aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/e300/e300_impl.cpp
blob: 78b1f05b1b9a65a159b2835d1d171eb2c73469ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
//
// Copyright 2013-2015 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include "e300_impl.hpp"
#include "e300_defaults.hpp"
#include "e300_fpga_defs.hpp"
#include "e300_spi.hpp"
#include "e300_regs.hpp"
#include "e300_eeprom_manager.hpp"
#include "e300_sensor_manager.hpp"
#include "e300_common.hpp"
#include "e300_remote_codec_ctrl.hpp"


#include <uhd/utils/log.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/utils/paths.hpp>
#include <uhd/usrp/dboard_eeprom.hpp>
#include <uhd/transport/if_addrs.hpp>
#include <uhd/transport/udp_zero_copy.hpp>
#include <uhd/transport/udp_simple.hpp>
#include <uhd/types/sensors.hpp>
#include <boost/make_shared.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <boost/filesystem.hpp>
#include <boost/functional/hash.hpp>
#include <boost/bind.hpp>
#include <boost/make_shared.hpp>
#include <boost/assign/list_of.hpp>
#include <boost/thread/thread.hpp> //sleep
#include <boost/asio.hpp>
#include <fstream>

using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::usrp::gpio_atr;
using namespace uhd::transport;
namespace fs = boost::filesystem;
namespace asio = boost::asio;

//! mapping of frontend to radio perif index
static const size_t FE0 = 1;
static const size_t FE1 = 0;

namespace uhd { namespace usrp { namespace e300 {

/***********************************************************************
 * Discovery
 **********************************************************************/

static std::vector<std::string> discover_ip_addrs(
    const std::string& addr_hint, const std::string& port)
{
    std::vector<std::string> addrs;

    // Create a UDP transport to communicate:
    // Some devices will cause a throw when opened for a broadcast address.
    // We print and recover so the caller can loop through all bcast addrs.
    uhd::transport::udp_simple::sptr udp_bcast_xport;
    try {
        udp_bcast_xport = uhd::transport::udp_simple::make_broadcast(addr_hint, port);
    } catch(const std::exception &e) {
        UHD_LOGGER_ERROR("E300") << boost::format("Cannot open UDP transport on %s for discovery%s")
        % addr_hint % e.what() ;
        return addrs;
    } catch(...) {
        UHD_LOGGER_ERROR("E300") << "E300 Network discovery unknown error";
        return addrs;
    }

    // TODO: Do not abuse the I2C transport here ...
    // we send a read request to i2c address 0x51,
    // to read register 0
    i2c_transaction_t req;
    req.type = i2c::READ | i2c::ONEBYTE;
    req.addr = 0x51; // mboard's eeprom address, we don't really care
    req.reg = 4;

    // send dummy request
    try {
    udp_bcast_xport->send(boost::asio::buffer(&req, sizeof(req)));
    } catch (const std::exception &ex) {
        UHD_LOGGER_ERROR("E300") << "E300 Network discovery error " << ex.what();
        return addrs;
    } catch(...) {
        UHD_LOGGER_ERROR("E300") << "E300 Network discovery unknown error";
        return addrs;
    }

    // loop for replies until timeout
    while (true) {
        uint8_t buff[sizeof(i2c_transaction_t)] = {};
        const size_t nbytes = udp_bcast_xport->recv(boost::asio::buffer(buff), 0.050);
        if (nbytes == 0)
            break; //No more responses

        const i2c_transaction_t *reply = reinterpret_cast<const i2c_transaction_t*>(buff);
        if (req.addr == reply->addr)
           addrs.push_back(udp_bcast_xport->get_recv_addr());
    }

    return addrs;
}

static bool is_loopback(const if_addrs_t &if_addrs)
{
       return if_addrs.inet == asio::ip::address_v4::loopback().to_string();
}

device_addrs_t e300_find(const device_addr_t &multi_dev_hint)
{
    // handle multi device discovery
    device_addrs_t hints = separate_device_addr(multi_dev_hint);

    if (hints.size() > 1) {
        device_addrs_t found_devices;
        std::string err_msg;
        for(const device_addr_t &hint_i:  hints)
        {
            device_addrs_t found_devices_i = e300_find(hint_i);
            if(found_devices_i.size() != 1)
                err_msg += str(boost::format(
                    "Could not resolve device hint \"%s\" to a single device.")
                    % hint_i.to_string());
            else
                found_devices.push_back(found_devices_i[0]);
            if (found_devices.empty())
                return device_addrs_t();

            if (not err_msg.empty())
                throw uhd::value_error(err_msg);
        }
        return device_addrs_t(1, combine_device_addrs(found_devices));
    }

    // initialize the hint for a single device case
    UHD_ASSERT_THROW(hints.size() <= 1);
    hints.resize(1); // in case it was empty
    device_addr_t hint = hints[0];
    device_addrs_t e300_addrs;

    // return an empty list of addresses when type is set to non-e300
    if (hint.has_key("type") and hint["type"] != "e3x0")
        return e300_addrs;

    const bool loopback_only =
        get_if_addrs().size() == 1 and is_loopback(get_if_addrs().at(0));

    // if we don't have connectivity, we might as well skip the network part
    if (not loopback_only) {
        // if no address or node has been specified, send a broadcast
        if ((not hint.has_key("addr")) and (not hint.has_key("node"))) {
            for(const if_addrs_t &if_addrs:  get_if_addrs())
            {
                // avoid the loopback device
                if (is_loopback(if_addrs))
                    continue;

                // create a new hint with this broadcast address
                device_addr_t new_hint = hint;
                new_hint["addr"] = if_addrs.bcast;

                // call discover with the new hint and append results
                device_addrs_t new_e300_addrs = e300_find(new_hint);
                e300_addrs.insert(e300_addrs.begin(),
                    new_e300_addrs.begin(), new_e300_addrs.end());

            }
            return e300_addrs;
        }

        std::vector<std::string> ip_addrs = discover_ip_addrs(
            hint["addr"], E300_SERVER_I2C_PORT);

        for(const std::string &ip_addr:  ip_addrs)
        {
            device_addr_t new_addr;
            new_addr["type"] = "e3x0";
            new_addr["addr"] = ip_addr;

            // see if we can read the eeprom
            try {
                e300_eeprom_manager eeprom_manager(
                    i2c::make_simple_udp(new_addr["addr"], E300_SERVER_I2C_PORT));
                const mboard_eeprom_t eeprom = eeprom_manager.get_mb_eeprom();
                new_addr["name"] = eeprom["name"];
                new_addr["serial"] = eeprom["serial"];
                new_addr["product"] = eeprom_manager.get_mb_type_string();
            } catch (...) {
                // set these values as empty string, so the device may still be found
                // and the filters below can still operate on the discovered device
                new_addr["name"] = "";
                new_addr["serial"] = "";
            }
            // filter the discovered device below by matching optional keys
            if ((not hint.has_key("name")   or hint["name"]   == new_addr["name"]) and
                (not hint.has_key("serial") or hint["serial"] == new_addr["serial"]))
            {
                e300_addrs.push_back(new_addr);
            }
        }
    }

    // finally search locally
    // if device node is not provided,
    // use the default one
    if (not hint.has_key("node")) {
        device_addr_t new_addr = hint;
        new_addr["node"] = "/dev/axi_fpga";
        return e300_find(new_addr);
    }

