USRP2_LINK_RATE_BPS);
////////////////////////////////////////////////////////////////
// setup the mboard eeprom
////////////////////////////////////////////////////////////////
_tree->create<mboard_eeprom_t>(mb_path / "eeprom")
.set(_mbc[mb].iface->mb_eeprom)
.add_coerced_subscriber(
std::bind(&usrp2_impl::set_mb_eeprom, this, mb, std::placeholders::_1));
////////////////////////////////////////////////////////////////
// create clock control objects
////////////////////////////////////////////////////////////////
_mbc[mb].clock = usrp2_clock_ctrl::make(_mbc[mb].iface, _mbc[mb].spiface);
_tree->create<double>(mb_path / "tick_rate")
.set_publisher(
std::bind(&usrp2_clock_ctrl::get_master_clock_rate, _mbc[mb].clock))
.add_coerced_subscriber(
std::bind(&usrp2_impl::update_tick_rate, this, std::placeholders::_1));
////////////////////////////////////////////////////////////////
// create codec control objects
////////////////////////////////////////////////////////////////
const fs_path rx_codec_path = mb_path / "rx_codecs/A";
const fs_path tx_codec_path = mb_path / "tx_codecs/A";
_tree->create<int>(rx_codec_path / "gains"); // phony property so this dir exists
_tree->create<int>(tx_codec_path / "gains"); // phony property so this dir exists
_mbc[mb].codec = usrp2_codec_ctrl::make(_mbc[mb].iface, _mbc[mb].spiface);
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4: {
_tree->create<std::string>(rx_codec_path / "name").set("ads62p44");
_tree->create<meta_range_t>(rx_codec_path / "gains/digital/range")
.set(meta_range_t(0, 6.0, 0.5));
_tree->create<double>(rx_codec_path / "gains/digital/value")
.add_coerced_subscriber(
std::bind(&usrp2_codec_ctrl::set_rx_digital_gain,
_mbc[mb].codec,
std::placeholders::_1))
.set(0);
_tree->create<meta_range_t>(rx_codec_path / "gains/fine/range")
.set(meta_range_t(0, 0.5, 0.05));
_tree->create<double>(rx_codec_path / "gains/fine/value")
.add_coerced_subscriber(
std::bind(&usrp2_codec_ctrl::set_rx_digital_fine_gain,
_mbc[mb].codec,
std::placeholders::_1))
.set(0);
} break;
case usrp2_iface::USRP2_REV3:
case usrp2_iface::USRP2_REV4:
_tree->create<std::string>(rx_codec_path / "name").set("ltc2284");
break;
case usrp2_iface::USRP_NXXX:
_tree->create<std::string>(rx_codec_path / "name").set("??????");
break;
}
_tree->create<std::string>(tx_codec_path / "name").set("ad9777");
////////////////////////////////////////////////////////////////////
// Create the GPSDO control
////////////////////////////////////////////////////////////////////
static const uint32_t dont_look_for_gpsdo = 0x1234abcdul;
// disable check for internal GPSDO when not the following:
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
break;
default:
_mbc[mb].iface->pokefw(U2_FW_REG_HAS_GPSDO, dont_look_for_gpsdo);
}
// otherwise if not disabled, look for the internal GPSDO
if (_mbc[mb].iface->peekfw(U2_FW_REG_HAS_GPSDO) != dont_look_for_gpsdo) {
UHD_LOGGER_INFO("USRP2") << "Detecting internal GPSDO.... ";
try {
_mbc[mb].gps =
gps_ctrl::make(udp_simple::make_uart(udp_simple::make_connected(
addr, BOOST_STRINGIZE(USRP2_UDP_UART_GPS_PORT))));
} catch (std::exception& e) {
UHD_LOGGER_ERROR("USRP2")
<< "An error occurred making GPSDO control: " << e.what();
}
if (_mbc[mb].gps and _mbc[mb].gps->gps_detected()) {
for (const std::string& name : _mbc[mb].gps->get_sensors()) {
_tree->create<sensor_value_t>(mb_path / "sensors" / name)
