1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
|
//
// Copyright 2010-2012,2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "usrp1_impl.hpp"
#include <uhd/utils/log.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhd/transport/usb_control.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/cast.hpp>
#include <uhd/exception.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/utils/paths.hpp>
#include <boost/format.hpp>
#include <boost/filesystem.hpp>
#include <boost/thread/thread.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/math/special_functions/round.hpp>
#include <cstdio>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
const uint16_t USRP1_VENDOR_ID = 0xfffe;
const uint16_t USRP1_PRODUCT_ID = 0x0002;
static const boost::posix_time::milliseconds REENUMERATION_TIMEOUT_MS(3000);
const std::vector<usrp1_impl::dboard_slot_t> usrp1_impl::_dboard_slots{
usrp1_impl::DBOARD_SLOT_A,
usrp1_impl::DBOARD_SLOT_B
};
/***********************************************************************
* Discovery
**********************************************************************/
static device_addrs_t usrp1_find(const device_addr_t &hint)
{
device_addrs_t usrp1_addrs;
//return an empty list of addresses when type is set to non-usrp1
if (hint.has_key("type") and hint["type"] != "usrp1") return usrp1_addrs;
//Return an empty list of addresses when an address or resource is specified,
//since an address and resource is intended for a different, non-USB, device.
if (hint.has_key("addr") || hint.has_key("resource")) return usrp1_addrs;
uint16_t vid, pid;
if(hint.has_key("vid") && hint.has_key("pid") && hint.has_key("type") && hint["type"] == "usrp1") {
vid = uhd::cast::hexstr_cast<uint16_t>(hint.get("vid"));
pid = uhd::cast::hexstr_cast<uint16_t>(hint.get("pid"));
} else {
vid = USRP1_VENDOR_ID;
pid = USRP1_PRODUCT_ID;
}
// Important note:
// The get device list calls are nested inside the for loop.
// This allows the usb guts to decontruct when not in use,
// so that re-enumeration after fw load can occur successfully.
// This requirement is a courtesy of libusb1.0 on windows.
//find the usrps and load firmware
size_t found = 0;
for(usb_device_handle::sptr handle: usb_device_handle::get_device_list(vid, pid)) {
//extract the firmware path for the USRP1
std::string usrp1_fw_image;
try{
usrp1_fw_image = find_image_path(hint.get("fw", "usrp1_fw.ihx"));
}
catch(...){
UHD_LOGGER_WARNING("USRP1") << boost::format("Could not locate USRP1 firmware. %s") % print_utility_error("uhd_images_downloader.py");
}
UHD_LOGGER_DEBUG("USRP1") << "USRP1 firmware image: " << usrp1_fw_image ;
usb_control::sptr control;
try{control = usb_control::make(handle, 0);}
catch(const uhd::exception &){continue;} //ignore claimed
fx2_ctrl::make(control)->usrp_load_firmware(usrp1_fw_image);
found++;
}
//get descriptors again with serial number, but using the initialized VID/PID now since we have firmware
vid = USRP1_VENDOR_ID;
pid = USRP1_PRODUCT_ID;
const boost::system_time timeout_time = boost::get_system_time() + REENUMERATION_TIMEOUT_MS;
//search for the device until found or timeout
while (boost::get_system_time() < timeout_time and usrp1_addrs.empty() and found != 0)
{
for(usb_device_handle::sptr handle: usb_device_handle::get_device_list(vid, pid))