    // use the given node
    if (fs::exists(hint["node"])) {
        device_addr_t new_addr;
        new_addr["type"] = "e3x0";
        new_addr["node"] = fs::system_complete(fs::path(hint["node"])).string();

        try {
            e300_eeprom_manager eeprom_manager(i2c::make_i2cdev(E300_I2CDEV_DEVICE));
            const mboard_eeprom_t eeprom = eeprom_manager.get_mb_eeprom();
            new_addr["name"] = eeprom["name"];
            new_addr["serial"] = eeprom["serial"];
            new_addr["product"] = eeprom_manager.get_mb_type_string();
        } catch (...) {
            // set these values as empty string, so the device may still be found
            // and the filters below can still operate on the discovered device
            new_addr["name"] = "";
            new_addr["serial"] = "";
        }
        // filter the discovered device below by matching optional keys
        if ((not hint.has_key("name")   or hint["name"]   == new_addr["name"]) and
            (not hint.has_key("serial") or hint["serial"] == new_addr["serial"]))
        {
            e300_addrs.push_back(new_addr);
        }
    }

    return e300_addrs;
}


/***********************************************************************
 * Make
 **********************************************************************/
static device::sptr e300_make(const device_addr_t &device_addr)
{
    UHD_LOGGER_DEBUG("E300")<< "e300_make with args " << device_addr.to_pp_string() ;
    if(device_addr.has_key("server"))
        throw uhd::runtime_error(
            str(boost::format("Please run the server executable \"%s\"")
                % "usrp_e3x0_network_mode"));
    else
        return device::sptr(new e300_impl(device_addr));
}

// Common code used by e300_impl and e300_image_loader
void get_e3x0_fpga_images(const uhd::device_addr_t &device_addr,
                          std::string &fpga_image,
                          std::string &idle_image){
    const uint16_t pid = boost::lexical_cast<uint16_t>(
            device_addr["product"]);

    //extract the FPGA path for the e300
    switch(e300_eeprom_manager::get_mb_type(pid)) {
    case e300_eeprom_manager::USRP_E310_SG1_MB:
        fpga_image = device_addr.cast<std::string>("fpga",
            find_image_path(E310_SG1_FPGA_FILE_NAME));
        idle_image = find_image_path(E3XX_SG1_FPGA_IDLE_FILE_NAME);
        break;
    case e300_eeprom_manager::USRP_E310_SG3_MB:
        fpga_image = device_addr.cast<std::string>("fpga",
            find_image_path(E310_SG3_FPGA_FILE_NAME));
        idle_image = find_image_path(E3XX_SG3_FPGA_IDLE_FILE_NAME);
        break;
    case e300_eeprom_manager::USRP_E300_MB:
        fpga_image = device_addr.cast<std::string>("fpga",
            find_image_path(E300_FPGA_FILE_NAME));
        idle_image = find_image_path(E3XX_SG1_FPGA_IDLE_FILE_NAME);
        break;
    case e300_eeprom_manager::UNKNOWN:
    default:
        UHD_LOGGER_WARNING("E300") << "Unknown motherboard type, loading e300 image."
                             ;
        fpga_image = device_addr.cast<std::string>("fpga",
            find_image_path(E300_FPGA_FILE_NAME));
        idle_image = find_image_path(E3XX_SG1_FPGA_IDLE_FILE_NAME);
        break;
    }
}

/***********************************************************************
 * Structors
 **********************************************************************/
e300_impl::e300_impl(const uhd::device_addr_t &device_addr)
    : _device_addr(device_addr)
    , _xport_path(device_addr.has_key("addr") ? ETH : AXI)
    , _sid_framer(0)
{
    _type = uhd::device::USRP;

    _async_md.reset(new async_md_type(1000/*messages deep*/));

    ////////////////////////////////////////////////////////////////////
    // load the fpga image
    ////////////////////////////////////////////////////////////////////
    if (_xport_path == AXI) {
        _do_not_reload = device_addr.has_key("no_reload_fpga");
        if (not _do_not_reload) {
            std::string fpga_image;

            // need to re-read product ID code because of conversion into string in find function
            e300_eeprom_manager eeprom_manager(i2c::make_i2cdev(E300_I2CDEV_DEVICE));
            const mboard_eeprom_t eeprom = eeprom_manager.get_mb_eeprom();
            device_addr_t device_addr_cp;
            device_addr_cp["product"] = eeprom["product"];

            get_e3x0_fpga_images(device_addr_cp,
                                 fpga_image,
                                 _idle_image);
            common::load_fpga_image(fpga_image);
        }
    }

    ////////////////////////////////////////////////////////////////////
    // setup fifo xports
    ////////////////////////////////////////////////////////////////////
    _ctrl_xport_params.recv_frame_size = e300::DEFAULT_CTRL_FRAME_SIZE;
    _ctrl_xport_params.num_recv_frames = e300::DEFAULT_CTRL_NUM_FRAMES;
    _ctrl_xport_params.send_frame_size = e300::DEFAULT_CTRL_FRAME_SIZE;
    _ctrl_xport_params.num_send_frames = e300::DEFAULT_CTRL_NUM_FRAMES;

    _data_xport_params.recv_frame_size = device_addr.cast<size_t>("recv_frame_size",
        e300::DEFAULT_RX_DATA_FRAME_SIZE);
    _data_xport_params.num_recv_frames = device_addr.cast<size_t>("num_recv_frames",
	e300::DEFAULT_RX_DATA_NUM_FRAMES);
    _data_xport_params.send_frame_size = device_addr.cast<size_t>("send_frame_size",
        e300::DEFAULT_TX_DATA_FRAME_SIZE);
    _data_xport_params.num_send_frames = device_addr.cast<size_t>("num_send_frames",
	e300::DEFAULT_TX_DATA_NUM_FRAMES);


    // until we figure out why this goes wrong we'll keep this hack around for
    // the ethernet case, in the AXI case we cannot go above one page
    if (_xport_path == ETH) {
        _data_xport_params.recv_frame_size =
            std::min(e300::MAX_NET_RX_DATA_FRAME_SIZE, _data_xport_params.recv_frame_size);
        _data_xport_params.send_frame_size =
            std::min(e300::MAX_NET_TX_DATA_FRAME_SIZE, _data_xport_params.send_frame_size);
    } else {
        _data_xport_params.recv_frame_size =
            std::min(e300::MAX_AXI_RX_DATA_FRAME_SIZE, _data_xport_params.recv_frame_size);
        _data_xport_params.send_frame_size =
            std::min(e300::MAX_AXI_TX_DATA_FRAME_SIZE, _data_xport_params.send_frame_size);
    }
    udp_zero_copy::buff_params dummy_buff_params_out;

    if (_xport_path == ETH) {
        zero_copy_if::sptr codec_xport =
            udp_zero_copy::make(device_addr["addr"], E300_SERVER_CODEC_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr);
        _codec_ctrl = e300_remote_codec_ctrl::make(codec_xport);
        zero_copy_if::sptr gregs_xport =
            udp_zero_copy::make(device_addr["addr"], E300_SERVER_GREGS_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr);
        _global_regs = global_regs::make(gregs_xport);

        zero_copy_if::sptr i2c_xport;
        i2c_xport = udp_zero_copy::make(device_addr["addr"], E300_SERVER_I2C_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr);
        _eeprom_manager = boost::make_shared<e300_eeprom_manager>(i2c::make_zc(i2c_xport));

        uhd::transport::zero_copy_xport_params sensor_xport_params;
        sensor_xport_params.recv_frame_size = 128;
        sensor_xport_params.num_recv_frames = 10;
        sensor_xport_params.send_frame_size = 128;
        sensor_xport_params.num_send_frames = 10;

        zero_copy_if::sptr sensors_xport;
        sensors_xport = udp_zero_copy::make(device_addr["addr"], E300_SERVER_SENSOR_PORT, sensor_xport_params, dummy_buff_params_out, device_addr);
        _sensor_manager = e300_sensor_manager::make_proxy(sensors_xport);

