1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
|
//
// Copyright 2010-2012,2015,2016 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "codec_ctrl.hpp"
#include "usrp1_iface.hpp"
#include "usrp1_impl.hpp"
#include <uhd/types/dict.hpp>
#include <uhd/usrp/dboard_iface.hpp>
#include <uhd/utils/assert_has.hpp>
#include <boost/assign/list_of.hpp>
#include <iostream>
#define FR_OE_0 5
#define FR_OE_1 6
#define FR_OE_2 7
#define FR_OE_3 8
#define FR_ATR_MASK_0 20
#define FR_ATR_TXVAL_0 21
#define FR_ATR_RXVAL_0 22
#define FR_ATR_MASK_1 23
#define FR_ATR_TXVAL_1 24
#define FR_ATR_RXVAL_1 25
#define FR_ATR_MASK_2 26
#define FR_ATR_TXVAL_2 27
#define FR_ATR_RXVAL_2 28
#define FR_ATR_MASK_3 29
#define FR_ATR_TXVAL_3 30
#define FR_ATR_RXVAL_3 31
#define FR_RX_A_REFCLK 41
#define FR_RX_B_REFCLK 43
// i/o registers for pins that go to daughterboards.
// top 16 is a mask, low 16 is value
#define FR_IO_0 9 // slot 0
#define FR_IO_1 10
#define FR_IO_2 11
#define FR_IO_3 12
#define SPI_ENABLE_TX_A 0x10 // select d'board TX A
#define SPI_ENABLE_RX_A 0x20 // select d'board RX A
#define SPI_ENABLE_TX_B 0x40 // select d'board TX B
#define SPI_ENABLE_RX_B 0x80 // select d'board RX B
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::usrp::gpio_atr;
using namespace boost::assign;
static const dboard_id_t tvrx_id(0x0040);
class usrp1_dboard_iface : public dboard_iface
{
public:
usrp1_dboard_iface(usrp1_iface::sptr iface,
usrp1_codec_ctrl::sptr codec,
usrp1_impl::dboard_slot_t dboard_slot,
const double& master_clock_rate,
const dboard_id_t& rx_dboard_id)
: _dboard_slot(dboard_slot)
, _master_clock_rate(master_clock_rate)
, _rx_dboard_id(rx_dboard_id)
{
_iface = iface;
_codec = codec;
_dbsrx_classic_div = 1;
// yes this is evil but it's necessary for TVRX to work on USRP1
if (_rx_dboard_id == tvrx_id)
_codec->bypass_adc_buffers(false);
// else _codec->bypass_adc_buffers(false); //don't think this is necessary
}
~usrp1_dboard_iface()
{
/* NOP */
}
special_props_t get_special_props()
{
special_props_t props;
props.soft_clock_divider = true;
props.mangle_i2c_addrs = (_dboard_slot == usrp1_impl::DBOARD_SLOT_B);
return props;
}
void write_aux_dac(unit_t, aux_dac_t, double);
double read_aux_adc(unit_t, aux_adc_t);
void set_pin_ctrl(unit_t unit, uint32_t value, uint32_t mask = 0xffffffff);
uint32_t get_pin_ctrl(unit_t unit);
void set_atr_reg(
unit_t unit, atr_reg_t reg, uint32_t value, uint32_t mask = 0xffffffff);
uint32_t get_atr_reg(unit_t unit, atr_reg_t reg);
void set_gpio_ddr(unit_t unit, uint32_t value, uint32_t mask = 0xffffffff);
uint32_t get_gpio_ddr(unit_t unit);
void set_gpio_out(unit_t unit, uint32_t value, uint32_t mask = 0xffffffff);
uint32_t get_gpio_out(unit_t unit);
uint32_t read_gpio(unit_t unit);
void _set_pin_ctrl(unit_t, uint16_t);
void _set_atr_reg(unit_t, atr_reg_t, uint16_t);
void _set_gpio_ddr(unit_t, uint16_t);
void _set_gpio_out(unit_t, uint16_t);