.set_publisher(
std::bind(&gps_ctrl::get_sensor, _mbc[mb].gps, name));
}
} else {
_mbc[mb].iface->pokefw(U2_FW_REG_HAS_GPSDO, dont_look_for_gpsdo);
}
}
////////////////////////////////////////////////////////////////
// and do the misc mboard sensors
////////////////////////////////////////////////////////////////
_tree->create<sensor_value_t>(mb_path / "sensors/mimo_locked")
.set_publisher(std::bind(&usrp2_impl::get_mimo_locked, this, mb));
_tree->create<sensor_value_t>(mb_path / "sensors/ref_locked")
.set_publisher(std::bind(&usrp2_impl::get_ref_locked, this, mb));
////////////////////////////////////////////////////////////////
// create frontend control objects
////////////////////////////////////////////////////////////////
_mbc[mb].rx_fe =
rx_frontend_core_200::make(_mbc[mb].wbiface, U2_REG_SR_ADDR(SR_RX_FRONT));
_mbc[mb].tx_fe =
tx_frontend_core_200::make(_mbc[mb].wbiface, U2_REG_SR_ADDR(SR_TX_FRONT));
_tree->create<subdev_spec_t>(mb_path / "rx_subdev_spec")
.add_coerced_subscriber(std::bind(
&usrp2_impl::update_rx_subdev_spec, this, mb, std::placeholders::_1));
_tree->create<subdev_spec_t>(mb_path / "tx_subdev_spec")
.add_coerced_subscriber(std::bind(
&usrp2_impl::update_tx_subdev_spec, this, mb, std::placeholders::_1));
const fs_path rx_fe_path = mb_path / "rx_frontends" / "A";
const fs_path tx_fe_path = mb_path / "tx_frontends" / "A";
_tree->create<std::complex<double>>(rx_fe_path / "dc_offset" / "value")
.set_coercer(std::bind(&rx_frontend_core_200::set_dc_offset,
_mbc[mb].rx_fe,
std::placeholders::_1))
.set(std::complex<double>(0.0, 0.0));
_tree->create<bool>(rx_fe_path / "dc_offset" / "enable")
.add_coerced_subscriber(std::bind(&rx_frontend_core_200::set_dc_offset_auto,
_mbc[mb].rx_fe,
std::placeholders::_1))
.set(true);
_tree->create<std::complex<double>>(rx_fe_path / "iq_balance" / "value")
.add_coerced_subscriber(std::bind(&rx_frontend_core_200::set_iq_balance,
_mbc[mb].rx_fe,
std::placeholders::_1))
.set(std::complex<double>(0.0, 0.0));
_tree->create<std::complex<double>>(tx_fe_path / "dc_offset" / "value")
.set_coercer(std::bind(&tx_frontend_core_200::set_dc_offset,
_mbc[mb].tx_fe,
std::placeholders::_1))
.set(std::complex<double>(0.0, 0.0));
_tree->create<std::complex<double>>(tx_fe_path / "iq_balance" / "value")
.add_coerced_subscriber(std::bind(&tx_frontend_core_200::set_iq_balance,
_mbc[mb].tx_fe,
std::placeholders::_1))
.set(std::complex<double>(0.0, 0.0));
////////////////////////////////////////////////////////////////
// create rx dsp control objects
////////////////////////////////////////////////////////////////
_mbc[mb].rx_dsps.push_back(rx_dsp_core_200::make(_mbc[mb].wbiface,
U2_REG_SR_ADDR(SR_RX_DSP0),
U2_REG_SR_ADDR(SR_RX_CTRL0),
USRP2_RX_SID_BASE + 0,
true));
_mbc[mb].rx_dsps.push_back(rx_dsp_core_200::make(_mbc[mb].wbiface,
U2_REG_SR_ADDR(SR_RX_DSP1),
U2_REG_SR_ADDR(SR_RX_CTRL1),
USRP2_RX_SID_BASE + 1,
true));
for (size_t dspno = 0; dspno < _mbc[mb].rx_dsps.size(); dspno++) {
_mbc[mb].rx_dsps[dspno]->set_link_rate(USRP2_LINK_RATE_BPS);
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber(std::bind(&rx_dsp_core_200::set_tick_rate,
_mbc[mb].rx_dsps[dspno],
std::placeholders::_1));
fs_path rx_dsp_path = mb_path / "rx_dsps" / dspno;
_tree->create<meta_range_t>(rx_dsp_path / "rate/range")
.set_publisher(
std::bind(&rx_dsp_core_200::get_host_rates, _mbc[mb].rx_dsps[dspno]));
