1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
|
//
// Copyright 2014-2016 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
// Provides streaming-related functions which are used by device3 objects.
#include "device3_impl.hpp"
#include <uhd/rfnoc/constants.hpp>
#include <uhd/rfnoc/source_block_ctrl_base.hpp>
#include <uhd/rfnoc/sink_block_ctrl_base.hpp>
#include <uhd/utils/byteswap.hpp>
#include <uhd/utils/log.hpp>
#include "../../transport/super_recv_packet_handler.hpp"
#include "../../transport/super_send_packet_handler.hpp"
#include <uhd/rfnoc/rate_node_ctrl.hpp>
#include <uhd/rfnoc/radio_ctrl.hpp>
#include <uhd/transport/zero_copy_flow_ctrl.hpp>
#include <uhdlib/rfnoc/rx_stream_terminator.hpp>
#include <uhdlib/rfnoc/tx_stream_terminator.hpp>
#include <uhdlib/usrp/common/async_packet_handler.hpp>
#include <boost/atomic.hpp>
#define UHD_TX_STREAMER_LOG() UHD_LOGGER_TRACE("STREAMER")
#define UHD_RX_STREAMER_LOG() UHD_LOGGER_TRACE("STREAMER")
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;
//! CHDR uses 12-Bit sequence numbers
static const uint32_t HW_SEQ_NUM_MASK = 0xfff;
/***********************************************************************
* Helper functions for get_?x_stream()
**********************************************************************/
static uhd::stream_args_t sanitize_stream_args(const uhd::stream_args_t &args_)
{
uhd::stream_args_t args = args_;
if (args.channels.empty()) {
args.channels = std::vector<size_t>(1, 0);
}
return args;
}
static void check_stream_sig_compatible(const rfnoc::stream_sig_t &stream_sig, stream_args_t &args, const std::string &tx_rx)
{
if (args.otw_format.empty()) {
if (stream_sig.item_type.empty()) {
throw uhd::runtime_error(str(
boost::format("[%s Streamer] No otw_format defined!") % tx_rx
));
} else {
args.otw_format = stream_sig.item_type;
}
} else if (not stream_sig.item_type.empty() and stream_sig.item_type != args.otw_format) {
throw uhd::runtime_error(str(
boost::format("[%s Streamer] Conflicting OTW types defined: args.otw_format = '%s' <=> stream_sig.item_type = '%s'")
% tx_rx % args.otw_format % stream_sig.item_type
));
}
const size_t bpi = convert::get_bytes_per_item(args.otw_format); // bytes per item
if (stream_sig.packet_size) {
if (args.args.has_key("spp")) {
size_t args_spp = args.args.cast<size_t>("spp", 0);
if (args_spp * bpi != stream_sig.packet_size) {
throw uhd::runtime_error(str(
boost::format("[%s Streamer] Conflicting packet sizes defined: args yields %d bytes but stream_sig.packet_size is %d bytes")
% tx_rx % (args_spp * bpi) % stream_sig.packet_size
));
}
} else {
args.args["spp"] = str(boost::format("%d") % (stream_sig.packet_size / bpi));
}
}
}
/*! \brief Returns a list of rx or tx channels for a streamer.
*
* If the given stream args contain instructions to set up channels,
* those are used. Otherwise, the current device's channel definition
* is consulted.
*
* \param args_ Stream args.
* \param[out] chan_list The list of channels in the correct order.
* \param[out] chan_args Channel args for every channel. `chan_args.size() == chan_list.size()`
*/
void generate_channel_list(
const uhd::stream_args_t &args_,
std::vector<uhd::rfnoc::block_id_t> &chan_list,
std::vector<device_addr_t> &chan_args
) {
uhd::stream_args_t args = args_;
std::vector<uhd::rfnoc::block_id_t> chan_list_(args.channels.size());
std::vector<device_addr_t> chan_args_(args.channels.size());
for (size_t i = 0; i < args.channels.size(); i++)
{
// Extract block ID
size_t chan_idx = args.channels[i];
std::string key = str(boost::format("block_id%d") % chan_idx);
if (args.args.has_key(key)) {
chan_list_[i] = args.args.pop(key);
} else if (args.args.has_key("block_id")) {
chan_list_[i] = args.args["block_id"];
} else {
throw uhd::runtime_error(str(
boost::format("Cannot create streamers: No block_id specified for channel %d.")
