aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/e300/e300_eeprom_manager.cpp
blob: 6547048ecf330b457b7d4de456a0833d435f47c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
//
// Copyright 2014 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include "e300_eeprom_manager.hpp"
#include <uhd/types/mac_addr.hpp>
#include <uhd/utils/byteswap.hpp>

namespace uhd { namespace usrp { namespace e300 {

static const std::string _bytes_to_string(const uint8_t* bytes, size_t max_len)
{
    std::string out;
    for (size_t i = 0; i < max_len; i++) {
        if (bytes[i] < 32 or bytes[i] > 127) return out;
        out += bytes[i];
    }
    return out;
}

static void _string_to_bytes(const std::string &string, size_t max_len, uint8_t* buffer)
{
    byte_vector_t bytes;
    const size_t len = std::min(string.size(), max_len);
    for (size_t i = 0; i < len; i++){
        buffer[i] = string[i];
    }
    if (len < max_len)
        buffer[len] = '\0';
}

e300_eeprom_manager::e300_eeprom_manager(i2c::sptr i2c) : _i2c(i2c)
{
    read_mb_eeprom();
    read_db_eeprom();
}

e300_eeprom_manager::~e300_eeprom_manager(void)
{
}

const mboard_eeprom_t& e300_eeprom_manager::read_mb_eeprom(void)
{
    boost::mutex::scoped_lock(_mutex);

    std::vector<uint8_t> bytes;
    bytes.resize(sizeof(mb_eeprom_map_t));
    mb_eeprom_map_t *map_ptr = reinterpret_cast<mb_eeprom_map_t*>(&bytes[0]);
    memset(map_ptr, 0xff, sizeof(mb_eeprom_map_t));

    // get the old contents
    for(size_t i = 0; i < sizeof(mb_eeprom_map_t); i++)
        bytes[i] = _i2c->get_i2c_reg8(MB_ADDR, i);

    mb_eeprom_map_t &map = *map_ptr;

    _mb_eeprom["product"] = std::to_string(
        uhd::ntohx<uint16_t>(map.hw_product));
    _mb_eeprom["revision"] = std::to_string(
        uhd::ntohx<uint16_t>(map.hw_revision));
    _mb_eeprom["serial"] = _bytes_to_string(
        map.serial, MB_SERIAL_LEN);

    byte_vector_t mac_addr(map.mac_addr, map.mac_addr + 6);
    _mb_eeprom["mac-addr"] = mac_addr_t::from_bytes(mac_addr).to_string();

    _mb_eeprom["name"] = _bytes_to_string(
        map.user_name, MB_NAME_LEN);

    return _mb_eeprom;
}

const dboard_eeprom_t& e300_eeprom_manager::read_db_eeprom(void)
{
    boost::mutex::scoped_lock(_mutex);

    std::vector<uint8_t> bytes;
    bytes.resize(sizeof(db_eeprom_map_t));
    db_eeprom_map_t *map_ptr = reinterpret_cast<db_eeprom_map_t*>(&bytes[0]);
    memset(map_ptr, 0xff, sizeof(db_eeprom_map_t));

    // get the old contents
    for(size_t i = 0; i < sizeof(db_eeprom_map_t); i++)
        bytes[i] = _i2c->get_i2c_reg16(DB_ADDR, i);

    db_eeprom_map_t &map = *map_ptr;

    _db_eeprom.id = uhd::usrp::dboard_id_t::from_uint16(
        uhd::ntohx<uint16_t>(map.hw_product));

    _db_eeprom.revision = std::to_string(
        uhd::ntohx<uint16_t>(map.hw_revision));
    _db_eeprom.serial = _bytes_to_string(
        map.serial, DB_SERIAL_LEN);

    return _db_eeprom;
}

void e300_eeprom_manager::write_db_eeprom(const dboard_eeprom_t& eeprom)
{
    boost::mutex::scoped_lock(_mutex);
    _db_eeprom = eeprom;
    std::vector<uint8_t> bytes;
    bytes.resize(sizeof(db_eeprom_map_t));


    db_eeprom_map_t *map_ptr = reinterpret_cast<db_eeprom_map_t*>(&bytes[0]);
    memset(map_ptr, 0xff, sizeof(db_eeprom_map_t));

    // get the old contents
    for(size_t i = 0; i < sizeof(db_eeprom_map_t); i++)
        bytes[i] = _i2c->get_i2c_reg16(DB_ADDR, i);

    db_eeprom_map_t &map = *map_ptr;