_tree->create<double>(rx_dsp_path / "rate/value")
.set(1e6) // some default
.set_coercer(std::bind(&rx_dsp_core_200::set_host_rate,
_mbc[mb].rx_dsps[dspno],
std::placeholders::_1))
.add_coerced_subscriber(std::bind(&usrp2_impl::update_rx_samp_rate,
this,
mb,
dspno,
std::placeholders::_1));
_tree->create<double>(rx_dsp_path / "freq/value")
.set_coercer(std::bind(&rx_dsp_core_200::set_freq,
_mbc[mb].rx_dsps[dspno],
std::placeholders::_1));
_tree->create<meta_range_t>(rx_dsp_path / "freq/range")
.set_publisher(
std::bind(&rx_dsp_core_200::get_freq_range, _mbc[mb].rx_dsps[dspno]));
_tree->create<stream_cmd_t>(rx_dsp_path / "stream_cmd")
.add_coerced_subscriber(std::bind(&rx_dsp_core_200::issue_stream_command,
_mbc[mb].rx_dsps[dspno],
std::placeholders::_1));
}
////////////////////////////////////////////////////////////////
// create tx dsp control objects
////////////////////////////////////////////////////////////////
_mbc[mb].tx_dsp = tx_dsp_core_200::make(_mbc[mb].wbiface,
U2_REG_SR_ADDR(SR_TX_DSP),
U2_REG_SR_ADDR(SR_TX_CTRL),
USRP2_TX_ASYNC_SID);
_mbc[mb].tx_dsp->set_link_rate(USRP2_LINK_RATE_BPS);
{ // This scope can be removed once we're able to do named captures
auto this_tx_dsp = _mbc[mb].tx_dsp; // This can then also go away
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber([this_tx_dsp](const double rate) {
this_tx_dsp->set_tick_rate(rate);
});
_tree->create<meta_range_t>(mb_path / "tx_dsps/0/rate/range")
.set_publisher([this_tx_dsp]() { return this_tx_dsp->get_host_rates(); });
_tree->create<double>(mb_path / "tx_dsps/0/rate/value")
.set(1e6) // some default
.set_coercer([this_tx_dsp](const double rate) {
return this_tx_dsp->set_host_rate(rate);
})
.add_coerced_subscriber([this, mb](const double rate) {
this->update_tx_samp_rate(mb, 0, rate);
});
} // End of non-C++14 scope (to release reference to this_tx_dsp)
_tree->create<double>(mb_path / "tx_dsps/0/freq/value")
.set_coercer([this, mb](const double rate) {
return this->set_tx_dsp_freq(mb, rate);
});
_tree->create<meta_range_t>(mb_path / "tx_dsps/0/freq/range")
.set_publisher([this, mb]() { return this->get_tx_dsp_freq_range(mb); });
// setup dsp flow control
const double ups_per_sec = device_args_i.cast<double>("ups_per_sec", 20);
const size_t send_frame_size = _mbc[mb].tx_dsp_xport->get_send_frame_size();
const double ups_per_fifo = device_args_i.cast<double>("ups_per_fifo", 8.0);
_mbc[mb].tx_dsp->set_updates(
(ups_per_sec > 0.0) ? size_t(100e6 /*approx tick rate*/ / ups_per_sec) : 0,
(ups_per_fifo > 0.0)
? size_t(USRP2_SRAM_BYTES / ups_per_fifo / send_frame_size)
: 0);
////////////////////////////////////////////////////////////////
// create time control objects
////////////////////////////////////////////////////////////////
time64_core_200::readback_bases_type time64_rb_bases;
time64_rb_bases.rb_hi_now = U2_REG_TIME64_HI_RB_IMM;
time64_rb_bases.rb_lo_now = U2_REG_TIME64_LO_RB_IMM;
time64_rb_bases.rb_hi_pps = U2_REG_TIME64_HI_RB_PPS;
time64_rb_bases.rb_lo_pps = U2_REG_TIME64_LO_RB_PPS;
_mbc[mb].time64 = time64_core_200::make(_mbc[mb].wbiface,
U2_REG_SR_ADDR(SR_TIME64),
time64_rb_bases,
mimo_clock_sync_delay_cycles);
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber(std::bind(
&time64_core_200::set_tick_rate, _mbc[mb].time64, std::placeholders::_1));
_tree->create<time_spec_t>(mb_path / "time/now")
.set_publisher(std::bind(&time64_core_200::get_time_now, _mbc[mb].time64))