% chan_idx
));
}
// Split off known channel specific args
key = str(boost::format("block_port%d") % chan_idx);
if (args.args.has_key(key)) {
chan_args_[i]["block_port"] = args.args.pop(key);
}
key = str(boost::format("radio_id%d") % chan_idx);
if (args.args.has_key(key)) {
chan_args_[i]["radio_id"] = args.args.pop(key);
}
key = str(boost::format("radio_port%d") % chan_idx);
if (args.args.has_key(key)) {
chan_args_[i]["radio_port"] = args.args.pop(key);
}
}
// Add all remaining args to all channel args
for(device_addr_t &chan_arg: chan_args_) {
chan_arg = chan_arg.to_string() + "," + args.args.to_string();
}
chan_list = chan_list_;
chan_args = chan_args_;
}
/***********************************************************************
* RX Flow Control Functions
**********************************************************************/
//! Stores the state of RX flow control
struct rx_fc_cache_t
{
rx_fc_cache_t():
last_seq_in(0){}
size_t last_seq_in;
};
/*! Determine the size of the flow control window in number of packets.
*
* This value depends on three things:
* - The packet size (in bytes), P
* - The size of the software buffer (in bytes), B
* - The desired buffer fullness, F
*
* The FC window size is thus X = floor(B*F/P).
*
* \param pkt_size The maximum packet size in bytes
* \param sw_buff_size Software buffer size in bytes
* \param rx_args If this has a key 'recv_buff_fullness', this value will
* be used for said fullness. Must be between 0.01 and 1.
*
* \returns The size of the flow control window in number of packets
*/
static size_t get_rx_flow_control_window(
size_t pkt_size,
size_t sw_buff_size,
const device_addr_t& rx_args
) {
double fullness_factor = rx_args.cast<double>(
"recv_buff_fullness",
uhd::rfnoc::DEFAULT_FC_RX_SW_BUFF_FULL_FACTOR
);
if (fullness_factor < 0.01 || fullness_factor > 1) {
throw uhd::value_error("recv_buff_fullness must be in [0.01, 1] inclusive (1% to 100%)");
}
size_t window_in_pkts = (static_cast<size_t>(sw_buff_size * fullness_factor) / pkt_size);
if (rx_args.has_key("max_recv_window")) {
window_in_pkts = std::min(
window_in_pkts,
rx_args.cast<size_t>("max_recv_window", window_in_pkts)
);
}
if (window_in_pkts == 0) {
throw uhd::value_error("recv_buff_size must be larger than the recv_frame_size.");
}
UHD_ASSERT_THROW(size_t(sw_buff_size * fullness_factor) >= pkt_size * window_in_pkts);
return window_in_pkts;
}
/*! Send out RX flow control packets.
*
* For an rx stream, this function takes care of sending back
* a flow control packet to the source telling it which
* packets have been consumed.
*
* This function should only be called by the function handling
* the rx stream, usually recv() in super_recv_packet_handler.
*
* \param sid The SID that goes into this packet. This is the reversed()
* version of the data stream's SID.
* \param xport A transport object over which to send the data
* \param big_endian Endianness of the transport
* \param seq32_state Pointer to a variable that saves the 32-Bit state
* of the sequence numbers, since we only have 12 Bit
* sequence numbers in CHDR.
* \param last_seq The value to send: The last consumed packet's sequence number.
*/
static void handle_rx_flowctrl(
const sid_t &sid,
zero_copy_if::sptr xport,
endianness_t endianness,
boost::shared_ptr<rx_fc_cache_t> fc_cache,
const size_t last_seq
) {
static const size_t RXFC_PACKET_LEN_IN_WORDS = 2;
static const size_t RXFC_CMD_CODE_OFFSET = 0;
static const size_t RXFC_SEQ_NUM_OFFSET = 1;
managed_send_buffer::sptr buff = xport->get_send_buff(0.0);
if (not buff) {
throw uhd::runtime_error("handle_rx_flowctrl timed out getting a send buffer");
}
uint32_t *pkt = buff->cast<uint32_t *>();
// Recover sequence number. The sequence numbers handled by the streamers
// are 12 Bits, but we want to know the 32-Bit sequence number.
