aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/e300/e300_impl.cpp
blob: 59a8cec8839331e23a5f1d28f2585e4608daa7c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
//
// Copyright 2013-2015 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include "e300_impl.hpp"
#include "e300_defaults.hpp"
#include "e300_fpga_defs.hpp"
#include "e300_spi.hpp"
#include "e300_regs.hpp"
#include "e300_eeprom_manager.hpp"
#include "e300_sensor_manager.hpp"
#include "e300_common.hpp"
#include "e300_remote_codec_ctrl.hpp"
#include "e3xx_radio_ctrl_impl.hpp"


#include <uhd/utils/log.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/utils/paths.hpp>
#include <uhd/usrp/dboard_eeprom.hpp>
#include <uhd/transport/if_addrs.hpp>
#include <uhd/transport/udp_zero_copy.hpp>
#include <uhd/transport/udp_simple.hpp>
#include <uhd/types/sensors.hpp>
#include <boost/make_shared.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <boost/filesystem.hpp>
#include <boost/functional/hash.hpp>
#include <boost/bind.hpp>
#include <boost/make_shared.hpp>
#include <boost/assign/list_of.hpp>
#include <boost/thread/thread.hpp> //sleep
#include <boost/asio.hpp>
#include <fstream>

using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::usrp::gpio_atr;
using namespace uhd::transport;
namespace fs = boost::filesystem;
namespace asio = boost::asio;

namespace uhd { namespace usrp { namespace e300 {

/***********************************************************************
 * Discovery
 **********************************************************************/

static std::vector<std::string> discover_ip_addrs(
    const std::string& addr_hint, const std::string& port)
{
    std::vector<std::string> addrs;

    // Create a UDP transport to communicate:
    // Some devices will cause a throw when opened for a broadcast address.
    // We print and recover so the caller can loop through all bcast addrs.
    uhd::transport::udp_simple::sptr udp_bcast_xport;
    try {
        udp_bcast_xport = uhd::transport::udp_simple::make_broadcast(addr_hint, port);
    } catch(const std::exception &e) {
        UHD_LOGGER_ERROR("E300") << boost::format("Cannot open UDP transport on %s for discovery%s")
        % addr_hint % e.what() ;
        return addrs;
    } catch(...) {
        UHD_LOGGER_ERROR("E300") << "E300 Network discovery unknown error";
        return addrs;
    }

    // TODO: Do not abuse the I2C transport here ...
    // we send a read request to i2c address 0x51,
    // to read register 0
    i2c_transaction_t req;
    req.type = i2c::READ | i2c::ONEBYTE;
    req.addr = 0x51; // mboard's eeprom address, we don't really care
    req.reg = 4;

    // send dummy request
    try {
    udp_bcast_xport->send(boost::asio::buffer(&req, sizeof(req)));
    } catch (const std::exception &ex) {
        UHD_LOGGER_ERROR("E300") << "E300 Network discovery error " << ex.what();
        return addrs;
    } catch(...) {
        UHD_LOGGER_ERROR("E300") << "E300 Network discovery unknown error";
        return addrs;
    }

    // loop for replies until timeout
    while (true) {
        uint8_t buff[sizeof(i2c_transaction_t)] = {};
        const size_t nbytes = udp_bcast_xport->recv(boost::asio::buffer(buff), 0.050);
        if (nbytes == 0)
            break; //No more responses

        const i2c_transaction_t *reply = reinterpret_cast<const i2c_transaction_t*>(buff);
        if (req.addr == reply->addr)
           addrs.push_back(udp_bcast_xport->get_recv_addr());
    }

    return addrs;
}

static bool is_loopback(const if_addrs_t &if_addrs)
{
       return if_addrs.inet == asio::ip::address_v4::loopback().to_string();
}

device_addrs_t e300_find(const device_addr_t &multi_dev_hint)
{
    // handle multi device discovery
    device_addrs_t hints = separate_device_addr(multi_dev_hint);