void set_command_time(const uhd::time_spec_t& t);
uhd::time_spec_t get_command_time(void);
void write_i2c(uint16_t, const byte_vector_t&);
byte_vector_t read_i2c(uint16_t, size_t);
void write_spi(
unit_t unit, const spi_config_t& config, uint32_t data, size_t num_bits);
uint32_t read_write_spi(
unit_t unit, const spi_config_t& config, uint32_t data, size_t num_bits);
void set_clock_rate(unit_t, double);
std::vector<double> get_clock_rates(unit_t);
double get_clock_rate(unit_t);
void set_clock_enabled(unit_t, bool);
double get_codec_rate(unit_t);
void set_fe_connection(
unit_t unit, const std::string&, const fe_connection_t& fe_conn);
private:
usrp1_iface::sptr _iface;
usrp1_codec_ctrl::sptr _codec;
unsigned _dbsrx_classic_div;
const usrp1_impl::dboard_slot_t _dboard_slot;
const double& _master_clock_rate;
const dboard_id_t _rx_dboard_id;
uhd::dict<unit_t, uint16_t> _pin_ctrl, _gpio_out, _gpio_ddr;
uhd::dict<unit_t, uhd::dict<atr_reg_t, uint16_t>> _atr_regs;
};
/***********************************************************************
* Make Function
**********************************************************************/
dboard_iface::sptr usrp1_impl::make_dboard_iface(usrp1_iface::sptr iface,
usrp1_codec_ctrl::sptr codec,
usrp1_impl::dboard_slot_t dboard_slot,
const double& master_clock_rate,
const dboard_id_t& rx_dboard_id)
{
return dboard_iface::sptr(new usrp1_dboard_iface(
iface, codec, dboard_slot, master_clock_rate, rx_dboard_id));
}
/***********************************************************************
* Clock Rates
**********************************************************************/
static const dboard_id_t dbsrx_classic_id(0x0002);
/*
* Daughterboard reference clock register
*
* Bit 7 - 1 turns on refclk, 0 allows IO use
* Bits 6:0 - Divider value
*/
void usrp1_dboard_iface::set_clock_rate(unit_t unit, double rate)
{
assert_has(this->get_clock_rates(unit), rate, "dboard clock rate");
if (unit == UNIT_RX && _rx_dboard_id == dbsrx_classic_id) {
_dbsrx_classic_div = size_t(_master_clock_rate / rate);
switch (_dboard_slot) {
case usrp1_impl::DBOARD_SLOT_A:
_iface->poke32(FR_RX_A_REFCLK, (_dbsrx_classic_div & 0x7f) | 0x80);
break;
case usrp1_impl::DBOARD_SLOT_B:
_iface->poke32(FR_RX_B_REFCLK, (_dbsrx_classic_div & 0x7f) | 0x80);
break;
}
}
}
std::vector<double> usrp1_dboard_iface::get_clock_rates(unit_t unit)
{
std::vector<double> rates;
if (unit == UNIT_RX && _rx_dboard_id == dbsrx_classic_id) {
for (size_t div = 1; div <= 127; div++)
rates.push_back(_master_clock_rate / div);
} else {
rates.push_back(_master_clock_rate);
}
return rates;
}
double usrp1_dboard_iface::get_clock_rate(unit_t unit)
{
if (unit == UNIT_RX && _rx_dboard_id == dbsrx_classic_id) {
return _master_clock_rate / _dbsrx_classic_div;
}
return _master_clock_rate;
}
void usrp1_dboard_iface::set_clock_enabled(unit_t, bool)
{
// TODO we can only enable for special case anyway...