{
usb_control::sptr control;
try{control = usb_control::make(handle, 0);}
catch(const uhd::exception &){continue;} //ignore claimed
fx2_ctrl::sptr fx2_ctrl = fx2_ctrl::make(control);
const mboard_eeprom_t mb_eeprom =
usrp1_impl::get_mb_eeprom(fx2_ctrl);
device_addr_t new_addr;
new_addr["type"] = "usrp1";
new_addr["name"] = mb_eeprom["name"];
new_addr["serial"] = handle->get_serial();
//this is a found usrp1 when the hint serial and name match or blank
if (
(not hint.has_key("name") or hint["name"] == new_addr["name"]) and
(not hint.has_key("serial") or hint["serial"] == new_addr["serial"])
){
usrp1_addrs.push_back(new_addr);
}
}
}
return usrp1_addrs;
}
/***********************************************************************
* Make
**********************************************************************/
static device::sptr usrp1_make(const device_addr_t &device_addr){
return device::sptr(new usrp1_impl(device_addr));
}
UHD_STATIC_BLOCK(register_usrp1_device){
device::register_device(&usrp1_find, &usrp1_make, device::USRP);
}
/***********************************************************************
* Structors
**********************************************************************/
usrp1_impl::usrp1_impl(const device_addr_t &device_addr){
UHD_LOGGER_INFO("USRP1") << "Opening a USRP1 device...";
_type = device::USRP;
//extract the FPGA path for the USRP1
std::string usrp1_fpga_image = find_image_path(
device_addr.get("fpga", "usrp1_fpga.rbf")
);
UHD_LOGGER_DEBUG("USRP1") << "USRP1 FPGA image: " << usrp1_fpga_image ;
//try to match the given device address with something on the USB bus
std::vector<usb_device_handle::sptr> device_list =
usb_device_handle::get_device_list(USRP1_VENDOR_ID, USRP1_PRODUCT_ID);
//locate the matching handle in the device list
usb_device_handle::sptr handle;
for(usb_device_handle::sptr dev_handle: device_list) {
if (dev_handle->get_serial() == device_addr["serial"]){
handle = dev_handle;
break;
}
}
UHD_ASSERT_THROW(handle.get() != NULL); //better be found
////////////////////////////////////////////////////////////////////
// Create controller objects
////////////////////////////////////////////////////////////////////
//usb_control::sptr usb_ctrl = usb_control::make(handle);
_fx2_ctrl = fx2_ctrl::make(usb_control::make(handle, 0));
_fx2_ctrl->usrp_load_fpga(usrp1_fpga_image);
_fx2_ctrl->usrp_init();
_data_transport = usb_zero_copy::make(
handle, // identifier
2, 6, // IN interface, endpoint
1, 2, // OUT interface, endpoint
device_addr // param hints
);
_iface = usrp1_iface::make(_fx2_ctrl);
_soft_time_ctrl = soft_time_ctrl::make(
boost::bind(&usrp1_impl::rx_stream_on_off, this, _1)
);
_dbc["A"]; _dbc["B"]; //ensure that keys exist
// Normal mode with no loopback or Rx counting
_iface->poke32(FR_MODE, 0x00000000);
_iface->poke32(FR_DEBUG_EN, 0x00000000);
UHD_LOGGER_DEBUG("USRP1")
<< "USRP1 Capabilities"
<< " number of duc's: " << get_num_ddcs()
<< " number of ddc's: " << get_num_ducs()
<< " rx halfband: " << has_rx_halfband()
<< " tx halfband: " << has_tx_halfband()
;
////////////////////////////////////////////////////////////////////
// Initialize the properties tree
////////////////////////////////////////////////////////////////////
_rx_dc_offset_shadow = 0;
_tree = property_tree::make();