size_t &seq32 = fc_cache->last_seq_in;
const size_t seq12 = seq32 & HW_SEQ_NUM_MASK;
if (last_seq < seq12)
seq32 += (HW_SEQ_NUM_MASK + 1);
seq32 &= ~HW_SEQ_NUM_MASK;
seq32 |= last_seq;
// Super-verbose mode:
//static size_t fc_pkt_count = 0;
//UHD_LOGGER_INFO("STREAMER") << "sending flow ctrl packet " << fc_pkt_count++ << ", acking " << str(boost::format("%04d\tseq_sw==0x%08x") % last_seq % seq32) ;
//load packet info
vrt::if_packet_info_t packet_info;
packet_info.packet_type = vrt::if_packet_info_t::PACKET_TYPE_FC;
packet_info.num_payload_words32 = RXFC_PACKET_LEN_IN_WORDS;
packet_info.num_payload_bytes = packet_info.num_payload_words32*sizeof(uint32_t);
packet_info.packet_count = seq32;
packet_info.sob = false;
packet_info.eob = false;
packet_info.sid = sid.get();
packet_info.has_sid = true;
packet_info.has_cid = false;
packet_info.has_tsi = false;
packet_info.has_tsf = false;
packet_info.has_tlr = false;
if (endianness == ENDIANNESS_BIG) {
// Load Header:
vrt::chdr::if_hdr_pack_be(pkt, packet_info);
// Load Payload: (the sequence number)
pkt[packet_info.num_header_words32+RXFC_CMD_CODE_OFFSET] = uhd::htonx<uint32_t>(0);
pkt[packet_info.num_header_words32+RXFC_SEQ_NUM_OFFSET] = uhd::htonx<uint32_t>(seq32);
} else {
// Load Header:
vrt::chdr::if_hdr_pack_le(pkt, packet_info);
// Load Payload: (the sequence number)
pkt[packet_info.num_header_words32+RXFC_CMD_CODE_OFFSET] = uhd::htowx<uint32_t>(0);
pkt[packet_info.num_header_words32+RXFC_SEQ_NUM_OFFSET] = uhd::htowx<uint32_t>(seq32);
}
//std::cout << " SID=" << std::hex << sid << " hdr bits=" << packet_info.packet_type << " seq32=" << seq32 << std::endl;
//std::cout << "num_packet_words32: " << packet_info.num_packet_words32 << std::endl;
//for (size_t i = 0; i < packet_info.num_packet_words32; i++) {
//std::cout << str(boost::format("0x%08x") % pkt[i]) << " ";
//if (i % 2) {
//std::cout << std::endl;
//}
//}
//send the buffer over the interface
buff->commit(sizeof(uint32_t)*(packet_info.num_packet_words32));
}
/***********************************************************************
* TX Flow Control Functions
**********************************************************************/
#define DEVICE3_ASYNC_EVENT_CODE_FLOW_CTRL 0
//! Stores the state of TX flow control
struct tx_fc_cache_t
{
tx_fc_cache_t(size_t capacity):
last_seq_ack(0),
space(capacity) {}
size_t last_seq_ack;
size_t space;
};
/*! Return the size of the flow control window in packets.
*
* If the return value of this function is F, the last tx'd packet
* has index N and the last ack'd packet has index M, the amount of
* FC credit we have is C = F + M - N (i.e. we can send C more packets
* before getting another ack).
*
* Note: If `send_buff_size` is set in \p tx_hints, this will
* override hw_buff_size_.
*/
static size_t get_tx_flow_control_window(
size_t pkt_size,
const double hw_buff_size_,
const device_addr_t& tx_hints
) {
double hw_buff_size = tx_hints.cast<double>("send_buff_size", hw_buff_size_);
size_t window_in_pkts = (static_cast<size_t>(hw_buff_size) / pkt_size);
if (window_in_pkts == 0) {
throw uhd::value_error("send_buff_size must be larger than the send_frame_size.");
}
return window_in_pkts;
}
static bool tx_flow_ctrl(
boost::shared_ptr<tx_fc_cache_t> fc_cache,
zero_copy_if::sptr async_xport,
uint32_t (*endian_conv)(uint32_t),
void (*unpack)(const uint32_t *packet_buff, vrt::if_packet_info_t &),
managed_buffer::sptr
) {
while (true)
{
// If there is space
if (fc_cache->space)
{
// All is good - packet will be sent
fc_cache->space--;
return true;
}
// Look for a flow control message to update the space available in the buffer.
managed_recv_buffer::sptr buff = async_xport->get_recv_buff();
if (buff)
{
vrt::if_packet_info_t if_packet_info;
if_packet_info.num_packet_words32 = buff->size()/sizeof(uint32_t);
const uint32_t *packet_buff = buff->cast<const uint32_t *>();
try {
unpack(packet_buff, if_packet_info);
}
catch(const std::exception &ex)
{
UHD_LOG_ERROR("TX FLOW CTRL", "Error unpacking async flow control packet: " << ex.what());
continue;
}
if (if_packet_info.packet_type != vrt::if_packet_info_t::PACKET_TYPE_FC)
{
UHD_LOG_ERROR(
"TX FLOW CTRL",
"Unexpected packet type received by flow control handler: " << if_packet_info.packet_type
);
continue;
}
// update the amount of space
size_t seq_ack = endian_conv(packet_buff[if_packet_info.num_header_words32+1]);
fc_cache->space += (seq_ack - fc_cache->last_seq_ack) & HW_SEQ_NUM_MASK;
fc_cache->last_seq_ack = seq_ack;
}
}
return false;
}
/***********************************************************************
* TX Async Message Functions
**********************************************************************/
struct async_tx_info_t
{
size_t stream_channel;
size_t device_channel;
boost::shared_ptr<device3_impl::async_md_type> async_queue;
boost::shared_ptr<device3_impl::async_md_type> old_async_queue;
};
/*! Handle incoming messages.