    } else {
        e300_fifo_config_t fifo_cfg;
        try {
            fifo_cfg = e300_read_sysfs();
        } catch (...) {
            throw uhd::runtime_error("Failed to get driver parameters from sysfs.");
        }
        _fifo_iface = e300_fifo_interface::make(fifo_cfg);
        _global_regs = global_regs::make(_fifo_iface->get_global_regs_base());

        ad9361_params::sptr client_settings = boost::make_shared<e300_ad9361_client_t>();
        _codec_ctrl = ad9361_ctrl::make_spi(client_settings, spi::make(E300_SPIDEV_DEVICE), 1);
        // This is horrible ... why do I have to sleep here?
        boost::this_thread::sleep(boost::posix_time::milliseconds(100));
        _eeprom_manager = boost::make_shared<e300_eeprom_manager>(i2c::make_i2cdev(E300_I2CDEV_DEVICE));
        _sensor_manager = e300_sensor_manager::make_local(_global_regs);
    }
    _codec_mgr = ad936x_manager::make(_codec_ctrl, fpga::NUM_RADIOS);

#ifdef E300_GPSD
    UHD_LOGGER_INFO("E300") << "Detecting internal GPS ";
    try {
        if (_xport_path == AXI)
            _gps = gpsd_iface::make("localhost", 2947);
        else
            _gps = gpsd_iface::make(device_addr["addr"], 2947);
    } catch (std::exception &e) {
        UHD_LOGGER_ERROR("E300") << "An error occured making GPSDd interface: " << e.what();
    }

    if (_gps) {
        for (size_t i = 0; i < _GPS_TIMEOUT; i++)
        {
            boost::this_thread::sleep(boost::posix_time::seconds(1));
            if (!_gps->gps_detected())
                std::cout << "." << std::flush;
            else {
                std::cout << ".... " << std::flush;
                break;
            }
        }
        UHD_LOGGER_INFO("E300") << "GPSDO " << (_gps->gps_detected() ? "found" : "not found");
    }
#endif

    // Verify we can talk to the e300 core control registers ...
    UHD_LOGGER_INFO("E300") << "Initializing core control...";
    this->_register_loopback_self_test(_global_regs);

    // Verify fpga compatibility version matches at least for the major
    if (_get_version(FPGA_MAJOR) != fpga::COMPAT_MAJOR) {
        throw uhd::runtime_error(str(boost::format(
            "Expected FPGA compatibility number %lu.x, but got %lu.%lu:\n"
            "The FPGA build is not compatible with the host code build.\n"
            "%s"
        ) % fpga::COMPAT_MAJOR
          % _get_version(FPGA_MAJOR) % _get_version(FPGA_MINOR)
          % print_utility_error("uhd_images_downloader.py")));
    }

    ////////////////////////////////////////////////////////////////////
    // Initialize the properties tree
    ////////////////////////////////////////////////////////////////////
    _tree = property_tree::make();
    _tree->create<std::string>("/name").set("E-Series Device");
    const fs_path mb_path = "/mboards/0";
    _tree->create<std::string>(mb_path / "name")
        .set(_eeprom_manager->get_mb_type_string());

    _tree->create<std::string>(mb_path / "codename").set("Troll");

    _tree->create<std::string>(mb_path / "fpga_version").set(
        str(boost::format("%u.%u")
            % _get_version(FPGA_MAJOR)
            % _get_version(FPGA_MINOR)));

    _tree->create<std::string>(mb_path / "fpga_version_hash").set(
        _get_version_hash());

    ////////////////////////////////////////////////////////////////////
    // and do the misc mboard sensors
    ////////////////////////////////////////////////////////////////////
    _tree->create<int>(mb_path / "sensors");
    for(const std::string &name:  _sensor_manager->get_sensors())
    {
        _tree->create<sensor_value_t>(mb_path / "sensors" / name)
            .set_publisher(boost::bind(&e300_sensor_manager::get_sensor, _sensor_manager, name));
    }
#ifdef E300_GPSD
    if (_gps) {
        for(const std::string &name:  _gps->get_sensors())
        {
            _tree->create<sensor_value_t>(mb_path / "sensors" / name)
                .set_publisher(boost::bind(&gpsd_iface::get_sensor, _gps, name));
        }
    }
#endif

    ////////////////////////////////////////////////////////////////////
    // setup the mboard eeprom
    ////////////////////////////////////////////////////////////////////
    _tree->create<mboard_eeprom_t>(mb_path / "eeprom")
        .set(_eeprom_manager->get_mb_eeprom())  // set first...
        .add_coerced_subscriber(boost::bind(
            &e300_eeprom_manager::write_mb_eeprom,
            _eeprom_manager, _1));

    ////////////////////////////////////////////////////////////////////
    // clocking
    ////////////////////////////////////////////////////////////////////
    _tree->create<double>(mb_path / "tick_rate")
        .set_coercer(boost::bind(&e300_impl::_set_tick_rate, this, _1))
        .set_publisher(boost::bind(&e300_impl::_get_tick_rate, this))
        .add_coerced_subscriber(boost::bind(&e300_impl::_update_tick_rate, this, _1));

    //default some chains on -- needed for setup purposes
    _codec_ctrl->set_active_chains(true, false, true, false);
    _codec_ctrl->set_clock_rate(50e6);

    ////////////////////////////////////////////////////////////////////
    // setup radios
    ////////////////////////////////////////////////////////////////////
    for(size_t instance = 0; instance < fpga::NUM_RADIOS; instance++)
        this->_setup_radio(instance);