    if (hints.size() > 1) {
        device_addrs_t found_devices;
        std::string err_msg;
        BOOST_FOREACH(const device_addr_t &hint_i, hints)
        {
            device_addrs_t found_devices_i = e300_find(hint_i);
            if(found_devices_i.size() != 1)
                err_msg += str(boost::format(
                    "Could not resolve device hint \"%s\" to a single device.")
                    % hint_i.to_string());
            else
                found_devices.push_back(found_devices_i[0]);
            if (found_devices.empty())
                return device_addrs_t();

            if (not err_msg.empty())
                throw uhd::value_error(err_msg);
        }
        return device_addrs_t(1, combine_device_addrs(found_devices));
    }

    // initialize the hint for a single device case
    UHD_ASSERT_THROW(hints.size() <= 1);
    hints.resize(1); // in case it was empty
    device_addr_t hint = hints[0];
    device_addrs_t e300_addrs;

    // return an empty list of addresses when type is set to non-e300
    if (hint.has_key("type") and hint["type"] != "e3x0")
        return e300_addrs;

    const bool loopback_only =
        get_if_addrs().size() == 1 and is_loopback(get_if_addrs().at(0));

    // if we don't have connectivity, we might as well skip the network part
    if (not loopback_only) {
        // if no address or node has been specified, send a broadcast
        if ((not hint.has_key("addr")) and (not hint.has_key("node"))) {
            BOOST_FOREACH(const if_addrs_t &if_addrs, get_if_addrs())
            {
                // avoid the loopback device
                if (is_loopback(if_addrs))
                    continue;

                // create a new hint with this broadcast address
                device_addr_t new_hint = hint;
                new_hint["addr"] = if_addrs.bcast;

                // call discover with the new hint and append results
                device_addrs_t new_e300_addrs = e300_find(new_hint);
                e300_addrs.insert(e300_addrs.begin(),
                    new_e300_addrs.begin(), new_e300_addrs.end());

            }
            return e300_addrs;
        }

        std::vector<std::string> ip_addrs = discover_ip_addrs(
            hint["addr"], E300_SERVER_I2C_PORT);

        BOOST_FOREACH(const std::string &ip_addr, ip_addrs)
        {
            device_addr_t new_addr;
            new_addr["type"] = "e3x0";
            new_addr["addr"] = ip_addr;

            // see if we can read the eeprom
            try {
                e300_eeprom_manager eeprom_manager(
                    i2c::make_simple_udp(new_addr["addr"], E300_SERVER_I2C_PORT));
                const mboard_eeprom_t eeprom = eeprom_manager.get_mb_eeprom();
                new_addr["name"] = eeprom["name"];
                new_addr["serial"] = eeprom["serial"];
                new_addr["product"] = eeprom_manager.get_mb_type_string();
            } catch (...) {
                // set these values as empty string, so the device may still be found
                // and the filters below can still operate on the discovered device
                new_addr["name"] = "";
                new_addr["serial"] = "";
            }
            // filter the discovered device below by matching optional keys
            if ((not hint.has_key("name")   or hint["name"]   == new_addr["name"]) and
                (not hint.has_key("serial") or hint["serial"] == new_addr["serial"]))
            {
                e300_addrs.push_back(new_addr);
            }
        }
    }

    // finally search locally
    // if device node is not provided,
    // use the default one
    if (not hint.has_key("node")) {
        device_addr_t new_addr = hint;
        new_addr["node"] = "/dev/axi_fpga";
        return e300_find(new_addr);
    }