* Send them to the async message queue for the user to poll.
*
* This is run inside a uhd::task as long as this streamer lives.
*/
static void handle_tx_async_msgs(
boost::shared_ptr<async_tx_info_t> async_info,
zero_copy_if::sptr xport,
endianness_t endianness,
boost::function<double(void)> get_tick_rate
) {
managed_recv_buffer::sptr buff = xport->get_recv_buff();
if (not buff)
{
return;
}
//extract packet info
vrt::if_packet_info_t if_packet_info;
if_packet_info.num_packet_words32 = buff->size()/sizeof(uint32_t);
const uint32_t *packet_buff = buff->cast<const uint32_t *>();
//unpacking can fail
uint32_t (*endian_conv)(uint32_t) = uhd::ntohx;
try
{
if (endianness == ENDIANNESS_BIG)
{
vrt::chdr::if_hdr_unpack_be(packet_buff, if_packet_info);
endian_conv = uhd::ntohx;
}
else
{
vrt::chdr::if_hdr_unpack_le(packet_buff, if_packet_info);
endian_conv = uhd::wtohx;
}
}
catch(const std::exception &ex)
{
UHD_LOGGER_ERROR("STREAMER") << "Error parsing async message packet: " << ex.what() ;
return;
}
double tick_rate = get_tick_rate();
if (tick_rate == rfnoc::tick_node_ctrl::RATE_UNDEFINED) {
tick_rate = 1;
}
//fill in the async metadata
async_metadata_t metadata;
load_metadata_from_buff(
endian_conv,
metadata,
if_packet_info,
packet_buff,
tick_rate,
async_info->stream_channel
);
// Filter out any flow control messages and cache the rest
if (metadata.event_code == DEVICE3_ASYNC_EVENT_CODE_FLOW_CTRL)
{
UHD_LOG_ERROR(
"TX ASYNC",
"Unexpected flow control message found in async message handling"
);
} else {
async_info->async_queue->push_with_pop_on_full(metadata);
metadata.channel = async_info->device_channel;
async_info->old_async_queue->push_with_pop_on_full(metadata);
standard_async_msg_prints(metadata);
}
}
bool device3_impl::recv_async_msg(
async_metadata_t &async_metadata, double timeout
)
{
return _async_md->pop_with_timed_wait(async_metadata, timeout);
}
/***********************************************************************
* Receive streamer
**********************************************************************/
void device3_impl::update_rx_streamers(double /* rate */)
{
for(const std::string &block_id: _rx_streamers.keys()) {
UHD_RX_STREAMER_LOG() << "updating RX streamer to " << block_id;
boost::shared_ptr<sph::recv_packet_streamer> my_streamer =
boost::dynamic_pointer_cast<sph::recv_packet_streamer>(_rx_streamers[block_id].lock());
if (my_streamer) {
double tick_rate = my_streamer->get_terminator()->get_tick_rate();
if (tick_rate == rfnoc::tick_node_ctrl::RATE_UNDEFINED) {
tick_rate = 1.0;
}
my_streamer->set_tick_rate(tick_rate);
double samp_rate = my_streamer->get_terminator()->get_output_samp_rate();
if (samp_rate == rfnoc::rate_node_ctrl::RATE_UNDEFINED) {
samp_rate = 1.0;
}
double scaling = my_streamer->get_terminator()->get_output_scale_factor();
if (scaling == rfnoc::scalar_node_ctrl::SCALE_UNDEFINED) {
scaling = 1/32767.;
}
UHD_RX_STREAMER_LOG() << " New tick_rate == " << tick_rate << " New samp_rate == " << samp_rate << " New scaling == " << scaling ;
my_streamer->set_tick_rate(tick_rate);
my_streamer->set_samp_rate(samp_rate);
my_streamer->set_scale_factor(scaling);
}
}
}
rx_streamer::sptr device3_impl::get_rx_stream(const stream_args_t &args_)
{
boost::mutex::scoped_lock lock(_transport_setup_mutex);
stream_args_t args = sanitize_stream_args(args_);
// I. Generate the channel list
std::vector<uhd::rfnoc::block_id_t> chan_list;
std::vector<device_addr_t> chan_args;
generate_channel_list(args, chan_list, chan_args);
// Note: All 'args.args' are merged into chan_args now.
// II. Iterate over all channels
boost::shared_ptr<sph::recv_packet_streamer> my_streamer;
// The terminator's lifetime is coupled to the streamer.