    //now test each radio module's connection to the codec interface
    for(radio_perifs_t &perif:  _radio_perifs)
    {
        _codec_mgr->loopback_self_test(
            boost::bind(
                &radio_ctrl_core_3000::poke32, perif.ctrl, radio::sr_addr(radio::CODEC_IDLE), _1
            ),
            boost::bind(&radio_ctrl_core_3000::peek64, perif.ctrl, radio::RB64_CODEC_READBACK)
        );
    }
    ////////////////////////////////////////////////////////////////////
    // internal gpios
    ////////////////////////////////////////////////////////////////////
    gpio_atr_3000::sptr fp_gpio = gpio_atr_3000::make(_radio_perifs[0].ctrl, radio::sr_addr(radio::FP_GPIO), radio::RB32_FP_GPIO);
    for(const auto& attr:  gpio_attr_map){
        switch (attr.first){
                case usrp::gpio_atr::GPIO_SRC:
                    _tree->create<std::vector<std::string>>(mb_path / "gpio" / "INT0" / attr.second)
                         .set(std::vector<std::string>(32, usrp::gpio_atr::default_attr_value_map.at(attr.first)))
                         .add_coerced_subscriber([this](const std::vector<std::string>&){
                            throw uhd::runtime_error("This device does not support setting the GPIO_SRC attribute.");
                         });
                    break;
                case usrp::gpio_atr::GPIO_CTRL:
                case usrp::gpio_atr::GPIO_DDR:
                    _tree->create<std::vector<std::string>>(mb_path / "gpio" / "INT0" / attr.second)
                         .set(std::vector<std::string>(32, usrp::gpio_atr::default_attr_value_map.at(attr.first)))
                         .add_coerced_subscriber([this, fp_gpio, attr](const std::vector<std::string> str_val){
                            uint32_t val = 0;
                            for(size_t i = 0 ; i < str_val.size() ; i++){
                                val += usrp::gpio_atr::gpio_attr_value_pair.at(attr.second).at(str_val[i])<<i;
                            }
                            fp_gpio->set_gpio_attr(attr.first, val);
                         });
                    break;
                case usrp::gpio_atr::GPIO_READBACK:
                    _tree->create<uint8_t>(mb_path / "gpio" / "INT0" / "READBACK")
                        .set_publisher([this, fp_gpio](){
                            return fp_gpio->read_gpio();
                         });
                    break;
                default:
                    _tree->create<uint32_t>(mb_path / "gpio" / "INT0" / attr.second)
                         .set(0)
                         .add_coerced_subscriber([this, fp_gpio, attr](const uint32_t val){
                             fp_gpio->set_gpio_attr(attr.first, val);
                         });
            }
    }


    ////////////////////////////////////////////////////////////////////
    // register the time keepers - only one can be the highlander
    ////////////////////////////////////////////////////////////////////
    _tree->create<time_spec_t>(mb_path / "time" / "now")
        .set_publisher(boost::bind(&time_core_3000::get_time_now, _radio_perifs[0].time64))
        .add_coerced_subscriber(boost::bind(&e300_impl::_set_time, this, _1))
        .set(0.0);
    //re-sync the times when the tick rate changes
    _tree->access<double>(mb_path / "tick_rate")
        .add_coerced_subscriber(boost::bind(&e300_impl::_sync_times, this));
    _tree->create<time_spec_t>(mb_path / "time" / "pps")
        .set_publisher(boost::bind(&time_core_3000::get_time_last_pps, _radio_perifs[0].time64))
        .add_coerced_subscriber(boost::bind(&time_core_3000::set_time_next_pps, _radio_perifs[0].time64, _1))
        .add_coerced_subscriber(boost::bind(&time_core_3000::set_time_next_pps, _radio_perifs[1].time64, _1));
    //setup time source props
    _tree->create<std::string>(mb_path / "time_source" / "value")
        .add_coerced_subscriber(boost::bind(&e300_impl::_update_time_source, this, _1))
        .set(e300::DEFAULT_TIME_SRC);
#ifdef E300_GPSD
    static const std::vector<std::string> time_sources = boost::assign::list_of("none")("internal")("external")("gpsdo");
#else
    static const std::vector<std::string> time_sources = boost::assign::list_of("none")("internal")("external");
#endif
    _tree->create<std::vector<std::string> >(mb_path / "time_source" / "options").set(time_sources);
    //setup reference source props
    _tree->create<std::string>(mb_path / "clock_source" / "value")
        .add_coerced_subscriber(boost::bind(&e300_impl::_update_clock_source, this, _1))
        .set(e300::DEFAULT_CLOCK_SRC);
    static const std::vector<std::string> clock_sources = boost::assign::list_of("internal"); //external,gpsdo not supported
    _tree->create<std::vector<std::string> >(mb_path / "clock_source" / "options").set(clock_sources);

    ////////////////////////////////////////////////////////////////////
    // dboard eeproms but not really
    ////////////////////////////////////////////////////////////////////
    dboard_eeprom_t db_eeprom;
    _tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "rx_eeprom")
        .set(_eeprom_manager->get_db_eeprom())
        .add_coerced_subscriber(boost::bind(
            &e300_eeprom_manager::write_db_eeprom,
            _eeprom_manager, _1));

    _tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "tx_eeprom")
        .set(_eeprom_manager->get_db_eeprom())
        .add_coerced_subscriber(boost::bind(
            &e300_eeprom_manager::write_db_eeprom,
            _eeprom_manager, _1));

    _tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "gdb_eeprom").set(db_eeprom);

    ////////////////////////////////////////////////////////////////////
    // create RF frontend interfacing
    ////////////////////////////////////////////////////////////////////
    {
        const fs_path codec_path = mb_path / ("rx_codecs") / "A";
        _tree->create<std::string>(codec_path / "name").set("E3x0 RX dual ADC");
        _tree->create<int>(codec_path / "gains"); //empty cuz gains are in frontend
    }
    {
        const fs_path codec_path = mb_path / ("tx_codecs") / "A";
        _tree->create<std::string>(codec_path / "name").set("E3x0 TX dual DAC");
        _tree->create<int>(codec_path / "gains"); //empty cuz gains are in frontend
    }

    ////////////////////////////////////////////////////////////////////
    // create frontend mapping
    ////////////////////////////////////////////////////////////////////

     std::vector<size_t> default_map(2, 0);
     default_map[0] = 0; // set A->0
     default_map[1] = 1; // set B->1, even if there's only A

    _tree->create<std::vector<size_t> >(mb_path / "rx_chan_dsp_mapping").set(default_map);
    _tree->create<std::vector<size_t> >(mb_path / "tx_chan_dsp_mapping").set(default_map);

    _tree->create<subdev_spec_t>(mb_path / "rx_subdev_spec")
        .set(subdev_spec_t())
        .add_coerced_subscriber(boost::bind(&e300_impl::_update_subdev_spec, this, "rx", _1));
    _tree->create<subdev_spec_t>(mb_path / "tx_subdev_spec")
        .set(subdev_spec_t())
        .add_coerced_subscriber(boost::bind(&e300_impl::_update_subdev_spec, this, "tx", _1));

    ////////////////////////////////////////////////////////////////////
    // do some post-init tasks
    ////////////////////////////////////////////////////////////////////

    // init the clock rate to something reasonable
    _tree->access<double>(mb_path / "tick_rate").set(
        device_addr.cast<double>("master_clock_rate", ad936x_manager::DEFAULT_TICK_RATE));