.add_coerced_subscriber(std::bind(
&time64_core_200::set_time_now, _mbc[mb].time64, std::placeholders::_1));
_tree->create<time_spec_t>(mb_path / "time/pps")
.set_publisher(
std::bind(&time64_core_200::get_time_last_pps, _mbc[mb].time64))
.add_coerced_subscriber(std::bind(&time64_core_200::set_time_next_pps,
_mbc[mb].time64,
std::placeholders::_1));
// setup time source props
_tree->create<std::string>(mb_path / "time_source/value")
.add_coerced_subscriber(std::bind(&time64_core_200::set_time_source,
_mbc[mb].time64,
std::placeholders::_1))
.set("none");
_tree->create<std::vector<std::string>>(mb_path / "time_source/options")
.set_publisher(
std::bind(&time64_core_200::get_time_sources, _mbc[mb].time64));
// setup reference source props
_tree->create<std::string>(mb_path / "clock_source/value")
.add_coerced_subscriber(std::bind(
&usrp2_impl::update_clock_source, this, mb, std::placeholders::_1))
.set("internal");
std::vector<std::string> clock_sources{"internal", "external", "mimo"};
if (_mbc[mb].gps and _mbc[mb].gps->gps_detected()) {
clock_sources.push_back("gpsdo");
}
_tree->create<std::vector<std::string>>(mb_path / "clock_source/options")
.set(clock_sources);
// plug timed commands into tree here
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
_tree->create<time_spec_t>(mb_path / "time/cmd")
.add_coerced_subscriber(std::bind(&usrp2_fifo_ctrl::set_time,
_mbc[mb].fifo_ctrl,
std::placeholders::_1));
default:
break; // otherwise, do not register
}
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber(std::bind(&usrp2_fifo_ctrl::set_tick_rate,
_mbc[mb].fifo_ctrl,
std::placeholders::_1));
////////////////////////////////////////////////////////////////////
// create user-defined control objects
////////////////////////////////////////////////////////////////////
_mbc[mb].user =
user_settings_core_200::make(_mbc[mb].wbiface, U2_REG_SR_ADDR(SR_USER_REGS));
_tree->create<user_settings_core_200::user_reg_t>(mb_path / "user/regs")
.add_coerced_subscriber(std::bind(
&user_settings_core_200::set_reg, _mbc[mb].user, std::placeholders::_1));
////////////////////////////////////////////////////////////////
// create dboard control objects
////////////////////////////////////////////////////////////////
// read the dboard eeprom to extract the dboard ids
dboard_eeprom_t rx_db_eeprom, tx_db_eeprom, gdb_eeprom;
rx_db_eeprom.load(*_mbc[mb].iface, USRP2_I2C_ADDR_RX_DB);
tx_db_eeprom.load(*_mbc[mb].iface, USRP2_I2C_ADDR_TX_DB);
gdb_eeprom.load(*_mbc[mb].iface, USRP2_I2C_ADDR_TX_DB ^ 5);
// disable rx dc offset if LFRX
if (rx_db_eeprom.id == 0x000f)
_tree->access<bool>(rx_fe_path / "dc_offset" / "enable").set(false);
// create the properties and register subscribers
_tree->create<dboard_eeprom_t>(mb_path / "dboards/A/rx_eeprom")
.set(rx_db_eeprom)
.add_coerced_subscriber(std::bind(
&usrp2_impl::set_db_eeprom, this, mb, "rx", std::placeholders::_1));
_tree->create<dboard_eeprom_t>(mb_path / "dboards/A/tx_eeprom")
.set(tx_db_eeprom)
.add_coerced_subscriber(std::bind(
&usrp2_impl::set_db_eeprom, this, mb, "tx", std::placeholders::_1));
_tree->create<dboard_eeprom_t>(mb_path / "dboards/A/gdb_eeprom")
.set(gdb_eeprom)
.add_coerced_subscriber(std::bind(
&usrp2_impl::set_db_eeprom, this, mb, "gdb", std::placeholders::_1));
// create a new dboard interface and manager
_mbc[mb].dboard_manager = dboard_manager::make(rx_db_eeprom,