    // use the given node
    if (fs::exists(hint["node"])) {
        device_addr_t new_addr;
        new_addr["type"] = "e3x0";
        new_addr["node"] = fs::system_complete(fs::path(hint["node"])).string();

        try {
            e300_eeprom_manager eeprom_manager(i2c::make_i2cdev(E300_I2CDEV_DEVICE));
            const mboard_eeprom_t eeprom = eeprom_manager.get_mb_eeprom();
            new_addr["name"] = eeprom["name"];
            new_addr["serial"] = eeprom["serial"];
            new_addr["product"] = eeprom_manager.get_mb_type_string();
        } catch (...) {
            // set these values as empty string, so the device may still be found
            // and the filters below can still operate on the discovered device
            new_addr["name"] = "";
            new_addr["serial"] = "";
        }
        // filter the discovered device below by matching optional keys
        if ((not hint.has_key("name")   or hint["name"]   == new_addr["name"]) and
            (not hint.has_key("serial") or hint["serial"] == new_addr["serial"]))
        {
            e300_addrs.push_back(new_addr);
        }
    }

    return e300_addrs;
}


/***********************************************************************
 * Make
 **********************************************************************/
static device::sptr e300_make(const device_addr_t &device_addr)
{
    UHD_LOGGER_DEBUG("E300")<< "e300_make with args " << device_addr.to_pp_string() ;
    if(device_addr.has_key("server"))
        throw uhd::runtime_error(
            str(boost::format("Please run the server executable \"%s\"")
                % "usrp_e3x0_network_mode"));
    else
        return device::sptr(new e300_impl(device_addr));
}

// Common code used by e300_impl and e300_image_loader
void get_e3x0_fpga_images(const uhd::device_addr_t &device_addr,
                          std::string &fpga_image,
                          std::string &idle_image){
    const uint16_t pid = boost::lexical_cast<uint16_t>(
            device_addr["product"]);

    //extract the FPGA path for the e300
    switch(e300_eeprom_manager::get_mb_type(pid)) {
    case e300_eeprom_manager::USRP_E310_SG1_MB:
        fpga_image = device_addr.cast<std::string>("fpga",
            find_image_path(E310_SG1_FPGA_FILE_NAME));
        idle_image = find_image_path(E3XX_SG1_FPGA_IDLE_FILE_NAME);
        break;
    case e300_eeprom_manager::USRP_E310_SG3_MB:
        fpga_image = device_addr.cast<std::string>("fpga",
            find_image_path(E310_SG3_FPGA_FILE_NAME));
        idle_image = find_image_path(E3XX_SG3_FPGA_IDLE_FILE_NAME);
        break;
    case e300_eeprom_manager::USRP_E300_MB:
        fpga_image = device_addr.cast<std::string>("fpga",
            find_image_path(E300_FPGA_FILE_NAME));
        idle_image = find_image_path(E3XX_SG1_FPGA_IDLE_FILE_NAME);
        break;
    case e300_eeprom_manager::UNKNOWN:
    default:
        UHD_LOGGER_WARNING("E300") << "Unknown motherboard type, loading e300 image."
                             ;
        fpga_image = device_addr.cast<std::string>("fpga",
            find_image_path(E300_FPGA_FILE_NAME));
        idle_image = find_image_path(E3XX_SG1_FPGA_IDLE_FILE_NAME);
        break;
    }
}

/***********************************************************************
 * Structors
 **********************************************************************/
e300_impl::e300_impl(const uhd::device_addr_t &device_addr)
    : _device_addr(device_addr)
    , _xport_path(device_addr.has_key("addr") ? ETH : AXI)
    , _dma_chans_available(MAX_DMA_CHANNEL_PAIRS, ~size_t(0) /* all available at the beginning */)
{
    stream_options.rx_fc_request_freq = E300_RX_FC_REQUEST_FREQ;

    ////////////////////////////////////////////////////////////////////
    // load the fpga image
    ////////////////////////////////////////////////////////////////////
    if (_xport_path == AXI) {
        _do_not_reload = device_addr.has_key("no_reload_fpga");
        if (not _do_not_reload) {
            std::string fpga_image;

            // need to re-read product ID code because of conversion into string in find function
            e300_eeprom_manager eeprom_manager(i2c::make_i2cdev(E300_I2CDEV_DEVICE));
            const mboard_eeprom_t eeprom = eeprom_manager.get_mb_eeprom();
            device_addr_t device_addr_cp(device_addr.to_string());
            device_addr_cp["product"] = eeprom["product"];

            get_e3x0_fpga_images(device_addr_cp,
                                 fpga_image,
                                 _idle_image);
            common::load_fpga_image(fpga_image);
        }
    }