}
double usrp1_dboard_iface::get_codec_rate(unit_t)
{
return _master_clock_rate;
}
/***********************************************************************
* GPIO
**********************************************************************/
template <typename T>
static T shadow_it(T& shadow, const T& value, const T& mask)
{
shadow = (shadow & ~mask) | (value & mask);
return shadow;
}
void usrp1_dboard_iface::set_pin_ctrl(unit_t unit, uint32_t value, uint32_t mask)
{
_set_pin_ctrl(unit,
shadow_it(
_pin_ctrl[unit], static_cast<uint16_t>(value), static_cast<uint16_t>(mask)));
}
uint32_t usrp1_dboard_iface::get_pin_ctrl(unit_t unit)
{
return _pin_ctrl[unit];
}
void usrp1_dboard_iface::set_atr_reg(
unit_t unit, atr_reg_t reg, uint32_t value, uint32_t mask)
{
_set_atr_reg(unit,
reg,
shadow_it(_atr_regs[unit][reg],
static_cast<uint16_t>(value),
static_cast<uint16_t>(mask)));
}
uint32_t usrp1_dboard_iface::get_atr_reg(unit_t unit, atr_reg_t reg)
{
return _atr_regs[unit][reg];
}
void usrp1_dboard_iface::set_gpio_ddr(unit_t unit, uint32_t value, uint32_t mask)
{
_set_gpio_ddr(unit,
shadow_it(
_gpio_ddr[unit], static_cast<uint16_t>(value), static_cast<uint16_t>(mask)));
}
uint32_t usrp1_dboard_iface::get_gpio_ddr(unit_t unit)
{
return _gpio_ddr[unit];
}
void usrp1_dboard_iface::set_gpio_out(unit_t unit, uint32_t value, uint32_t mask)
{
_set_gpio_out(unit,
shadow_it(
_gpio_out[unit], static_cast<uint16_t>(value), static_cast<uint16_t>(mask)));
}
uint32_t usrp1_dboard_iface::get_gpio_out(unit_t unit)
{
return _gpio_out[unit];
}
uint32_t usrp1_dboard_iface::read_gpio(unit_t unit)
{
uint32_t out_value;
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
out_value = _iface->peek32(1);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
out_value = _iface->peek32(2);
else
UHD_THROW_INVALID_CODE_PATH();
switch (unit) {
case UNIT_RX:
return (uint32_t)((out_value >> 16) & 0x0000ffff);
case UNIT_TX:
return (uint32_t)((out_value >> 0) & 0x0000ffff);
default:
UHD_THROW_INVALID_CODE_PATH();
}
UHD_ASSERT_THROW(false);
}
void usrp1_dboard_iface::_set_pin_ctrl(unit_t unit, uint16_t value)
{
switch (unit) {
case UNIT_RX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_MASK_1, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_MASK_3, value);
break;
case UNIT_TX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_MASK_0, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_MASK_2, value);
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
void usrp1_dboard_iface::_set_gpio_ddr(unit_t unit, uint16_t value)
{
switch (unit) {
case UNIT_RX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_OE_1, 0xffff0000 | value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_OE_3, 0xffff0000 | value);
break;
case UNIT_TX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_OE_0, 0xffff0000 | value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_OE_2, 0xffff0000 | value);
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
void usrp1_dboard_iface::_set_gpio_out(unit_t unit, uint16_t value)
{
switch (unit) {
case UNIT_RX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_IO_1, 0xffff0000 | value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_IO_3, 0xffff0000 | value);
break;
case UNIT_TX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_IO_0, 0xffff0000 | value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_IO_2, 0xffff0000 | value);
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
void usrp1_dboard_iface::_set_atr_reg(unit_t unit, atr_reg_t atr, uint16_t value)
{
// Ignore unsupported states
if ((atr == ATR_REG_IDLE) || (atr == ATR_REG_TX_ONLY))
return;
if (atr == ATR_REG_RX_ONLY) {
switch (unit) {
case UNIT_RX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_RXVAL_1, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_RXVAL_3, value);
break;
case UNIT_TX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_RXVAL_0, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_RXVAL_2, value);
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
} else if (atr == ATR_REG_FULL_DUPLEX) {
switch (unit) {
case UNIT_RX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_TXVAL_1, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_TXVAL_3, value);
break;
case UNIT_TX:
if (_dboard_slot == usrp1_impl::DBOARD_SLOT_A)
_iface->poke32(FR_ATR_TXVAL_0, value);
else if (_dboard_slot == usrp1_impl::DBOARD_SLOT_B)
_iface->poke32(FR_ATR_TXVAL_2, value);
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
}
/***********************************************************************
* SPI
**********************************************************************/
/*!
