aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/dsp_utils.hpp
blob: ebed12c4128cf624e85cc757f563ffa4c9d77f48 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#ifndef INCLUDED_LIBUHD_USRP_DSP_UTILS_HPP
#define INCLUDED_LIBUHD_USRP_DSP_UTILS_HPP

#include <uhd/config.hpp>
#include <uhd/types/dict.hpp>
#include <uhd/utils/assert.hpp>
#include <uhd/types/stream_cmd.hpp>
#include <uhd/usrp/subdev_props.hpp>
#include <boost/cstdint.hpp>
#include <boost/assign/list_of.hpp>
#include <boost/tuple/tuple.hpp>
#include <boost/math/special_functions/round.hpp>

namespace uhd{ namespace usrp{

namespace dsp_type1{

    template <class T> T ceil_log2(T num){
        return std::ceil(std::log(num)/std::log(T(2)));
    }

    /*!
     * Calculate the rx mux word from properties.
     * \param subdev_conn the subdev connection type
     * \param the 32-bit rx mux control word
     */
    static inline boost::uint32_t calc_rx_mux_word(
        subdev_conn_t subdev_conn
    ){
        switch(subdev_conn){
        case SUBDEV_CONN_COMPLEX_IQ: return (0x1 << 2) | (0x0 << 0); //DDC0Q=ADC1, DDC0I=ADC0
        case SUBDEV_CONN_COMPLEX_QI: return (0x0 << 2) | (0x1 << 0); //DDC0Q=ADC0, DDC0I=ADC1
        case SUBDEV_CONN_REAL_I:     return (0x3 << 2) | (0x0 << 0); //DDC0Q=ZERO, DDC0I=ADC0
        case SUBDEV_CONN_REAL_Q:     return (0x1 << 2) | (0x3 << 0); //DDC0Q=ADC1, DDC0I=ZERO
        default:                     UHD_THROW_INVALID_CODE_PATH();
        }
    }

    /*!
     * Calculate the tx mux word from properties.
     * \param subdev_conn the subdev connection type
     * \param the 32-bit tx mux control word
     */
    static inline boost::uint32_t calc_tx_mux_word(
        subdev_conn_t subdev_conn
    ){
        switch(subdev_conn){
        case SUBDEV_CONN_COMPLEX_IQ: return (0x1 << 4) | (0x0 << 0); //DAC1=DUC0Q, DAC0=DUC0I
        case SUBDEV_CONN_COMPLEX_QI: return (0x0 << 4) | (0x1 << 0); //DAC1=DUC0I, DAC0=DUC0Q
        case SUBDEV_CONN_REAL_I:     return (0xf << 4) | (0x0 << 0); //DAC1=ZERO,  DAC0=DUC0I
        case SUBDEV_CONN_REAL_Q:     return (0x0 << 4) | (0xf << 0); //DAC1=DUC0I, DAC0=ZERO
        default:                     UHD_THROW_INVALID_CODE_PATH();
        }
    }

    /*!
     * Calculate the cordic word from the frequency and clock rate.
     * The frequency will be set to the actual (possible) frequency.
     *
     * \param freq the requested frequency in Hz
     * \param codec_rate the dsp codec rate in Hz
     * \param the 32-bit cordic control word
     */
    static inline boost::uint32_t calc_cordic_word_and_update(
        double &freq,
        double codec_rate
    ){
        UHD_ASSERT_THROW(std::abs(freq) <= codec_rate/2.0);
        static const double scale_factor = std::pow(2.0, 32);

        //calculate the freq register word (signed)
        boost::int32_t freq_word = boost::int32_t(boost::math::round((freq / codec_rate) * scale_factor));

        //update the actual frequency
        freq = (double(freq_word) / scale_factor) * codec_rate;

        return boost::uint32_t(freq_word);
    }

    /*!
     * Calculate the CIC filter word from the rate.
     * Check if requested decim/interp rate is:
     *      multiple of 4, enable two halfband filters
     *      multiple of 2, enable one halfband filter
     *      handle remainder in CIC
     *
     * \param rate the requested rate in Sps
     * \return the 32-bit cic filter control word
     */
    template <typename dsp_rate_type>
    static inline boost::uint32_t calc_cic_filter_word(dsp_rate_type rate){
        int hb0 = 0, hb1 = 0;
        if (not (rate & 0x1)){
            hb0 = 1;
            rate /= 2;
        }
        if (not (rate & 0x1)){
            hb1 = 1;
            rate /= 2;
        }
        return (hb1 << 9) | (hb0 << 8) | (rate & 0xff);
    }

    /*!
     * Calculate the IQ scale factor word from I and Q components.
     * \param i the I component of the scalar
     * \param q the Q component of the scalar
     * \return the 32-bit scale factor control word
     */
    static inline boost::uint32_t calc_iq_scale_word(
        boost::int16_t i, boost::int16_t q
    ){
        return (boost::uint32_t(i) << 16) | (boost::uint32_t(q) << 0);
    }

    /*!
     * Calculate the IQ scale factor word from the rate.
     * \param rate the requested rate in Sps
     * \return the 32-bit scale factor control word
     */
    template <typename dsp_rate_type>
    static inline boost::uint32_t calc_iq_scale_word(dsp_rate_type rate){
        // Calculate CIC interpolation (i.e., without halfband interpolators)
        dsp_rate_type tmp_rate = calc_cic_filter_word(rate) & 0xff;

        // Calculate closest multiplier constant to reverse gain absent scale multipliers
        double rate_cubed = std::pow(double(tmp_rate), 3);
        boost::int16_t scale = boost::math::iround((4096*std::pow(2, ceil_log2(rate_cubed)))/(1.65*rate_cubed));
        return calc_iq_scale_word(scale, scale);
    }

    /*!
     * Calculate the stream command word from the stream command struct.
     * \param stream_cmd the requested stream command with mode, flags, timestamp
     * \param num_samps_continuous number of samples to request in continuous mode
     * \return the 32-bit stream command word
     */
    static inline boost::uint32_t calc_stream_cmd_word(
        const stream_cmd_t &stream_cmd, size_t num_samps_continuous
    ){
        UHD_ASSERT_THROW(stream_cmd.num_samps <= 0x3fffffff);

        //setup the mode to instruction flags
        typedef boost::tuple<bool, bool, bool> inst_t;
        static const uhd::dict<stream_cmd_t::stream_mode_t, inst_t> mode_to_inst = boost::assign::map_list_of
                                                                //reload, chain, samps
            (stream_cmd_t::STREAM_MODE_START_CONTINUOUS,   inst_t(true,  true,  false))
            (stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS,    inst_t(false, false, false))
            (stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE, inst_t(false, false, true))
            (stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE, inst_t(false, true,  true))
        ;

        //setup the instruction flag values
        bool inst_reload, inst_chain, inst_samps;
        boost::tie(inst_reload, inst_chain, inst_samps) = mode_to_inst[stream_cmd.stream_mode];

        //calculate the word from flags and length
        boost::uint32_t word = 0;
        word |= boost::uint32_t((stream_cmd.stream_now)? 1 : 0) << 31;
        word |= boost::uint32_t((inst_chain)?            1 : 0) << 30;
        word |= boost::uint32_t((inst_reload)?           1 : 0) << 29;
        word |= (inst_samps)? stream_cmd.num_samps : ((inst_chain)? num_samps_continuous : 1);
        return word;
    }

} //namespace dsp_type1

}} //namespace

#endif /* INCLUDED_LIBUHD_USRP_DSP_UTILS_HPP */