    ////////////////////////////////////////////////////////////////////
    // setup fifo xports
    ////////////////////////////////////////////////////////////////////
    _ctrl_xport_params.recv_frame_size = e300::DEFAULT_CTRL_FRAME_SIZE;
    _ctrl_xport_params.num_recv_frames = e300::DEFAULT_CTRL_NUM_FRAMES;
    _ctrl_xport_params.send_frame_size = e300::DEFAULT_CTRL_FRAME_SIZE;
    _ctrl_xport_params.num_send_frames = e300::DEFAULT_CTRL_NUM_FRAMES;

    _data_xport_params.recv_frame_size = device_addr.cast<size_t>("recv_frame_size",
        e300::DEFAULT_RX_DATA_FRAME_SIZE);
    _data_xport_params.num_recv_frames = device_addr.cast<size_t>("num_recv_frames",
        e300::DEFAULT_RX_DATA_NUM_FRAMES);
    _data_xport_params.send_frame_size = device_addr.cast<size_t>("send_frame_size",
        e300::DEFAULT_TX_DATA_FRAME_SIZE);
    _data_xport_params.num_send_frames = device_addr.cast<size_t>("num_send_frames",
        e300::DEFAULT_TX_DATA_NUM_FRAMES);


    // until we figure out why this goes wrong we'll keep this hack around for
    // the ethernet case, in the AXI case we cannot go above one page
    if (_xport_path == ETH) {
        _data_xport_params.recv_frame_size =
            std::min(e300::MAX_NET_RX_DATA_FRAME_SIZE, _data_xport_params.recv_frame_size);
        _data_xport_params.send_frame_size =
            std::min(e300::MAX_NET_TX_DATA_FRAME_SIZE, _data_xport_params.send_frame_size);
    } else {
        _data_xport_params.recv_frame_size =
            std::min(e300::MAX_AXI_RX_DATA_FRAME_SIZE, _data_xport_params.recv_frame_size);
        _data_xport_params.send_frame_size =
            std::min(e300::MAX_AXI_TX_DATA_FRAME_SIZE, _data_xport_params.send_frame_size);
    }
    udp_zero_copy::buff_params dummy_buff_params_out;

    ad9361_ctrl::sptr  codec_ctrl;
    if (_xport_path == ETH) {
        zero_copy_if::sptr codec_xport =
            udp_zero_copy::make(device_addr["addr"], E300_SERVER_CODEC_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr);
        codec_ctrl = e300_remote_codec_ctrl::make(codec_xport);
        zero_copy_if::sptr gregs_xport =
            udp_zero_copy::make(device_addr["addr"], E300_SERVER_GREGS_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr);
        _global_regs = global_regs::make(gregs_xport);

        zero_copy_if::sptr i2c_xport;
        i2c_xport = udp_zero_copy::make(device_addr["addr"], E300_SERVER_I2C_PORT, _ctrl_xport_params, dummy_buff_params_out, device_addr);
        _eeprom_manager = boost::make_shared<e300_eeprom_manager>(i2c::make_zc(i2c_xport));

        uhd::transport::zero_copy_xport_params sensor_xport_params;
        sensor_xport_params.recv_frame_size = 128;
        sensor_xport_params.num_recv_frames = 10;
        sensor_xport_params.send_frame_size = 128;
        sensor_xport_params.num_send_frames = 10;

        zero_copy_if::sptr sensors_xport;
        sensors_xport = udp_zero_copy::make(device_addr["addr"], E300_SERVER_SENSOR_PORT, sensor_xport_params, dummy_buff_params_out, device_addr);
        _sensor_manager = e300_sensor_manager::make_proxy(sensors_xport);