// There is only one terminator. If the streamer has multiple channels,
// it will be connected to each upstream block.
rfnoc::rx_stream_terminator::sptr recv_terminator = rfnoc::rx_stream_terminator::make();
for (size_t stream_i = 0; stream_i < chan_list.size(); stream_i++) {
// Get block ID and mb index
uhd::rfnoc::block_id_t block_id = chan_list[stream_i];
UHD_RX_STREAMER_LOG() << "chan " << stream_i << " connecting to " << block_id ;
// Update args so args.args is always valid for this particular channel:
args.args = chan_args[stream_i];
size_t mb_index = block_id.get_device_no();
size_t suggested_block_port = args.args.cast<size_t>("block_port", rfnoc::ANY_PORT);
// Access to this channel's block control
uhd::rfnoc::source_block_ctrl_base::sptr blk_ctrl =
boost::dynamic_pointer_cast<uhd::rfnoc::source_block_ctrl_base>(get_block_ctrl(block_id));
// Connect the terminator with this channel's block.
size_t block_port = blk_ctrl->connect_downstream(
recv_terminator,
suggested_block_port,
args.args
);
const size_t terminator_port = recv_terminator->connect_upstream(blk_ctrl);
blk_ctrl->set_downstream_port(block_port, terminator_port);
recv_terminator->set_upstream_port(terminator_port, block_port);
// Check if the block connection is compatible (spp and item type)
check_stream_sig_compatible(blk_ctrl->get_output_signature(block_port), args, "RX");
// Setup the DSP transport hints
device_addr_t rx_hints = get_rx_hints(mb_index);
//allocate sid and create transport
uhd::sid_t stream_address = blk_ctrl->get_address(block_port);
UHD_RX_STREAMER_LOG() << "creating rx stream " << rx_hints.to_string() ;
both_xports_t xport = make_transport(stream_address, RX_DATA, rx_hints);
UHD_RX_STREAMER_LOG() << std::hex << "data_sid = " << xport.send_sid << std::dec << " actual recv_buff_size = " << xport.recv_buff_size ;
// Configure the block
blk_ctrl->set_destination(xport.send_sid.get_src(), block_port);
blk_ctrl->sr_write(uhd::rfnoc::SR_RESP_OUT_DST_SID, xport.send_sid.get_src(), block_port);
UHD_RX_STREAMER_LOG() << "resp_out_dst_sid == " << xport.send_sid.get_src() ;
// Find all upstream radio nodes and set their response in SID to the host
std::vector<boost::shared_ptr<uhd::rfnoc::radio_ctrl> > upstream_radio_nodes = blk_ctrl->find_upstream_node<uhd::rfnoc::radio_ctrl>();
UHD_RX_STREAMER_LOG() << "Number of upstream radio nodes: " << upstream_radio_nodes.size();
for(const boost::shared_ptr<uhd::rfnoc::radio_ctrl> &node: upstream_radio_nodes) {
node->sr_write(uhd::rfnoc::SR_RESP_OUT_DST_SID, xport.send_sid.get_src(), block_port);
}
// To calculate the max number of samples per packet, we assume the maximum header length
// to avoid fragmentation should the entire header be used.
const size_t bpp = xport.recv->get_recv_frame_size() - stream_options.rx_max_len_hdr; // bytes per packet
const size_t bpi = convert::get_bytes_per_item(args.otw_format); // bytes per item
const size_t spp = std::min(args.args.cast<size_t>("spp", bpp/bpi), bpp/bpi); // samples per packet
UHD_RX_STREAMER_LOG() << "spp == " << spp ;
//make the new streamer given the samples per packet
if (not my_streamer)
my_streamer = boost::make_shared<sph::recv_packet_streamer>(spp);
my_streamer->resize(chan_list.size());
//init some streamer stuff
std::string conv_endianness;
if (xport.endianness == ENDIANNESS_BIG) {
my_streamer->set_vrt_unpacker(&vrt::chdr::if_hdr_unpack_be);
conv_endianness = "be";
} else {
my_streamer->set_vrt_unpacker(&vrt::chdr::if_hdr_unpack_le);
conv_endianness = "le";
}
//set the converter
uhd::convert::id_type id;
id.input_format = args.otw_format + "_item32_" + conv_endianness;
id.num_inputs = 1;
id.output_format = args.cpu_format;
id.num_outputs = 1;
my_streamer->set_converter(id);
//flow control setup
const size_t pkt_size = spp * bpi + stream_options.rx_max_len_hdr;
const size_t fc_window = get_rx_flow_control_window(pkt_size, xport.recv_buff_size, rx_hints);
const size_t fc_handle_window = std::max<size_t>(1, fc_window / stream_options.rx_fc_request_freq);
UHD_RX_STREAMER_LOG()<< "Flow Control Window (minus one) = " << fc_window-1 << ", Flow Control Handler Window = " << fc_handle_window ;
blk_ctrl->configure_flow_control_out(
fc_window-1, // Leave one space for overrun packets TODO make this obsolete