    // subdev spec contains full width of selections
    subdev_spec_t rx_spec, tx_spec;
    for(const std::string &fe:  _tree->list(mb_path / "dboards" / "A" / "rx_frontends"))
    {
        rx_spec.push_back(subdev_spec_pair_t("A", fe));
    }
    for(const std::string &fe:  _tree->list(mb_path / "dboards" / "A" / "tx_frontends"))
    {
        tx_spec.push_back(subdev_spec_pair_t("A", fe));
    }
    _tree->access<subdev_spec_t>(mb_path / "rx_subdev_spec").set(rx_spec);
    _tree->access<subdev_spec_t>(mb_path / "tx_subdev_spec").set(tx_spec);
}

uhd::sensor_value_t e300_impl::_get_fe_pll_lock(const bool is_tx)
{
    const uint32_t st =
        _global_regs->peek32(global_regs::RB32_CORE_PLL);
    const bool locked = is_tx ? ((st & 0x1) > 0) : ((st & 0x2) > 0);
    return sensor_value_t("LO", locked, "locked", "unlocked");
}

e300_impl::~e300_impl(void)
{
    if (_xport_path == AXI and not _do_not_reload)
        common::load_fpga_image(_idle_image);
}

void e300_impl::_enforce_tick_rate_limits(
        const size_t chan_count,
        const double tick_rate,
        const std::string &direction)
{
    const size_t max_chans = 2;
    if (chan_count > max_chans) {
        throw uhd::value_error(boost::str(
            boost::format("cannot not setup %d %s channels (maximum is %d)")
                % chan_count
                % direction
                % max_chans
        ));
    } else {
        const double max_tick_rate = ad9361_device_t::AD9361_MAX_CLOCK_RATE / ((chan_count <= 1) ? 1 : 2);
        if (tick_rate - max_tick_rate >= 1.0)
        {
            throw uhd::value_error(boost::str(
                boost::format("current master clock rate (%.6f MHz) exceeds maximum possible master clock rate (%.6f MHz) when using %d %s channels")
                    % (tick_rate/1e6)
                    % (max_tick_rate/1e6)
                    % chan_count
                    % direction
            ));
        }
        // Minimum rate restriction due to MMCM used in capture interface to AD9361.
        // Xilinx Artix-7 FPGA MMCM minimum input frequency is 10 MHz.
        const double min_tick_rate = uhd::usrp::e300::MIN_TICK_RATE / ((chan_count <= 1) ? 1 : 2);
        if (tick_rate - min_tick_rate < 0.0)
        {
            throw uhd::value_error(boost::str(
                boost::format("current master clock rate (%.6f MHz) set below minimum possible master clock rate (%.6f MHz)")
                    % (tick_rate/1e6)
                    % (min_tick_rate/1e6)
            ));
        }
    }
}

double e300_impl::_set_tick_rate(const double rate)
{
    UHD_LOGGER_INFO("E300") << "Asking for clock rate " << rate/1e6 << " MHz\n";
    _tick_rate = _codec_ctrl->set_clock_rate(rate);
    UHD_LOGGER_INFO("E300") << "Actually got clock rate " << _tick_rate/1e6 << " MHz\n";

    for(radio_perifs_t &perif:  _radio_perifs)
    {
        perif.time64->set_tick_rate(_tick_rate);
        perif.time64->self_test();
    }
    return _tick_rate;
}

void e300_impl::_register_loopback_self_test(wb_iface::sptr iface)
{
    bool test_fail = false;
    UHD_LOGGER_INFO("E300") << "Performing register loopback test... ";
    size_t hash = size_t(time(NULL));
    for (size_t i = 0; i < 100; i++)
    {
        boost::hash_combine(hash, i);
        iface->poke32(radio::sr_addr(radio::TEST), uint32_t(hash));
        test_fail = iface->peek32(radio::RB32_TEST) != uint32_t(hash);
        if (test_fail) break; //exit loop on any failure
    }
    UHD_LOGGER_INFO("E300") << "Register loopback test " << ((test_fail)? " failed" : "passed");
}

uint32_t e300_impl::_get_version(compat_t which)
{
    const uint16_t compat_num
        = _global_regs->peek32(global_regs::RB32_CORE_COMPAT);

    switch(which) {
    case FPGA_MINOR:
        return compat_num & 0xff;
    case FPGA_MAJOR:
        return (compat_num & 0xff00) >> 8;
    default:
        throw uhd::value_error("Requested unknown version.");
    };
}

std::string e300_impl::_get_version_hash(void)
{
    const uint32_t git_hash
        = _global_regs->peek32(global_regs::RB32_CORE_GITHASH);
    return str(boost::format("%7x%s")
        % (git_hash & 0x0FFFFFFF)
        % ((git_hash & 0xF000000) ? "-dirty" : ""));
}

uint32_t e300_impl::_allocate_sid(const sid_config_t &config)
{
    const uint32_t stream = (config.dst_prefix | (config.router_dst_there << 2)) & 0xff;

    const size_t sid_framer = _sid_framer++; //increment for next setup
    const uint32_t sid = 0
        | (E300_DEVICE_HERE << 24)
        | (sid_framer << 16)
        | (config.router_addr_there << 8)
        | (stream << 0)
    ;
    UHD_LOGGER_DEBUG("E300")<< std::hex
        << " sid 0x" << sid
        << " framer 0x" << sid_framer
        << " stream 0x" << stream
        << " router_dst_there 0x" << int(config.router_dst_there)
        << " router_addr_there 0x" << int(config.router_addr_there)
        << std::dec ;

    // Program the E300 to recognize it's own local address.
    _global_regs->poke32(global_regs::SR_CORE_XB_LOCAL, config.router_addr_there);

    // Program CAM entry for outgoing packets matching a E300 resource (e.g. Radio).
    // This type of packet matches the XB_LOCAL address and is looked up in the upper
    // half of the CAM
    _global_regs->poke32(XB_ADDR(256 + stream),
                         config.router_dst_there);

    // Program CAM entry for returning packets to us (for example GR host via zynq_fifo)
    // This type of packet does not match the XB_LOCAL address and is looked up in the lower half of the CAM
    _global_regs->poke32(XB_ADDR(E300_DEVICE_HERE),
                         config.router_dst_here);

    UHD_LOGGER_TRACE("E300") << std::hex
        << "done router config for sid 0x" << sid
        << std::dec ;

    return sid;
}

void e300_impl::_setup_dest_mapping(const uint32_t sid, const size_t which_stream)
{
    UHD_LOGGER_DEBUG("E300") << boost::format("Setting up dest map for 0x%lx to be stream %d")
                                     % (sid & 0xff) % which_stream ;
    _global_regs->poke32(DST_ADDR(sid & 0xff), which_stream);
}

void e300_impl::_update_time_source(const std::string &source)
{
    UHD_LOGGER_INFO("E300") << boost::format("Setting time source to %s") % source;
    if (source == "none" or source == "internal") {
        _misc.pps_sel = global_regs::PPS_INT;
#ifdef E300_GPSD
    } else if (source == "gpsdo") {
        _misc.pps_sel = global_regs::PPS_GPS;
#endif
    } else if (source == "external") {
        _misc.pps_sel = global_regs::PPS_EXT;
    } else {
        throw uhd::key_error("update_time_source: unknown source: " + source);
    }
    _update_gpio_state();
}

void e300_impl::_set_time(const uhd::time_spec_t& t)
{
    for(radio_perifs_t &perif:  _radio_perifs)
        perif.time64->set_time_sync(t);
    _misc.time_sync = 1;
    _update_gpio_state();
    _misc.time_sync = 0;
    _update_gpio_state();
}

void e300_impl::_sync_times()
{
    _set_time(_radio_perifs[0].time64->get_time_now());
}

size_t e300_impl::_get_axi_dma_channel(
    uint8_t destination,
    uint8_t prefix)
{
    static const uint32_t RADIO_GRP_SIZE = 4;
    static const uint32_t RADIO0_GRP     = 0;
    static const uint32_t RADIO1_GRP     = 1;

    uint32_t radio_grp = (destination == E300_XB_DST_R0) ? RADIO0_GRP : RADIO1_GRP;
    return ((radio_grp * RADIO_GRP_SIZE) + prefix);
}