    } else {
        e300_fifo_config_t fifo_cfg;
        try {
            fifo_cfg = e300_read_sysfs();
        } catch (...) {
            throw uhd::runtime_error("Failed to get driver parameters from sysfs.");
        }
        _fifo_iface = e300_fifo_interface::make(fifo_cfg);
        _global_regs = global_regs::make(_fifo_iface->get_global_regs_base());

        ad9361_params::sptr client_settings = boost::make_shared<e300_ad9361_client_t>();
        codec_ctrl = ad9361_ctrl::make_spi(client_settings, spi::make(E300_SPIDEV_DEVICE), 1);
        // This is horrible ... why do I have to sleep here?
        boost::this_thread::sleep(boost::posix_time::milliseconds(100));
        _eeprom_manager = boost::make_shared<e300_eeprom_manager>(i2c::make_i2cdev(E300_I2CDEV_DEVICE));
        _sensor_manager = e300_sensor_manager::make_local(_global_regs);
    }

#ifdef E300_GPSD
    UHD_LOGGER_INFO("E300") << "Detecting internal GPS ";
    try {
        if (_xport_path == AXI)
            _gps = gpsd_iface::make("localhost", 2947);
        else
            _gps = gpsd_iface::make(device_addr["addr"], 2947);
    } catch (std::exception &e) {
        UHD_LOGGER_ERROR("E300") << "An error occured making GPSDd interface: " << e.what();
    }

    if (_gps) {
        for (size_t i = 0; i < _GPS_TIMEOUT; i++)
        {
            boost::this_thread::sleep(boost::posix_time::seconds(1));
            if (!_gps->gps_detected())
                std::cout << "." << std::flush;
            else {
                std::cout << ".... " << std::flush;
                break;
            }
        }
        UHD_LOGGER_INFO("E300") << "GPSDO " << (_gps->gps_detected() ? "found" : "not found");
    }
#endif

    // Verify we can talk to the e300 core control registers ...
    UHD_LOGGER_INFO("E300") << "Initializing core control (global registers)..." << std::endl;
    this->_register_loopback_self_test(
        _global_regs,
        global_regs::SR_CORE_TEST,
        global_regs::RB32_CORE_TEST
    );

    // Verify fpga compatibility version matches at least for the major
    if (_get_version(FPGA_MAJOR) != fpga::COMPAT_MAJOR) {
        throw uhd::runtime_error(str(boost::format(
            "Expected FPGA compatibility number %lu.x, but got %lu.%lu:\n"
            "The FPGA build is not compatible with the host code build.\n"
            "%s"
        ) % fpga::COMPAT_MAJOR
          % _get_version(FPGA_MAJOR) % _get_version(FPGA_MINOR)
          % print_utility_error("uhd_images_downloader.py")));
    }

    ////////////////////////////////////////////////////////////////////
    // Initialize the properties tree
    ////////////////////////////////////////////////////////////////////
    _tree->create<std::string>("/name").set("E-Series Device");
    const fs_path mb_path = "/mboards/0";
    _tree->create<std::string>(mb_path / "name")
        .set(_eeprom_manager->get_mb_type_string());

    _tree->create<std::string>(mb_path / "codename").set("Troll");

    _tree->create<std::string>(mb_path / "fpga_version").set(
        str(boost::format("%u.%u")
            % _get_version(FPGA_MAJOR)
            % _get_version(FPGA_MINOR)));

    _tree->create<std::string>(mb_path / "fpga_version_hash").set(
        _get_version_hash());

    // Clock reference source
    _tree->create<std::string>(mb_path / "clock_source" / "value")
        .add_coerced_subscriber(boost::bind(&e300_impl::_update_clock_source, this, _1))
        .set(e300::DEFAULT_CLOCK_SRC);
    static const std::vector<std::string> clock_sources =
        boost::assign::list_of("internal"); //external,gpsdo not supported
    _tree->create<std::vector<std::string> >(mb_path / "clock_source" / "options").set(clock_sources);