    // set the data version, that can be used to distinguish eeprom layouts
    map.data_version_major = E310_DB_MAP_MAJOR;
    map.data_version_minor = E310_DB_MAP_MINOR;

    if (_db_eeprom.id != dboard_id_t::none()) {
        map.hw_product = uhd::htonx<uint16_t>(
            _db_eeprom.id.to_uint16());
    }

    if (not _db_eeprom.revision.empty()) {
        map.hw_revision = uhd::htonx<uint16_t>(
            boost::lexical_cast<uint16_t>(_db_eeprom.revision));
    }

    if (not _db_eeprom.serial.empty()) {
        _string_to_bytes(_db_eeprom.serial, DB_SERIAL_LEN, map.serial);
    }
    for(size_t i = 0; i < sizeof(mb_eeprom_map_t); i++)
        _i2c->set_i2c_reg16(DB_ADDR, i, bytes[i]);
}

void e300_eeprom_manager::write_mb_eeprom(const mboard_eeprom_t& eeprom)
{
    boost::mutex::scoped_lock(_mutex);
    _mb_eeprom = eeprom;
    std::vector<uint8_t> bytes;
    bytes.resize(sizeof(mb_eeprom_map_t));


    mb_eeprom_map_t *map_ptr = reinterpret_cast<mb_eeprom_map_t*>(&bytes[0]);
    memset(map_ptr, 0xff, sizeof(mb_eeprom_map_t));

    // get the old contents
    for(size_t i = 0; i < sizeof(mb_eeprom_map_t); i++)
        bytes[i] = _i2c->get_i2c_reg8(MB_ADDR, i);

    mb_eeprom_map_t &map = *map_ptr;

    // set the data version, that can be used to distinguish eeprom layouts
    map.data_version_major = E310_MB_MAP_MAJOR;
    map.data_version_minor = E310_MB_MAP_MINOR;


    if (_mb_eeprom.has_key("product")) {
        map.hw_product = uhd::htonx<uint16_t>(
            boost::lexical_cast<uint16_t>(_mb_eeprom["product"]));
    }
    if (_mb_eeprom.has_key("revision")) {
        map.hw_revision = uhd::htonx<uint16_t>(
            boost::lexical_cast<uint16_t>(_mb_eeprom["revision"]));
    }
    if (_mb_eeprom.has_key("serial")) {
        _string_to_bytes(_mb_eeprom["serial"], MB_SERIAL_LEN, map.serial);
    }
    if (_mb_eeprom.has_key("mac-addr")) {
        byte_vector_t mac_addr = mac_addr_t::from_string(_mb_eeprom["mac-addr"]).to_bytes();
        std::copy(mac_addr.begin(), mac_addr.end(), map.mac_addr);
    }

    //store the name
    if (_mb_eeprom.has_key("name")) {
        _string_to_bytes(_mb_eeprom["name"], MB_NAME_LEN, map.user_name);
    }

    for(size_t i = 0; i < sizeof(mb_eeprom_map_t); i++)
        _i2c->set_i2c_reg8(MB_ADDR, i, bytes[i]);

}

e300_eeprom_manager::mboard_t e300_eeprom_manager::get_mb_type(void) const
{
    boost::mutex::scoped_lock(_mutex);
    uint16_t pid = boost::lexical_cast<uint16_t>(
        _mb_eeprom["product"]);
    return get_mb_type(pid);
}

e300_eeprom_manager::mboard_t e300_eeprom_manager::get_mb_type(
    uint16_t pid)
{
    switch (pid) {
    case E300_MB_PID:
        return USRP_E300_MB;

    case E310_SG1_MB_PID:
        return USRP_E310_SG1_MB;

    case E310_SG3_MB_PID:
        return USRP_E310_SG3_MB;

    default:
        return UNKNOWN;
    };
}


std::string e300_eeprom_manager::get_mb_type_string(void) const
{
    boost::mutex::scoped_lock(_mutex);
    uint16_t product = boost::lexical_cast<uint16_t>(
        _mb_eeprom["product"]);
    switch (product) {
    case E300_MB_PID:
        return "E3XX";

    case E310_SG1_MB_PID:
        return "E3XX SG1";

    case E310_SG3_MB_PID:
        return "E3XX SG3";

    default:
        return "UNKNOWN";
    };
}

i2c::sptr e300_eeprom_manager::get_i2c_sptr(void)
{
    return _i2c;
}


}}} // namespace