_tree->create<std::string>("/name").set("USRP1 Device");
const fs_path mb_path = "/mboards/0";
_tree->create<std::string>(mb_path / "name").set("USRP1");
_tree->create<std::string>(mb_path / "load_eeprom")
.add_coerced_subscriber(boost::bind(&fx2_ctrl::usrp_load_eeprom, _fx2_ctrl, _1));
////////////////////////////////////////////////////////////////////
// create user-defined control objects
////////////////////////////////////////////////////////////////////
_tree->create<std::pair<uint8_t, uint32_t> >(mb_path / "user" / "regs")
.add_coerced_subscriber(boost::bind(&usrp1_impl::set_reg, this, _1));
////////////////////////////////////////////////////////////////////
// setup the mboard eeprom
////////////////////////////////////////////////////////////////////
//const mboard_eeprom_t mb_eeprom(*_fx2_ctrl, USRP1_EEPROM_MAP_KEY);
const mboard_eeprom_t mb_eeprom = this->get_mb_eeprom(_fx2_ctrl);
_tree->create<mboard_eeprom_t>(mb_path / "eeprom")
.set(mb_eeprom)
.add_coerced_subscriber(boost::bind(&usrp1_impl::set_mb_eeprom, this, _1));
////////////////////////////////////////////////////////////////////
// create clock control objects
////////////////////////////////////////////////////////////////////
_master_clock_rate = 64e6;
if (device_addr.has_key("mcr")){
try{
_master_clock_rate = std::stod(device_addr["mcr"]);
}
catch(const std::exception &e){
UHD_LOGGER_ERROR("USRP1") << "Error parsing FPGA clock rate from device address: " << e.what() ;
}
}
else if (not mb_eeprom["mcr"].empty()){
try{
_master_clock_rate = std::stod(mb_eeprom["mcr"]);
}
catch(const std::exception &e){
UHD_LOGGER_ERROR("USRP1") << "Error parsing FPGA clock rate from EEPROM: " << e.what() ;
}
}
UHD_LOGGER_INFO("USRP1") << boost::format("Using FPGA clock rate of %fMHz...") % (_master_clock_rate/1e6) ;
_tree->create<double>(mb_path / "tick_rate")
.add_coerced_subscriber(boost::bind(&usrp1_impl::update_tick_rate, this, _1))
.set(_master_clock_rate);
////////////////////////////////////////////////////////////////////
// create codec control objects
////////////////////////////////////////////////////////////////////
for(const std::string &db: _dbc.keys()){
_dbc[db].codec = usrp1_codec_ctrl::make(_iface, (db == "A")? SPI_ENABLE_CODEC_A : SPI_ENABLE_CODEC_B);
const fs_path rx_codec_path = mb_path / "rx_codecs" / db;
const fs_path tx_codec_path = mb_path / "tx_codecs" / db;
_tree->create<std::string>(rx_codec_path / "name").set("ad9522");
_tree->create<meta_range_t>(rx_codec_path / "gains/pga/range").set(usrp1_codec_ctrl::rx_pga_gain_range);
_tree->create<double>(rx_codec_path / "gains/pga/value")
.set_coercer(boost::bind(&usrp1_impl::update_rx_codec_gain, this, db, _1))
.set(0.0);
_tree->create<std::string>(tx_codec_path / "name").set("ad9522");
_tree->create<meta_range_t>(tx_codec_path / "gains/pga/range").set(usrp1_codec_ctrl::tx_pga_gain_range);
_tree->create<double>(tx_codec_path / "gains/pga/value")
.add_coerced_subscriber(boost::bind(&usrp1_codec_ctrl::set_tx_pga_gain, _dbc[db].codec, _1))
.set_publisher(boost::bind(&usrp1_codec_ctrl::get_tx_pga_gain, _dbc[db].codec))
.set(0.0);
}
////////////////////////////////////////////////////////////////////
// and do the misc mboard sensors
////////////////////////////////////////////////////////////////////
//none for now...