    ////////////////////////////////////////////////////////////////////
    // and do the misc mboard sensors
    ////////////////////////////////////////////////////////////////////
    _tree->create<int>(mb_path / "sensors");
    BOOST_FOREACH(const std::string &name, _sensor_manager->get_sensors())
    {
        _tree->create<sensor_value_t>(mb_path / "sensors" / name)
            .set_publisher(boost::bind(&e300_sensor_manager::get_sensor, _sensor_manager, name));
    }
#ifdef E300_GPSD
    if (_gps) {
        BOOST_FOREACH(const std::string &name, _gps->get_sensors())
        {
            _tree->create<sensor_value_t>(mb_path / "sensors" / name)
                .set_publisher(boost::bind(&gpsd_iface::get_sensor, _gps, name));
        }
    }
#endif

    ////////////////////////////////////////////////////////////////////
    // setup the mboard eeprom
    ////////////////////////////////////////////////////////////////////
    _tree->create<mboard_eeprom_t>(mb_path / "eeprom")
        .set(_eeprom_manager->get_mb_eeprom())  // set first...
        .add_coerced_subscriber(boost::bind(
            &e300_eeprom_manager::write_mb_eeprom,
            _eeprom_manager, _1));

    ////////////////////////////////////////////////////////////////////
    // dboard eeproms but not really
    ////////////////////////////////////////////////////////////////////
    dboard_eeprom_t db_eeprom;
    _tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "rx_eeprom")
        .set(_eeprom_manager->get_db_eeprom())
        .add_coerced_subscriber(boost::bind(
            &e300_eeprom_manager::write_db_eeprom,
            _eeprom_manager, _1));

    _tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "tx_eeprom")
        .set(_eeprom_manager->get_db_eeprom())
        .add_coerced_subscriber(boost::bind(
            &e300_eeprom_manager::write_db_eeprom,
            _eeprom_manager, _1));

    _tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "gdb_eeprom").set(db_eeprom);

    ////////////////////////////////////////////////////////////////////
    // Access to global regs
    ////////////////////////////////////////////////////////////////////
    _tree->create<uint32_t>(mb_path / "global_regs" / "misc")
        .add_coerced_subscriber(boost::bind(&global_regs::poke32, _global_regs, global_regs::SR_CORE_MISC, _1))
    ;
    _tree->create<uint32_t>(mb_path / "global_regs" / "pll")
        .set_publisher(boost::bind(&global_regs::peek32, _global_regs, global_regs::RB32_CORE_PLL))
    ;

    ////////////////////////////////////////////////////////////////////
    // clocking
    ////////////////////////////////////////////////////////////////////
    _tree->create<double>(mb_path / "tick_rate")
        .add_coerced_subscriber(boost::bind(&device3_impl::update_tx_streamers, this, _1))
        .add_coerced_subscriber(boost::bind(&device3_impl::update_rx_streamers, this, _1))
    ;

    //default some chains on -- needed for setup purposes
    UHD_LOGGER_DEBUG("E300") << "Initializing AD9361 using hard SPI core..." << std::flush;
    codec_ctrl->set_active_chains(true, false, true, false);
    codec_ctrl->set_clock_rate(50e6);
    UHD_LOGGER_DEBUG("E300") << "OK" << std::endl;

    ////////////////////////////////////////////////////////////////////
    // Set up RFNoC blocks
    ////////////////////////////////////////////////////////////////////
    const size_t n_rfnoc_blocks = _global_regs->peek32(global_regs::RB32_CORE_NUM_CE);
    enumerate_rfnoc_blocks(
        0, /* mboard index */
        n_rfnoc_blocks,
        E300_XB_DST_AXI + 1, /* base port, rfnoc blocks come after the AXI connect */
        uhd::sid_t(E300_DEVICE_HERE, 0, E300_DEVICE_THERE, 0),
        device_addr_t()
    );

    // If we have a radio, we must configure its codec control:
    std::vector<rfnoc::block_id_t> radio_ids = find_blocks<rfnoc::e3xx_radio_ctrl_impl>("Radio");
    if (radio_ids.size() > 0) {
        UHD_LOGGER_DEBUG("E300") << "Initializing Radio Block..." << std::endl;
        get_block_ctrl<rfnoc::e3xx_radio_ctrl_impl>(radio_ids[0])->setup_radio(codec_ctrl);
        if (radio_ids.size() != 1) {
            UHD_LOGGER_WARNING("E300") << "Too many Radio Blocks found. Using only " << radio_ids[0] << std::endl;
        }
    } else {
        UHD_LOGGER_DEBUG("E300") << "No Radio Block found. Assuming radio-less operation." << std::endl;
    }