block_port
);
//Give the streamer a functor to get the recv_buffer
//bind requires a zero_copy_if::sptr to add a streamer->xport lifetime dependency
my_streamer->set_xport_chan_get_buff(
stream_i,
boost::bind(&zero_copy_if::get_recv_buff, xport.recv, _1),
true /*flush*/
);
//Give the streamer a functor to handle overruns
//bind requires a weak_ptr to break the a streamer->streamer circular dependency
//Using "this" is OK because we know that this device3_impl will outlive the streamer
my_streamer->set_overflow_handler(
stream_i,
boost::bind(
&uhd::rfnoc::rx_stream_terminator::handle_overrun, recv_terminator,
boost::weak_ptr<uhd::rx_streamer>(my_streamer), stream_i
)
);
//Give the streamer a functor to send flow control messages
//handle_rx_flowctrl is static and has no lifetime issues
boost::shared_ptr<rx_fc_cache_t> fc_cache(new rx_fc_cache_t());
my_streamer->set_xport_handle_flowctrl(
stream_i, boost::bind(
&handle_rx_flowctrl,
xport.send_sid,
xport.send,
xport.endianness,
fc_cache,
_1
),
fc_handle_window,
true/*init*/
);
//Give the streamer a functor issue stream cmd
//bind requires a shared pointer to add a streamer->framer lifetime dependency
my_streamer->set_issue_stream_cmd(
stream_i,
boost::bind(&uhd::rfnoc::source_block_ctrl_base::issue_stream_cmd, blk_ctrl, _1, block_port)
);
// Tell the streamer which SID is valid for this channel
my_streamer->set_xport_chan_sid(stream_i, true, xport.send_sid);
}
// Connect the terminator to the streamer
my_streamer->set_terminator(recv_terminator);
// Notify all blocks in this chain that they are connected to an active streamer
recv_terminator->set_rx_streamer(true, 0);
// Store a weak pointer to prevent a streamer->device3_impl->streamer circular dependency.
// Note that we store the streamer only once, and use its terminator's
// ID to do so.
_rx_streamers[recv_terminator->unique_id()] = boost::weak_ptr<sph::recv_packet_streamer>(my_streamer);
// Sets tick rate, samp rate and scaling on this streamer.
// A registered terminator is required to do this.
update_rx_streamers();
post_streamer_hooks(RX_DIRECTION);
return my_streamer;
}
/***********************************************************************
* Transmit streamer
**********************************************************************/
void device3_impl::update_tx_streamers(double /* rate */)
{
for(const std::string &block_id: _tx_streamers.keys()) {
UHD_TX_STREAMER_LOG() << "updating TX streamer: " << block_id;
boost::shared_ptr<sph::send_packet_streamer> my_streamer =
boost::dynamic_pointer_cast<sph::send_packet_streamer>(_tx_streamers[block_id].lock());
if (my_streamer) {
double tick_rate = my_streamer->get_terminator()->get_tick_rate();
if (tick_rate == rfnoc::tick_node_ctrl::RATE_UNDEFINED) {
tick_rate = 1.0;
}
double samp_rate = my_streamer->get_terminator()->get_input_samp_rate();
if (samp_rate == rfnoc::rate_node_ctrl::RATE_UNDEFINED) {
samp_rate = 1.0;
}
double scaling = my_streamer->get_terminator()->get_input_scale_factor();
if (scaling == rfnoc::scalar_node_ctrl::SCALE_UNDEFINED) {
scaling = 32767.;
}
UHD_TX_STREAMER_LOG() << "New tick_rate == " << tick_rate << " New samp_rate == " << samp_rate << " New scaling == " << scaling ;
my_streamer->set_tick_rate(tick_rate);
my_streamer->set_samp_rate(samp_rate);
my_streamer->set_scale_factor(scaling);
}
}
}
// This class manages the lifetime of the TX async message handler task and transports
class device3_send_packet_streamer : public sph::send_packet_streamer
{
public:
device3_send_packet_streamer(const size_t max_num_samps) : sph::send_packet_streamer(max_num_samps) {};
~device3_send_packet_streamer() {
_tx_async_msg_task.reset(); // Make sure the async task is destroyed before the transports
};
both_xports_t _xport;
both_xports_t _async_xport;
task::sptr _tx_async_msg_task;
};
tx_streamer::sptr device3_impl::get_tx_stream(const uhd::stream_args_t &args_)
{
boost::mutex::scoped_lock lock(_transport_setup_mutex);
stream_args_t args = sanitize_stream_args(args_);
// I. Generate the channel list
std::vector<uhd::rfnoc::block_id_t> chan_list;
std::vector<device_addr_t> chan_args;
generate_channel_list(args, chan_list, chan_args);
// Note: All 'args.args' are merged into chan_args now.