uint16_t e300_impl::_get_udp_port(
        uint8_t destination,
        uint8_t prefix)
{
    if (destination == E300_XB_DST_R0) {
        if (prefix == E300_RADIO_DEST_PREFIX_CTRL)
            return boost::lexical_cast<uint16_t>(E300_SERVER_CTRL_PORT0);
        else if (prefix == E300_RADIO_DEST_PREFIX_TX)
            return boost::lexical_cast<uint16_t>(E300_SERVER_TX_PORT0);
        else if (prefix == E300_RADIO_DEST_PREFIX_RX)
            return boost::lexical_cast<uint16_t>(E300_SERVER_RX_PORT0);
    } else if (destination == E300_XB_DST_R1) {
        if (prefix == E300_RADIO_DEST_PREFIX_CTRL)
            return boost::lexical_cast<uint16_t>(E300_SERVER_CTRL_PORT1);
        else if (prefix == E300_RADIO_DEST_PREFIX_TX)
            return boost::lexical_cast<uint16_t>(E300_SERVER_TX_PORT1);
        else if (prefix == E300_RADIO_DEST_PREFIX_RX)
            return boost::lexical_cast<uint16_t>(E300_SERVER_RX_PORT1);
    }
    throw uhd::value_error(str(boost::format("No UDP port defined for combination: %u %u") % destination % prefix));
}

e300_impl::both_xports_t e300_impl::_make_transport(
    const uint8_t &destination,
    const uint8_t &prefix,
    const uhd::transport::zero_copy_xport_params &params,
    uint32_t &sid)
{
    both_xports_t xports;

    sid_config_t config;
    config.router_addr_there    = E300_DEVICE_THERE;
    config.dst_prefix           = prefix;
    config.router_dst_there     = destination;
    config.router_dst_here      = E300_XB_DST_AXI;
    sid = this->_allocate_sid(config);

    // in local mode
    if (_xport_path == AXI) {
        // lookup which dma channel we need
        // to use to create our transport
        const size_t stream = _get_axi_dma_channel(
            destination,
            prefix);

        xports.send =
            _fifo_iface->make_send_xport(stream, params);
        xports.recv =
            _fifo_iface->make_recv_xport(stream, params);

    // in network mode
    } else if (_xport_path == ETH) {
        // lookup which udp port we need
        // to use to create our transport
        const uint16_t port = _get_udp_port(
            destination,
            prefix);

        udp_zero_copy::buff_params dummy_buff_params_out;
        xports.send = udp_zero_copy::make(
            _device_addr["addr"],
            str(boost::format("%u") % port), params,
            dummy_buff_params_out,
            _device_addr);

        // use the same xport in both directions
        xports.recv = xports.send;
    }

    // configure the return path
    _setup_dest_mapping(sid, _get_axi_dma_channel(destination, prefix));

    return xports;
}

void e300_impl::_update_clock_source(const std::string &source)
{
    if (source != "internal") {
        throw uhd::value_error(boost::str(
            boost::format("Clock source option not supported: %s. The only value supported is \"internal\". " \
                          "To discipline the internal oscillator, set the appropriate time source.") % source
        ));
    }
}

void e300_impl::_update_antenna_sel(const size_t &which, const std::string &ant)
{
    if (ant != "TX/RX" and ant != "RX2")
        throw uhd::value_error("Unknown RX antenna option: " + ant);
    _radio_perifs[which].ant_rx2 = (ant == "RX2");
    this->_update_atrs();
}

void e300_impl::_update_fe_lo_freq(const std::string &fe, const double freq)
{
    if (fe[0] == 'R')
        _settings.rx_freq = freq;
    if (fe[0] == 'T')
        _settings.tx_freq = freq;
    this->_update_atrs();
    _update_bandsel(fe, freq);
}

void e300_impl::_setup_radio(const size_t dspno)
{
    radio_perifs_t &perif = _radio_perifs[dspno];
    const fs_path mb_path = "/mboards/0";
    std::string slot_name = (dspno == 0) ? "A" : "B";

    ////////////////////////////////////////////////////////////////////
    // crossbar config for ctrl xports
    ////////////////////////////////////////////////////////////////////

    // make a transport, grab a sid
    uint32_t ctrl_sid;
    both_xports_t ctrl_xports = _make_transport(
       dspno ? E300_XB_DST_R1 : E300_XB_DST_R0,
       E300_RADIO_DEST_PREFIX_CTRL,
       _ctrl_xport_params,
       ctrl_sid);

    this->_setup_dest_mapping(
        ctrl_sid,
        dspno ? E300_R1_CTRL_STREAM
              : E300_R0_CTRL_STREAM);

    ////////////////////////////////////////////////////////////////////
    // radio control
    ////////////////////////////////////////////////////////////////////
    perif.ctrl = radio_ctrl_core_3000::make(
        false/*lilE*/,
        ctrl_xports.send,
        ctrl_xports.recv,
        ctrl_sid,
        dspno ? "1" : "0");
    this->_register_loopback_self_test(perif.ctrl);

    ////////////////////////////////////////////////////////////////////
    // Set up peripherals
    ////////////////////////////////////////////////////////////////////
    perif.atr = gpio_atr_3000::make_write_only(perif.ctrl, radio::sr_addr(radio::GPIO));
    perif.atr->set_atr_mode(MODE_ATR, 0xFFFFFFFF);
    perif.rx_fe = rx_frontend_core_200::make(perif.ctrl, radio::sr_addr(radio::RX_FRONT));
    perif.rx_fe->set_dc_offset(rx_frontend_core_200::DEFAULT_DC_OFFSET_VALUE);
    perif.rx_fe->set_dc_offset_auto(rx_frontend_core_200::DEFAULT_DC_OFFSET_ENABLE);
    perif.rx_fe->set_iq_balance(rx_frontend_core_200::DEFAULT_IQ_BALANCE_VALUE);
    perif.tx_fe = tx_frontend_core_200::make(perif.ctrl, radio::sr_addr(radio::TX_FRONT));
    perif.tx_fe->set_dc_offset(tx_frontend_core_200::DEFAULT_DC_OFFSET_VALUE);
    perif.tx_fe->set_iq_balance(tx_frontend_core_200::DEFAULT_IQ_BALANCE_VALUE);
    perif.framer = rx_vita_core_3000::make(perif.ctrl, radio::sr_addr(radio::RX_CTRL));
    perif.ddc = rx_dsp_core_3000::make(perif.ctrl, radio::sr_addr(radio::RX_DSP));
    perif.ddc->set_link_rate(10e9/8); //whatever
    perif.ddc->set_freq(e300::DEFAULT_DDC_FREQ);
    perif.deframer = tx_vita_core_3000::make(perif.ctrl, radio::sr_addr(radio::TX_CTRL));
    perif.duc = tx_dsp_core_3000::make(perif.ctrl, radio::sr_addr(radio::TX_DSP));
    perif.duc->set_link_rate(10e9/8); //whatever
    perif.duc->set_freq(e300::DEFAULT_DUC_FREQ);

    ////////////////////////////////////////////////////////////////////
    // create time control objects
    ////////////////////////////////////////////////////////////////////
    time_core_3000::readback_bases_type time64_rb_bases;
    time64_rb_bases.rb_now = radio::RB64_TIME_NOW;
    time64_rb_bases.rb_pps = radio::RB64_TIME_PPS;
    perif.time64 = time_core_3000::make(perif.ctrl, radio::sr_addr(radio::TIME), time64_rb_bases);