    ////////////////////////////////////////////////////////////////////
    // do some post-init tasks
    ////////////////////////////////////////////////////////////////////
    // init the clock rate to something reasonable
    _tree->access<double>(mb_path / "tick_rate")
        .set(device_addr.cast<double>("master_clock_rate", ad936x_manager::DEFAULT_TICK_RATE));

    // subdev spec contains full width of selections
    subdev_spec_t rx_spec, tx_spec;
    BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "rx_frontends"))
    {
        rx_spec.push_back(subdev_spec_pair_t("A", fe));
    }
    BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "tx_frontends"))
    {
        tx_spec.push_back(subdev_spec_pair_t("A", fe));
    }
    _tree->create<subdev_spec_t>(mb_path / "rx_subdev_spec").set(rx_spec);
    _tree->create<subdev_spec_t>(mb_path / "tx_subdev_spec").set(tx_spec);
    UHD_LOGGER_DEBUG("E300") << "end of e300_impl()" << std::endl;
}

e300_impl::~e300_impl(void)
{
    // Force RFNoC destructors to fire before loading the idle image
    _rfnoc_block_ctrl.clear();
    if (_xport_path == AXI and not _do_not_reload)
        common::load_fpga_image(_idle_image);
}

void e300_impl::_register_loopback_self_test(wb_iface::sptr iface, uint32_t w_addr, uint32_t r_addr)
{
    bool test_fail = false;
    UHD_LOGGER_INFO("E300") << "Performing register loopback test... ";
    size_t hash = size_t(time(NULL));
    for (size_t i = 0; i < 100; i++)
    {
        boost::hash_combine(hash, i);
        iface->poke32(w_addr, uint32_t(hash));
        test_fail = iface->peek32(r_addr) != uint32_t(hash);
        if (test_fail) break; //exit loop on any failure
    }
    UHD_LOGGER_INFO("E300") << "Register loopback test " << ((test_fail)? " failed" : "passed");
}

uint32_t e300_impl::_get_version(compat_t which)
{
    const uint16_t compat_num
        = _global_regs->peek32(global_regs::RB32_CORE_COMPAT);

    switch(which) {
    case FPGA_MINOR:
        return compat_num & 0xff;
    case FPGA_MAJOR:
        return (compat_num & 0xff00) >> 8;
    default:
        throw uhd::value_error("Requested unknown version.");
    };
}

std::string e300_impl::_get_version_hash(void)
{
    const uint32_t git_hash
        = _global_regs->peek32(global_regs::RB32_CORE_GITHASH);
    return str(boost::format("%7x%s")
        % (git_hash & 0x0FFFFFFF)
        % ((git_hash & 0xF0000000) ? "-dirty" : ""));
}


void e300_impl::_setup_dest_mapping(
    const uhd::sid_t &sid,
    const size_t which_stream)
{
    UHD_LOGGER_DEBUG("E300") << boost::format("[E300] Setting up dest map for host ep %lu to be stream %d")
                                     % sid.get_src_endpoint() % which_stream << std::endl;
    _global_regs->poke32(DST_ADDR(sid.get_src_endpoint()), which_stream);
}

size_t e300_impl::_get_axi_dma_channel_pair()
{
    if (_dma_chans_available.none()) {
        throw uhd::runtime_error("No more free DMA channels available.");
    }

    size_t first_free_pair = _dma_chans_available.find_first();
    _dma_chans_available.reset(first_free_pair);
    return first_free_pair;
}