//shared async queue for all channels in streamer
boost::shared_ptr<async_md_type> async_md(new async_md_type(1000/*messages deep*/));
// II. Iterate over all channels
boost::shared_ptr<device3_send_packet_streamer> my_streamer;
// The terminator's lifetime is coupled to the streamer.
// There is only one terminator. If the streamer has multiple channels,
// it will be connected to each downstream block.
rfnoc::tx_stream_terminator::sptr send_terminator = rfnoc::tx_stream_terminator::make();
for (size_t stream_i = 0; stream_i < chan_list.size(); stream_i++) {
// Get block ID and mb index
uhd::rfnoc::block_id_t block_id = chan_list[stream_i];
// Update args so args.args is always valid for this particular channel:
args.args = chan_args[stream_i];
size_t mb_index = block_id.get_device_no();
size_t suggested_block_port = args.args.cast<size_t>("block_port", rfnoc::ANY_PORT);
// Access to this channel's block control
uhd::rfnoc::sink_block_ctrl_base::sptr blk_ctrl =
boost::dynamic_pointer_cast<uhd::rfnoc::sink_block_ctrl_base>(get_block_ctrl(block_id));
// Connect the terminator with this channel's block.
// This will throw if the connection is not possible.
size_t block_port = blk_ctrl->connect_upstream(
send_terminator,
suggested_block_port,
args.args
);
const size_t terminator_port = send_terminator->connect_downstream(blk_ctrl);
blk_ctrl->set_upstream_port(block_port, terminator_port);
send_terminator->set_downstream_port(terminator_port, block_port);
// Check if the block connection is compatible (spp and item type)
check_stream_sig_compatible(blk_ctrl->get_input_signature(block_port), args, "TX");
// Setup the dsp transport hints
device_addr_t tx_hints = get_tx_hints(mb_index);
//allocate sid and create transport
uhd::sid_t stream_address = blk_ctrl->get_address(block_port);
UHD_TX_STREAMER_LOG() << "creating tx stream " << tx_hints.to_string() ;
both_xports_t xport = make_transport(stream_address, TX_DATA, tx_hints);
both_xports_t async_xport = make_transport(stream_address, ASYNC_MSG, device_addr_t(""));
UHD_TX_STREAMER_LOG() << std::hex << "[TX Streamer] data_sid = " << xport.send_sid << std::dec << std::endl;
// To calculate the max number of samples per packet, we assume the maximum header length
// to avoid fragmentation should the entire header be used.
const size_t bpp = tx_hints.cast<size_t>("bpp", xport.send->get_send_frame_size()) - stream_options.tx_max_len_hdr;
const size_t bpi = convert::get_bytes_per_item(args.otw_format); // bytes per item
const size_t spp = std::min(args.args.cast<size_t>("spp", bpp/bpi), bpp/bpi); // samples per packet
UHD_TX_STREAMER_LOG() << "spp == " << spp ;
//make the new streamer given the samples per packet
if (not my_streamer)
my_streamer = boost::make_shared<device3_send_packet_streamer>(spp);
my_streamer->resize(chan_list.size());
my_streamer->_xport = xport;
my_streamer->_async_xport = async_xport;
//init some streamer stuff
std::string conv_endianness;
if (xport.endianness == ENDIANNESS_BIG) {
my_streamer->set_vrt_packer(&vrt::chdr::if_hdr_pack_be);
conv_endianness = "be";
} else {
my_streamer->set_vrt_packer(&vrt::chdr::if_hdr_pack_le);
conv_endianness = "le";
}
//set the converter
uhd::convert::id_type id;
id.input_format = args.cpu_format;
id.num_inputs = 1;
id.output_format = args.otw_format + "_item32_" + conv_endianness;
id.num_outputs = 1;
my_streamer->set_converter(id);
//flow control setup
const size_t pkt_size = spp * bpi + stream_options.tx_max_len_hdr;
// For flow control, this value is used to determine the window size in *packets*
size_t fc_window = get_tx_flow_control_window(
pkt_size, // This is the maximum packet size
blk_ctrl->get_fifo_size(block_port),
tx_hints // This can override the value reported by the block!