    ////////////////////////////////////////////////////////////////////
    // front end corrections
    ////////////////////////////////////////////////////////////////////
    perif.rx_fe->populate_subtree(_tree->subtree(mb_path / "rx_frontends" / slot_name));
    perif.tx_fe->populate_subtree(_tree->subtree(mb_path / "tx_frontends" / slot_name));

    ////////////////////////////////////////////////////////////////////
    // connect rx dsp control objects
    ////////////////////////////////////////////////////////////////////
    _tree->access<double>(mb_path / "tick_rate")
        .add_coerced_subscriber(boost::bind(&rx_vita_core_3000::set_tick_rate, perif.framer, _1))
        .add_coerced_subscriber(boost::bind(&rx_dsp_core_3000::set_tick_rate, perif.ddc, _1));
    const fs_path rx_dsp_path = mb_path / "rx_dsps" / str(boost::format("%u") % dspno);
    perif.ddc->populate_subtree(_tree->subtree(rx_dsp_path));
    _tree->access<double>(rx_dsp_path / "rate" / "value")
        .add_coerced_subscriber(boost::bind(&e300_impl::_update_rx_samp_rate, this, dspno, _1))
    ;
    _tree->create<stream_cmd_t>(rx_dsp_path / "stream_cmd")
        .add_coerced_subscriber(boost::bind(&rx_vita_core_3000::issue_stream_command, perif.framer, _1));

    ////////////////////////////////////////////////////////////////////
    // create tx dsp control objects
    ////////////////////////////////////////////////////////////////////
    _tree->access<double>(mb_path / "tick_rate")
        .add_coerced_subscriber(boost::bind(&tx_dsp_core_3000::set_tick_rate, perif.duc, _1));
    const fs_path tx_dsp_path = mb_path / "tx_dsps" / str(boost::format("%u") % dspno);
    perif.duc->populate_subtree(_tree->subtree(tx_dsp_path));
    _tree->access<double>(tx_dsp_path / "rate" / "value")
        .add_coerced_subscriber(boost::bind(&e300_impl::_update_tx_samp_rate, this, dspno, _1))
    ;

    ////////////////////////////////////////////////////////////////////
    // create RF frontend interfacing
    ////////////////////////////////////////////////////////////////////
    static const std::vector<direction_t> dirs = boost::assign::list_of(RX_DIRECTION)(TX_DIRECTION);
    for(direction_t dir:  dirs) {
        const std::string x = (dir == RX_DIRECTION) ? "rx" : "tx";
        const std::string key = boost::to_upper_copy(x) + std::string(((dspno == FE0)? "1" : "2"));
        const fs_path rf_fe_path
            = mb_path / "dboards" / "A" / (x + "_frontends") / ((dspno == 0) ? "A" : "B");

        // This will connect all the AD936x-specific items
        _codec_mgr->populate_frontend_subtree(
            _tree->subtree(rf_fe_path), key, dir
        );

        // This will connect all the e300_impl-specific items
        _tree->create<sensor_value_t>(rf_fe_path / "sensors" / "lo_locked")
            .set_publisher(boost::bind(&e300_impl::_get_fe_pll_lock, this, dir == TX_DIRECTION))
        ;
        _tree->access<double>(rf_fe_path / "freq" / "value")
            .add_coerced_subscriber(boost::bind(&e300_impl::_update_fe_lo_freq, this, key, _1))
        ;

        // Antenna Setup
        if (dir == RX_DIRECTION) {
            static const std::vector<std::string> ants = boost::assign::list_of("TX/RX")("RX2");
            _tree->create<std::vector<std::string> >(rf_fe_path / "antenna" / "options").set(ants);
            _tree->create<std::string>(rf_fe_path / "antenna" / "value")
                .add_coerced_subscriber(boost::bind(&e300_impl::_update_antenna_sel, this, dspno, _1))
                .set("RX2");
        }
        else if (dir == TX_DIRECTION) {
            static const std::vector<std::string> ants(1, "TX/RX");
            _tree->create<std::vector<std::string> >(rf_fe_path / "antenna" / "options").set(ants);
            _tree->create<std::string>(rf_fe_path / "antenna" / "value").set("TX/RX");
        }
    }
}

void e300_impl::_update_enables(void)
{
    //extract settings from state variables
    const bool enb_tx1 = bool(_radio_perifs[FE0].tx_streamer.lock());
    const bool enb_rx1 = bool(_radio_perifs[FE0].rx_streamer.lock());
    const bool enb_tx2 = bool(_radio_perifs[FE1].tx_streamer.lock());
    const bool enb_rx2 = bool(_radio_perifs[FE1].rx_streamer.lock());
    const size_t num_rx = (enb_rx1 ? 1 : 0) + (enb_rx2 ? 1:0);
    const size_t num_tx = (enb_tx1 ? 1 : 0) + (enb_tx2 ? 1:0);
    const bool mimo = num_rx == 2 or num_tx == 2;

    //setup the active chains in the codec
    _codec_ctrl->set_active_chains(enb_tx1, enb_tx2, enb_rx1, enb_rx2);
    if ((num_rx + num_tx) == 0)
        _codec_ctrl->set_active_chains(
            true, false, true, false); // enable something

    //set_active_chains could cause a clock rate change - reset dcm
    _reset_codec_mmcm();

    //figure out if mimo is enabled based on new state
    _misc.mimo = (mimo)? 1 : 0;
    _update_gpio_state();

    //atrs change based on enables
    _update_atrs();
}

void e300_impl::_update_gpio_state(void)
{
    uint32_t misc_reg = 0
        | (_misc.pps_sel      << gpio_t::PPS_SEL)
        | (_misc.mimo         << gpio_t::MIMO)
        | (_misc.codec_arst   << gpio_t::CODEC_ARST)
        | (_misc.tx_bandsels  << gpio_t::TX_BANDSEL)
        | (_misc.rx_bandsel_a << gpio_t::RX_BANDSELA)
        | (_misc.rx_bandsel_b << gpio_t::RX_BANDSELB)
        | (_misc.rx_bandsel_c << gpio_t::RX_BANDSELC)
        | (_misc.time_sync    << gpio_t::TIME_SYNC);
    _global_regs->poke32(global_regs::SR_CORE_MISC, misc_reg);
}

void e300_impl::_reset_codec_mmcm(void)
{
    _misc.codec_arst = 1;
    _update_gpio_state();
    boost::this_thread::sleep(boost::posix_time::milliseconds(10));
    _misc.codec_arst = 0;
    _update_gpio_state();
}