uint16_t e300_impl::_get_udp_port(
        uint8_t destination,
        uint8_t prefix)
{
    if (destination == E300_XB_DST_RADIO) {
        if (prefix == E300_RADIO_DEST_PREFIX_CTRL)
            return boost::lexical_cast<uint16_t>(E300_SERVER_CTRL_PORT0);
        else if (prefix == E300_RADIO_DEST_PREFIX_TX)
            return boost::lexical_cast<uint16_t>(E300_SERVER_TX_PORT0);
        else if (prefix == E300_RADIO_DEST_PREFIX_RX)
            return boost::lexical_cast<uint16_t>(E300_SERVER_RX_PORT0);
    } else if (destination == E300_XB_DST_R1) {
        if (prefix == E300_RADIO_DEST_PREFIX_CTRL)
            return boost::lexical_cast<uint16_t>(E300_SERVER_CTRL_PORT1);
        else if (prefix == E300_RADIO_DEST_PREFIX_TX)
            return boost::lexical_cast<uint16_t>(E300_SERVER_TX_PORT1);
        else if (prefix == E300_RADIO_DEST_PREFIX_RX)
            return boost::lexical_cast<uint16_t>(E300_SERVER_RX_PORT1);
    }
    throw uhd::value_error(str(boost::format("No UDP port defined for combination: %u %u") % destination % prefix));
}

uhd::sid_t e300_impl::_allocate_sid(
    const uhd::sid_t &address)
{
    uhd::sid_t sid = address;
    sid.set_src_addr(E300_DEVICE_HERE);
    sid.set_src_endpoint(_sid_framer);

    // TODO: We don't have to do this everytime ...
    // Program the E300 to recognize it's own local address.
    _global_regs->poke32(global_regs::SR_CORE_XB_LOCAL, address.get_dst_addr());

    // Program CAM entry for outgoing packets matching a E300 resource
    // (e.g. Radio).
    // This type of packet matches the XB_LOCAL address and is looked up in
    // the upper half of the CAM
    _global_regs->poke32(XB_ADDR(256 + address.get_dst_endpoint()), address.get_dst_xbarport());

    // TODO: We don't have to do this everytime ...
    // Program CAM entry for returning packets to us
    // (for example host via zynq_fifo)
    // This type of packet does not match the XB_LOCAL address and is
    // looked up in the lower half of the CAM
    _global_regs->poke32(XB_ADDR(E300_DEVICE_HERE), E300_XB_DST_AXI);

    // increment for next setup
    _sid_framer++;

    return sid;
}

uhd::both_xports_t e300_impl::make_transport(
    const uhd::sid_t &address,
    const xport_type_t type,
    const uhd::device_addr_t &)
{
    uhd::both_xports_t xports;
    xports.endianness = ENDIANNESS_LITTLE;

    const uhd::transport::zero_copy_xport_params params =
        (type == CTRL) ? _ctrl_xport_params : _data_xport_params;

    xports.send_sid = _allocate_sid(address);
    xports.recv_sid = xports.send_sid.reversed();
    xports.recv_buff_size = params.recv_frame_size * params.num_recv_frames;
    xports.send_buff_size = params.send_frame_size * params.num_send_frames;

    if (_xport_path != AXI) {
        throw uhd::runtime_error("[E300] Currently only AXI transport supported with RFNOC");
    }

    const size_t chan_pair = _get_axi_dma_channel_pair();
    xports.send = _fifo_iface->make_send_xport(chan_pair, params);
    xports.recv = _fifo_iface->make_recv_xport(chan_pair, params);
    _setup_dest_mapping(xports.send_sid, chan_pair);

    return xports;
}

void e300_impl::_update_clock_source(const std::string &source)
{
    if (source != "internal") {
        throw uhd::value_error(boost::str(
            boost::format("Clock source option not supported: %s. The only value supported is \"internal\". " \
                          "To discipline the internal oscillator, set the appropriate time source.") % source
        ));
    }
}

}}} // namespace

UHD_STATIC_BLOCK(register_e300_device)
{
    device::register_device(&uhd::usrp::e300::e300_find, &uhd::usrp::e300::e300_make, uhd::device::USRP);
}