* Static function to convert a unit type to a spi slave device number.
* \param unit the dboard interface unit type enum
* \param slot the side (A or B) the dboard is attached
* \return the slave device number
*/
static uint32_t unit_to_otw_spi_dev(
dboard_iface::unit_t unit, usrp1_impl::dboard_slot_t slot)
{
switch (unit) {
case dboard_iface::UNIT_TX:
if (slot == usrp1_impl::DBOARD_SLOT_A)
return SPI_ENABLE_TX_A;
else if (slot == usrp1_impl::DBOARD_SLOT_B)
return SPI_ENABLE_TX_B;
else
break;
case dboard_iface::UNIT_RX:
if (slot == usrp1_impl::DBOARD_SLOT_A)
return SPI_ENABLE_RX_A;
else if (slot == usrp1_impl::DBOARD_SLOT_B)
return SPI_ENABLE_RX_B;
else
break;
default:
break;
}
UHD_THROW_INVALID_CODE_PATH();
}
void usrp1_dboard_iface::write_spi(
unit_t unit, const spi_config_t& config, uint32_t data, size_t num_bits)
{
_iface->write_spi(unit_to_otw_spi_dev(unit, _dboard_slot), config, data, num_bits);
}
uint32_t usrp1_dboard_iface::read_write_spi(
unit_t unit, const spi_config_t& config, uint32_t data, size_t num_bits)
{
return _iface->read_spi(
unit_to_otw_spi_dev(unit, _dboard_slot), config, data, num_bits);
}
/***********************************************************************
* I2C
**********************************************************************/
void usrp1_dboard_iface::write_i2c(uint16_t addr, const byte_vector_t& bytes)
{
return _iface->write_i2c(addr, bytes);
}
byte_vector_t usrp1_dboard_iface::read_i2c(uint16_t addr, size_t num_bytes)
{
return _iface->read_i2c(addr, num_bytes);
}
/***********************************************************************
* Aux DAX/ADC
**********************************************************************/
void usrp1_dboard_iface::write_aux_dac(
dboard_iface::unit_t, aux_dac_t which, double value)
{
// same aux dacs for each unit
static const uhd::dict<aux_dac_t, usrp1_codec_ctrl::aux_dac_t> which_to_aux_dac =
map_list_of(AUX_DAC_A, usrp1_codec_ctrl::AUX_DAC_A)(AUX_DAC_B,
usrp1_codec_ctrl::AUX_DAC_B)(AUX_DAC_C, usrp1_codec_ctrl::AUX_DAC_C)(
AUX_DAC_D, usrp1_codec_ctrl::AUX_DAC_D);
_codec->write_aux_dac(which_to_aux_dac[which], value);
}
double usrp1_dboard_iface::read_aux_adc(dboard_iface::unit_t unit, aux_adc_t which)
{
static const uhd::dict<unit_t, uhd::dict<aux_adc_t, usrp1_codec_ctrl::aux_adc_t>>
unit_to_which_to_aux_adc = map_list_of(UNIT_RX,
map_list_of(AUX_ADC_A, usrp1_codec_ctrl::AUX_ADC_A1)(
AUX_ADC_B, usrp1_codec_ctrl::AUX_ADC_B1))(UNIT_TX,
map_list_of(AUX_ADC_A, usrp1_codec_ctrl::AUX_ADC_A2)(
AUX_ADC_B, usrp1_codec_ctrl::AUX_ADC_B2));
return _codec->read_aux_adc(unit_to_which_to_aux_adc[unit][which]);
}
/***********************************************************************
* Unsupported
**********************************************************************/
void usrp1_dboard_iface::set_command_time(const uhd::time_spec_t&)
{
throw uhd::not_implemented_error("timed command support not implemented");
}
uhd::time_spec_t usrp1_dboard_iface::get_command_time()
{
throw uhd::not_implemented_error("timed command support not implemented");
}
void usrp1_dboard_iface::set_fe_connection(
unit_t, const std::string&, const fe_connection_t&)
{
throw uhd::not_implemented_error(
"fe connection configuration support not implemented");
}
|