tx_db_eeprom,
gdb_eeprom,
make_usrp2_dboard_iface(_mbc[mb].wbiface,
_mbc[mb].iface /*i2c*/,
_mbc[mb].spiface,
_mbc[mb].clock),
_tree->subtree(mb_path / "dboards/A"));
// bind frontend corrections to the dboard freq props
const fs_path db_tx_fe_path = mb_path / "dboards" / "A" / "tx_frontends";
for (const std::string& name : _tree->list(db_tx_fe_path)) {
_tree->access<double>(db_tx_fe_path / name / "freq" / "value")
.add_coerced_subscriber(std::bind(
&usrp2_impl::set_tx_fe_corrections, this, mb, std::placeholders::_1));
}
const fs_path db_rx_fe_path = mb_path / "dboards" / "A" / "rx_frontends";
for (const std::string& name : _tree->list(db_rx_fe_path)) {
_tree->access<double>(db_rx_fe_path / name / "freq" / "value")
.add_coerced_subscriber(std::bind(
&usrp2_impl::set_rx_fe_corrections, this, mb, std::placeholders::_1));
}
}
// initialize io handling
this->io_init();
// do some post-init tasks
this->update_rates();
for (const std::string& mb : _mbc.keys()) {
fs_path root = "/mboards/" + mb;
// reset cordic rates and their properties to zero
for (const std::string& name : _tree->list(root / "rx_dsps")) {
_tree->access<double>(root / "rx_dsps" / name / "freq" / "value").set(0.0);
}
for (const std::string& name : _tree->list(root / "tx_dsps")) {
_tree->access<double>(root / "tx_dsps" / name / "freq" / "value").set(0.0);
}
_tree->access<subdev_spec_t>(root / "rx_subdev_spec")
.set(
subdev_spec_t("A:" + _tree->list(root / "dboards/A/rx_frontends").at(0)));
_tree->access<subdev_spec_t>(root / "tx_subdev_spec")
.set(
subdev_spec_t("A:" + _tree->list(root / "dboards/A/tx_frontends").at(0)));
_tree->access<std::string>(root / "clock_source/value").set("internal");
_tree->access<std::string>(root / "time_source/value").set("none");
// GPS installed: use external ref, time, and init time spec
if (_mbc[mb].gps and _mbc[mb].gps->gps_detected()) {
_mbc[mb].time64->enable_gpsdo();
UHD_LOGGER_INFO("USRP2") << "Setting references to the internal GPSDO";
_tree->access<std::string>(root / "time_source/value").set("gpsdo");
_tree->access<std::string>(root / "clock_source/value").set("gpsdo");
}
}
}
usrp2_impl::~usrp2_impl(void)
{
UHD_SAFE_CALL(_pirate_task_exit = true;
for (const std::string& mb
: _mbc.keys()) { _mbc[mb].tx_dsp->set_updates(0, 0); })
}
void usrp2_impl::set_db_eeprom(const std::string& mb,
const std::string& type,
const uhd::usrp::dboard_eeprom_t& db_eeprom)
{
if (type == "rx")
db_eeprom.store(*_mbc[mb].iface, USRP2_I2C_ADDR_RX_DB);
if (type == "tx")
db_eeprom.store(*_mbc[mb].iface, USRP2_I2C_ADDR_TX_DB);
if (type == "gdb")
db_eeprom.store(*_mbc[mb].iface, USRP2_I2C_ADDR_TX_DB ^ 5);
}
sensor_value_t usrp2_impl::get_mimo_locked(const std::string& mb)
{
const bool lock = (_mbc[mb].wbiface->peek32(U2_REG_IRQ_RB) & (1 << 10)) != 0;
return sensor_value_t("MIMO", lock, "locked", "unlocked");
}
sensor_value_t usrp2_impl::get_ref_locked(const std::string& mb)
{
const bool lock = (_mbc[mb].wbiface->peek32(U2_REG_IRQ_RB) & (1 << 11)) != 0;
return sensor_value_t("Ref", lock, "locked", "unlocked");
}
void usrp2_impl::set_rx_fe_corrections(const std::string& mb, const double lo_freq)
{
if (not _ignore_cal_file) {
apply_rx_fe_corrections(
this->get_tree()->subtree("/mboards/" + mb), "A", lo_freq);
}
}
void usrp2_impl::set_tx_fe_corrections(const std::string& mb, const double lo_freq)
{
if (not _ignore_cal_file) {