);
const size_t fc_handle_window = std::max<size_t>(1, fc_window / stream_options.tx_fc_response_freq);
UHD_TX_STREAMER_LOG() << "Flow Control Window = " << fc_window << ", Flow Control Handler Window = " << fc_handle_window ;
blk_ctrl->configure_flow_control_in(
stream_options.tx_fc_response_cycles,
fc_handle_window, /*pkts*/
block_port
);
boost::shared_ptr<async_tx_info_t> async_tx_info(new async_tx_info_t());
async_tx_info->stream_channel = args.channels[stream_i];
async_tx_info->device_channel = mb_index;
async_tx_info->async_queue = async_md;
async_tx_info->old_async_queue = _async_md;
boost::function<double(void)> tick_rate_retriever = boost::bind(
&rfnoc::tick_node_ctrl::get_tick_rate,
send_terminator,
std::set< rfnoc::node_ctrl_base::sptr >() // Need to specify default args with bind
);
my_streamer->_tx_async_msg_task = task::make(
boost::bind(
&handle_tx_async_msgs,
async_tx_info,
my_streamer->_async_xport.recv,
xport.endianness,
tick_rate_retriever
),
"tx_async_msgs_task"
);
blk_ctrl->sr_write(uhd::rfnoc::SR_CLEAR_RX_FC, 0xc1ea12, block_port);
blk_ctrl->sr_write(uhd::rfnoc::SR_RESP_IN_DST_SID, my_streamer->_async_xport.recv_sid.get_dst(), block_port);
UHD_TX_STREAMER_LOG() << "resp_in_dst_sid == " << boost::format("0x%04X") % xport.recv_sid.get_dst() ;
// FIXME: Once there is a better way to map the radio block and port
// to the channel or another way to receive asynchronous messages that
// is not in-band, this should be removed.
if (args.args.has_key("radio_id") and args.args.has_key("radio_port"))
{
// Find downstream radio node and set the response SID to the host
uhd::rfnoc::block_id_t radio_id(args.args["radio_id"]);
size_t radio_port = args.args.cast<size_t>("radio_port", 0);
std::vector<boost::shared_ptr<uhd::rfnoc::radio_ctrl> > downstream_radio_nodes = blk_ctrl->find_downstream_node<uhd::rfnoc::radio_ctrl>();
UHD_TX_STREAMER_LOG() << "Number of downstream radio nodes: " << downstream_radio_nodes.size();
for(const boost::shared_ptr<uhd::rfnoc::radio_ctrl> &node: downstream_radio_nodes) {
if (node->get_block_id() == radio_id) {
node->sr_write(uhd::rfnoc::SR_RESP_IN_DST_SID, my_streamer->_async_xport.recv_sid.get_dst(), radio_port);
}
}
} else {
// FIXME: This block is preserved for legacy behavior where the
// radio_id and radio_port are not provided. It fails if more
// than one radio is visible downstream or the port on the radio
// is not the same as the block_port. It should be removed as
// soon as possible.
// Find all downstream radio nodes and set their response SID to the host
std::vector<boost::shared_ptr<uhd::rfnoc::radio_ctrl> > downstream_radio_nodes = blk_ctrl->find_downstream_node<uhd::rfnoc::radio_ctrl>();
UHD_TX_STREAMER_LOG() << "Number of downstream radio nodes: " << downstream_radio_nodes.size();
for(const boost::shared_ptr<uhd::rfnoc::radio_ctrl> &node: downstream_radio_nodes) {
node->sr_write(uhd::rfnoc::SR_RESP_IN_DST_SID, my_streamer->_async_xport.recv_sid.get_dst(), block_port);
}
}
// Add flow control
boost::shared_ptr<tx_fc_cache_t> fc_cache(new tx_fc_cache_t(fc_window));
my_streamer->_xport.send = zero_copy_flow_ctrl::make(
my_streamer->_xport.send,
boost::bind(
&tx_flow_ctrl,
fc_cache,
my_streamer->_xport.recv,
(xport.endianness == ENDIANNESS_BIG ? uhd::ntohx<uint32_t> : uhd::wtohx<uint32_t>),
(xport.endianness == ENDIANNESS_BIG ? vrt::chdr::if_hdr_unpack_be : vrt::chdr::if_hdr_unpack_le),
_1),
NULL);
//Give the streamer a functor to get the send buffer
my_streamer->set_xport_chan_get_buff(
stream_i,
boost::bind(&zero_copy_if::get_send_buff, my_streamer->_xport.send, _1)
);
//Give the streamer a functor handled received async messages
my_streamer->set_async_receiver(
boost::bind(&async_md_type::pop_with_timed_wait, async_md, _1, _2)
);
my_streamer->set_xport_chan_sid(stream_i, true, xport.send_sid);
// CHDR does not support trailers
my_streamer->set_enable_trailer(false);
}
// Connect the terminator to the streamer
my_streamer->set_terminator(send_terminator);
// Notify all blocks in this chain that they are connected to an active streamer
send_terminator->set_tx_streamer(true, 0);
// Store a weak pointer to prevent a streamer->device3_impl->streamer circular dependency.
// Note that we store the streamer only once, and use its terminator's
// ID to do so.
_tx_streamers[send_terminator->unique_id()] = boost::weak_ptr<sph::send_packet_streamer>(my_streamer);
// Sets tick rate, samp rate and scaling on this streamer
// A registered terminator is required to do this.
update_tx_streamers();
post_streamer_hooks(TX_DIRECTION);
return my_streamer;
}
|