_tree->create<int>(mb_path / "sensors"); //phony property so this dir exists
////////////////////////////////////////////////////////////////////
// create frontend control objects
////////////////////////////////////////////////////////////////////
_tree->create<subdev_spec_t>(mb_path / "rx_subdev_spec")
.set(subdev_spec_t())
.add_coerced_subscriber(boost::bind(&usrp1_impl::update_rx_subdev_spec, this, _1));
_tree->create<subdev_spec_t>(mb_path / "tx_subdev_spec")
.set(subdev_spec_t())
.add_coerced_subscriber(boost::bind(&usrp1_impl::update_tx_subdev_spec, this, _1));
for(const std::string &db: _dbc.keys()){
const fs_path rx_fe_path = mb_path / "rx_frontends" / db;
_tree->create<std::complex<double> >(rx_fe_path / "dc_offset" / "value")
.set_coercer(boost::bind(&usrp1_impl::set_rx_dc_offset, this, db, _1))
.set(std::complex<double>(0.0, 0.0));
_tree->create<bool>(rx_fe_path / "dc_offset" / "enable")
.add_coerced_subscriber(boost::bind(&usrp1_impl::set_enb_rx_dc_offset, this, db, _1))
.set(true);
}
////////////////////////////////////////////////////////////////////
// create rx dsp control objects
////////////////////////////////////////////////////////////////////
_tree->create<int>(mb_path / "rx_dsps"); //dummy in case we have none
for (size_t dspno = 0; dspno < get_num_ddcs(); dspno++){
fs_path rx_dsp_path = mb_path / str(boost::format("rx_dsps/%u") % dspno);
_tree->create<meta_range_t>(rx_dsp_path / "rate/range")
.set_publisher(boost::bind(&usrp1_impl::get_rx_dsp_host_rates, this));
_tree->create<double>(rx_dsp_path / "rate/value")
.set(1e6) //some default rate
.set_coercer(boost::bind(&usrp1_impl::update_rx_samp_rate, this, dspno, _1));
_tree->create<double>(rx_dsp_path / "freq/value")
.set_coercer(boost::bind(&usrp1_impl::update_rx_dsp_freq, this, dspno, _1));
_tree->create<meta_range_t>(rx_dsp_path / "freq/range")
.set_publisher(boost::bind(&usrp1_impl::get_rx_dsp_freq_range, this));
_tree->create<stream_cmd_t>(rx_dsp_path / "stream_cmd");
if (dspno == 0){
//only add_coerced_subscriber the callback for dspno 0 since it will stream all dsps
_tree->access<stream_cmd_t>(rx_dsp_path / "stream_cmd")
.add_coerced_subscriber(boost::bind(&soft_time_ctrl::issue_stream_cmd, _soft_time_ctrl, _1));
}
}
////////////////////////////////////////////////////////////////////
// create tx dsp control objects
////////////////////////////////////////////////////////////////////
_tree->create<int>(mb_path / "tx_dsps"); //dummy in case we have none
for (size_t dspno = 0; dspno < get_num_ducs(); dspno++){
fs_path tx_dsp_path = mb_path / str(boost::format("tx_dsps/%u") % dspno);
_tree->create<meta_range_t>(tx_dsp_path / "rate/range")
.set_publisher(boost::bind(&usrp1_impl::get_tx_dsp_host_rates, this));
_tree->create<double>(tx_dsp_path / "rate/value")
.set(1e6) //some default rate
.set_coercer(boost::bind(&usrp1_impl::update_tx_samp_rate, this, dspno, _1));
_tree->create<double>(tx_dsp_path / "freq/value")
.set_coercer(boost::bind(&usrp1_impl::update_tx_dsp_freq, this, dspno, _1));
_tree->create<meta_range_t>(tx_dsp_path / "freq/range")
.set_publisher(boost::bind(&usrp1_impl::get_tx_dsp_freq_range, this));
}
////////////////////////////////////////////////////////////////////
// create time control objects
////////////////////////////////////////////////////////////////////
_tree->create<time_spec_t>(mb_path / "time/now")
.set_publisher(boost::bind(&soft_time_ctrl::get_time, _soft_time_ctrl))
.add_coerced_subscriber(boost::bind(&soft_time_ctrl::set_time, _soft_time_ctrl, _1));