////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////
//////////////// ATR SETUP FOR FRONTEND CONTROL VIA GPIO ///////////////
////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////

void e300_impl::_update_bandsel(const std::string& which, double freq)
{
    if(which[0] == 'R') {
        if (freq < 450e6) {
            _misc.rx_bandsel_a  = 44; // 4 | (5 << 3)
            _misc.rx_bandsel_b  = 0;  // 0 | (0 << 2)
            _misc.rx_bandsel_c  = 6;  // 2 | (1 << 2)
        } else if (freq < 700e6) {
            _misc.rx_bandsel_a  = 26; // 2 | (3 << 3)
            _misc.rx_bandsel_b  = 0;  // 0 | (0 << 2)
            _misc.rx_bandsel_c  = 15; // 3 | (3 << 2)
        } else if (freq < 1200e6) {
            _misc.rx_bandsel_a  = 8; // 0 | (1 << 3)
            _misc.rx_bandsel_b  = 0; // 0 | (0 << 2)
            _misc.rx_bandsel_c  = 9; // 1 | (2 << 2)
        } else if (freq < 1800e6) {
            _misc.rx_bandsel_a  = 1; // 1 | (0 << 3)
            _misc.rx_bandsel_b  = 6; // 2 | (1 << 2)
            _misc.rx_bandsel_c  = 0; // 0 | (0 << 2)
        } else if (freq < 2350e6){
            _misc.rx_bandsel_a  = 19; // 3 | (2 << 3)
            _misc.rx_bandsel_b  = 15; // 3 | (3 << 2)
            _misc.rx_bandsel_c  = 0;  // 0 | (0 << 2)
        } else if (freq < 2600e6){
            _misc.rx_bandsel_a  = 37; // 5 | (4 << 3)
            _misc.rx_bandsel_b  = 9;  // 1 | (2 << 2)
            _misc.rx_bandsel_c  = 0;  // 0 | (0 << 2)
        } else {
            _misc.rx_bandsel_a  = 0;
            _misc.rx_bandsel_b  = 0;
            _misc.rx_bandsel_c  = 0;
        }
        _update_gpio_state();
    } else if(which[0] == 'T') {
        if (freq < 117.7e6)
            _misc.tx_bandsels = 7;
        else if (freq < 178.2e6)
            _misc.tx_bandsels = 6;
        else if (freq < 284.3e6)
            _misc.tx_bandsels = 5;
        else if (freq < 453.7e6)
            _misc.tx_bandsels = 4;
        else if (freq < 723.8e6)
            _misc.tx_bandsels = 3;
        else if (freq < 1154.9e6)
            _misc.tx_bandsels = 2;
        else if (freq < 1842.6e6)
            _misc.tx_bandsels = 1;
        else if (freq < 2940.0e6)
            _misc.tx_bandsels = 0;
        else
            _misc.tx_bandsels = 7;
        _update_gpio_state();
    } else {
        UHD_THROW_INVALID_CODE_PATH();
    }
}


void e300_impl::_update_atrs(void)
{
    for (size_t instance = 0; instance < fpga::NUM_RADIOS; instance++)
    {
        // if we're not ready, no point ...
        if (not _radio_perifs[instance].atr)
            return;

        radio_perifs_t &perif = _radio_perifs[instance];
        const bool enb_rx = bool(perif.rx_streamer.lock());
        const bool enb_tx = bool(perif.tx_streamer.lock());
        const bool rx_ant_rx2  = perif.ant_rx2;

        const bool rx_low_band = _settings.rx_freq < 2.6e9;
        const bool tx_low_band = _settings.tx_freq < 2940.0e6;

        // VCRX
        int vcrx_v1_rxing = 1;
        int vcrx_v2_rxing = 0;
        int vcrx_v1_txing = 1;
        int vcrx_v2_txing = 0;

        if (rx_low_band) {
            vcrx_v1_rxing = rx_ant_rx2 ? 0 : 1;
            vcrx_v2_rxing = rx_ant_rx2 ? 1 : 0;
            vcrx_v1_txing = 0;
            vcrx_v2_txing = 1;
        } else {
            vcrx_v1_rxing = rx_ant_rx2 ? 1 : 0;
            vcrx_v2_rxing = rx_ant_rx2 ? 0 : 1;
            vcrx_v1_txing = 1;
            vcrx_v2_txing = 0;
        }

        // VCTX
        int vctxrx_v1_rxing = 0;
        int vctxrx_v2_rxing = 1;
        int vctxrx_v1_txing = 0;
        int vctxrx_v2_txing = 1;

        if (tx_low_band) {
            vctxrx_v1_rxing = rx_ant_rx2 ? 1 : 0;
            vctxrx_v2_rxing = rx_ant_rx2 ? 0 : 1;
            vctxrx_v1_txing = 1;
            vctxrx_v2_txing = 0;
        } else {
            vctxrx_v1_rxing = rx_ant_rx2 ? 1 : 0;
            vctxrx_v2_rxing = rx_ant_rx2 ? 0 : 1;
            vctxrx_v1_txing = 1;
            vctxrx_v2_txing = 1;
        }
        //swapped for routing reasons, reswap it here
        if (instance == 1) {
            std::swap(vctxrx_v1_rxing, vctxrx_v2_rxing);
            std::swap(vctxrx_v1_txing, vctxrx_v2_txing);
        }

        int tx_enable_a = (!tx_low_band and enb_tx) ? 1 : 0;
        int tx_enable_b = (tx_low_band and  enb_tx) ? 1 : 0;

        //----------------- LEDS ----------------------------//
        const int led_rx2  = rx_ant_rx2  ? 1 : 0;
        const int led_txrx = !rx_ant_rx2 ? 1 : 0;
        const int led_tx   = 1;

        const int rx_leds = (led_rx2 << LED_RX_RX) | (led_txrx << LED_TXRX_RX);
        const int tx_leds = (led_tx << LED_TXRX_TX);
        const int xx_leds = tx_leds | (1 << LED_RX_RX); //forced to rx2

        const int rx_selects = 0
            | (vcrx_v1_rxing << VCRX_V1)
            | (vcrx_v2_rxing << VCRX_V2)
            | (vctxrx_v1_rxing << VCTXRX_V1)
            | (vctxrx_v2_rxing << VCTXRX_V2)
        ;
        const int tx_selects = 0
            | (vcrx_v1_txing << VCRX_V1)
            | (vcrx_v2_txing << VCRX_V2)
            | (vctxrx_v1_txing << VCTXRX_V1)
            | (vctxrx_v2_txing << VCTXRX_V2)
        ;
        const int tx_enables = 0
            | (tx_enable_a << TX_ENABLEA)
            | (tx_enable_b << TX_ENABLEB)
        ;

        //default selects
        int oo_reg = rx_selects;
        int rx_reg = rx_selects;
        int tx_reg = tx_selects;
        int fd_reg = tx_selects; //tx selects dominate in fd mode

        //add in leds and tx enables based on fe enable
        if (enb_rx)
            rx_reg |= rx_leds;
        if (enb_rx)
            fd_reg |= xx_leds;
        if (enb_tx)
            tx_reg |= tx_enables | tx_leds;
        if (enb_tx)
            fd_reg |= tx_enables | xx_leds;

        gpio_atr_3000::sptr atr = _radio_perifs[instance].atr;
        atr->set_atr_reg(ATR_REG_IDLE, oo_reg);
        atr->set_atr_reg(ATR_REG_RX_ONLY, rx_reg);
        atr->set_atr_reg(ATR_REG_TX_ONLY, tx_reg);
        atr->set_atr_reg(ATR_REG_FULL_DUPLEX, fd_reg);
    }
}

}}} // namespace

UHD_STATIC_BLOCK(register_e300_device)
{
    device::register_device(&uhd::usrp::e300::e300_find, &uhd::usrp::e300::e300_make, uhd::device::USRP);
}