apply_tx_fe_corrections(
this->get_tree()->subtree("/mboards/" + mb), "A", lo_freq);
}
}
double usrp2_impl::set_tx_dsp_freq(const std::string& mb, const double freq_)
{
double new_freq = freq_;
const double tick_rate = _tree->access<double>("/mboards/" + mb + "/tick_rate").get();
// calculate the DAC shift (multiples of rate)
const int zone = std::max(std::min<int>(std::lround(new_freq / tick_rate), 2), -2);
const double dac_shift = zone * tick_rate;
new_freq -= dac_shift; // update FPGA DSP target freq
UHD_LOG_TRACE("USRP2",
"DSP Tuning: Requested " + std::to_string(freq_ / 1e6)
+ " MHz, Using "
"Nyquist zone "
+ std::to_string(zone)
+ ", leftover DSP tuning: " + std::to_string(new_freq / 1e6) + " MHz.");
// set the DAC shift (modulation mode)
if (zone == 0) {
_mbc[mb].codec->set_tx_mod_mode(0); // no shift
} else {
_mbc[mb].codec->set_tx_mod_mode(4 / zone); // DAC interp = 4
}
return _mbc[mb].tx_dsp->set_freq(new_freq) + dac_shift; // actual freq
}
meta_range_t usrp2_impl::get_tx_dsp_freq_range(const std::string& mb)
{
const double dac_rate = _tree->access<double>("/mboards/" + mb + "/tick_rate").get()
* _mbc[mb].codec->get_tx_interpolation();
const auto dsp_range_step = _mbc[mb].tx_dsp->get_freq_range().step();
// The DSP tuning rate is the entire range of the DAC clock rate. The step
// size is determined by the FPGA IP, however.
return meta_range_t(-dac_rate / 2, +dac_rate / 2, dsp_range_step);
}
#include <boost/math/special_functions/round.hpp>
#include <boost/math/special_functions/sign.hpp>
void usrp2_impl::update_clock_source(const std::string& mb, const std::string& source)
{
// NOTICE: U2_REG_MISC_CTRL_CLOCK is on the wb clock, and cannot be set from fifo_ctrl
// clock source ref 10mhz
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
if (source == "internal")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x12);
else if (source == "external")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x1C);
else if (source == "gpsdo")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x1C);
else if (source == "mimo")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x15);
else
throw uhd::value_error(
"unhandled clock configuration reference source: " + source);
_mbc[mb].clock->enable_external_ref(true); // USRP2P has an internal 10MHz
// TCXO
break;
case usrp2_iface::USRP2_REV3:
case usrp2_iface::USRP2_REV4:
if (source == "internal")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x10);
else if (source == "external")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x1C);
else if (source == "mimo")
_mbc[mb].iface->poke32(U2_REG_MISC_CTRL_CLOCK, 0x15);
else
throw uhd::value_error(
"unhandled clock configuration reference source: " + source);
_mbc[mb].clock->enable_external_ref(source != "internal");
break;
case usrp2_iface::USRP_NXXX:
break;
}
// always drive the clock over serdes if not locking to it
_mbc[mb].clock->enable_mimo_clock_out(source != "mimo");
// set the mimo clock delay over the serdes
if (source != "mimo") {
switch (_mbc[mb].iface->get_rev()) {
case usrp2_iface::USRP_N200:
case usrp2_iface::USRP_N210:
case usrp2_iface::USRP_N200_R4:
case usrp2_iface::USRP_N210_R4:
_mbc[mb].clock->set_mimo_clock_delay(mimo_clock_delay_usrp_n2xx);
break;
case usrp2_iface::USRP2_REV4:
_mbc[mb].clock->set_mimo_clock_delay(mimo_clock_delay_usrp2_rev4);
break;
default:
break; // not handled
}
}
}
|