_tree->create<std::vector<std::string> >(mb_path / "clock_source/options").set(std::vector<std::string>(1, "internal"));
_tree->create<std::vector<std::string> >(mb_path / "time_source/options").set(std::vector<std::string>(1, "none"));
_tree->create<std::string>(mb_path / "clock_source/value").set("internal");
_tree->create<std::string>(mb_path / "time_source/value").set("none");
////////////////////////////////////////////////////////////////////
// create dboard control objects
////////////////////////////////////////////////////////////////////
for(const std::string &db: _dbc.keys()){
//read the dboard eeprom to extract the dboard ids
dboard_eeprom_t rx_db_eeprom, tx_db_eeprom, gdb_eeprom;
rx_db_eeprom.load(*_fx2_ctrl, (db == "A")? (I2C_ADDR_RX_A) : (I2C_ADDR_RX_B));
tx_db_eeprom.load(*_fx2_ctrl, (db == "A")? (I2C_ADDR_TX_A) : (I2C_ADDR_TX_B));
gdb_eeprom.load(*_fx2_ctrl, (db == "A")? (I2C_ADDR_TX_A ^ 5) : (I2C_ADDR_TX_B ^ 5));
//disable rx dc offset if LFRX
if (rx_db_eeprom.id == 0x000f) _tree->access<bool>(mb_path / "rx_frontends" / db / "dc_offset" / "enable").set(false);
//create the properties and register subscribers
_tree->create<dboard_eeprom_t>(mb_path / "dboards" / db/ "rx_eeprom")
.set(rx_db_eeprom)
.add_coerced_subscriber(boost::bind(&usrp1_impl::set_db_eeprom, this, db, "rx", _1));
_tree->create<dboard_eeprom_t>(mb_path / "dboards" / db/ "tx_eeprom")
.set(tx_db_eeprom)
.add_coerced_subscriber(boost::bind(&usrp1_impl::set_db_eeprom, this, db, "tx", _1));
_tree->create<dboard_eeprom_t>(mb_path / "dboards" / db/ "gdb_eeprom")
.set(gdb_eeprom)
.add_coerced_subscriber(boost::bind(&usrp1_impl::set_db_eeprom, this, db, "gdb", _1));
//create a new dboard interface and manager
dboard_iface::sptr dboard_iface = make_dboard_iface(
_iface, _dbc[db].codec,
(db == "A")? DBOARD_SLOT_A : DBOARD_SLOT_B,
_master_clock_rate, rx_db_eeprom.id
);
_dbc[db].dboard_manager = dboard_manager::make(
rx_db_eeprom.id, tx_db_eeprom.id, gdb_eeprom.id,
dboard_iface, _tree->subtree(mb_path / "dboards" / db)
);
//init the subdev specs if we have a dboard (wont leave this loop empty)
if (rx_db_eeprom.id != dboard_id_t::none() or _rx_subdev_spec.empty()){
_rx_subdev_spec = subdev_spec_t(db + ":" + _tree->list(mb_path / "dboards" / db / "rx_frontends").at(0));
}
if (tx_db_eeprom.id != dboard_id_t::none() or _tx_subdev_spec.empty()){
_tx_subdev_spec = subdev_spec_t(db + ":" + _tree->list(mb_path / "dboards" / db / "tx_frontends").at(0));
}
}
//initialize io handling
this->io_init();
////////////////////////////////////////////////////////////////////
// do some post-init tasks
////////////////////////////////////////////////////////////////////
this->update_rates();
//reset cordic rates and their properties to zero
for(const std::string &name: _tree->list(mb_path / "rx_dsps")){
_tree->access<double>(mb_path / "rx_dsps" / name / "freq" / "value").set(0.0);
}
if (_tree->list(mb_path / "rx_dsps").size() > 0)
_tree->access<subdev_spec_t>(mb_path / "rx_subdev_spec").set(_rx_subdev_spec);
if (_tree->list(mb_path / "tx_dsps").size() > 0)
_tree->access<subdev_spec_t>(mb_path / "tx_subdev_spec").set(_tx_subdev_spec);
_tree->create<double>(mb_path / "link_max_rate").set(USRP1_MAX_RATE_USB2);
}
usrp1_impl::~usrp1_impl(void){
UHD_SAFE_CALL(
this->enable_rx(false);
this->enable_tx(false);
)
_soft_time_ctrl->stop(); //stops cmd task before proceeding
_io_impl.reset(); //stops vandal before other stuff gets deconstructed
}
/*!
* Capabilities Register
*
* 3 2 1 0
* 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
* +-----------------------------------------------+-+-----+-+-----+
* | Reserved |T|DUCs |R|DDCs |
* +-----------------------------------------------+-+-----+-+-----+
*/
size_t usrp1_impl::get_num_ddcs(void){
uint32_t regval = _iface->peek32(FR_RB_CAPS);
return (regval >> 0) & 0x0007;
}
size_t usrp1_impl::get_num_ducs(void){
uint32_t regval = _iface->peek32(FR_RB_CAPS);
return (regval >> 4) & 0x0007;
}
bool usrp1_impl::has_rx_halfband(void){
uint32_t regval = _iface->peek32(FR_RB_CAPS);
return (regval >> 3) & 0x0001;
}
bool usrp1_impl::has_tx_halfband(void){
uint32_t regval = _iface->peek32(FR_RB_CAPS);
return (regval >> 7) & 0x0001;
}
/***********************************************************************
* Properties callback methods below
**********************************************************************/
void usrp1_impl::set_db_eeprom(const std::string &db, const std::string &type, const uhd::usrp::dboard_eeprom_t &db_eeprom){
if (type == "rx") db_eeprom.store(*_fx2_ctrl, (db == "A")? (I2C_ADDR_RX_A) : (I2C_ADDR_RX_B));
if (type == "tx") db_eeprom.store(*_fx2_ctrl, (db == "A")? (I2C_ADDR_TX_A) : (I2C_ADDR_TX_B));
if (type == "gdb") db_eeprom.store(*_fx2_ctrl, (db == "A")? (I2C_ADDR_TX_A ^ 5) : (I2C_ADDR_TX_B ^ 5));
}
double usrp1_impl::update_rx_codec_gain(const std::string &db, const double gain){
//set gain on both I and Q, readback on one
//TODO in the future, gains should have individual control
_dbc[db].codec->set_rx_pga_gain(gain, 'A');
_dbc[db].codec->set_rx_pga_gain(gain, 'B');
return _dbc[db].codec->get_rx_pga_gain('A');
}
uhd::meta_range_t usrp1_impl::get_rx_dsp_freq_range(void){
return meta_range_t(-_master_clock_rate/2, +_master_clock_rate/2);
}
uhd::meta_range_t usrp1_impl::get_tx_dsp_freq_range(void){
//magic scalar comes from codec control:
return meta_range_t(-_master_clock_rate*0.6875, +_master_clock_rate*0.6875);
}
void usrp1_impl::set_enb_rx_dc_offset(const std::string &db, const bool enb){
const size_t shift = (db == "A")? 0 : 2;
_rx_dc_offset_shadow &= ~(0x3 << shift); //clear bits
_rx_dc_offset_shadow |= ((enb)? 0x3 : 0x0) << shift;
_iface->poke32(FR_DC_OFFSET_CL_EN, _rx_dc_offset_shadow & 0xf);
}
std::complex<double> usrp1_impl::set_rx_dc_offset(const std::string &db, const std::complex<double> &offset){
const int32_t i_off = boost::math::iround(offset.real() * (1ul << 31));
const int32_t q_off = boost::math::iround(offset.imag() * (1ul << 31));
if (db == "A"){
_iface->poke32(FR_ADC_OFFSET_0, i_off);
_iface->poke32(FR_ADC_OFFSET_1, q_off);
}
if (db == "B"){
_iface->poke32(FR_ADC_OFFSET_2, i_off);
_iface->poke32(FR_ADC_OFFSET_3, q_off);
}
return std::complex<double>(double(i_off) * (1ul << 31), double(q_off) * (1ul << 31));
}
void usrp1_impl::set_reg(const std::pair<uint8_t, uint32_t> ®)
{
_iface->poke32(reg.first, reg.second);
}
|