aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/dboard/zbx/zbx_expert.cpp
blob: ae39814ff8bb3a31ce2a227725320a3ee01e96be (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
//
// Copyright 2020 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <uhdlib/usrp/dboard/zbx/zbx_expert.hpp>
#include <uhdlib/utils/interpolation.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <algorithm>
#include <array>

using namespace uhd;

namespace uhd { namespace usrp { namespace zbx {

namespace {

/*********************************************************************
 *   Misc/calculative helper functions
 **********************************************************************/
bool _is_band_highband(const tune_map_item_t tune_setting)
{
    // Lowband frequency paths do not utilize an RF filter
    return tune_setting.rf_fir == 0;
}

tune_map_item_t _get_tune_settings(const double freq, const uhd::direction_t trx)
{
    auto tune_setting = trx == RX_DIRECTION ? rx_tune_map.begin() : tx_tune_map.begin();

    auto tune_settings_end = trx == RX_DIRECTION ? rx_tune_map.end() : tx_tune_map.end();

    for (; tune_setting != tune_settings_end; ++tune_setting) {
        if (tune_setting->max_band_freq >= freq) {
            return *tune_setting;
        }
    }
    // Didn't find a tune setting.  This frequency should have been clipped, this is an
    // internal error.
    UHD_THROW_INVALID_CODE_PATH();
}

bool _is_band_inverted(const uhd::direction_t trx,
    const double if2_freq,
    const double rfdc_rate,
    const tune_map_item_t tune_setting)
{
    const bool is_if2_nyquist2 = if2_freq > (rfdc_rate / 2);

    // We count the number of inversions introduced by the signal chain, starting
    // at the RFDC
    const int num_inversions =
        // If we're in the second Nyquist zone, we're inverted
        int(is_if2_nyquist2) +
        // LO2 mixer may invert
        int(tune_setting.mix2_m == -1) +
        // LO1 mixer can only invert in the lowband
        int(!_is_band_highband(tune_setting) && tune_setting.mix1_m == -1);

    // In the RX direction, an extra inversion is needed
    // TODO: We don't know where this is coming from
    const bool num_inversions_is_odd = num_inversions % 2 != 0;
    if (trx == RX_DIRECTION) {
        return !num_inversions_is_odd;
    } else {
        return num_inversions_is_odd;
    }
}

double _calc_lo2_freq(
    const double if1_freq, const double if2_freq, const int mix2_m, const int mix2_n)
{
    return (if2_freq - (mix2_m * if1_freq)) / mix2_n;
}

double _calc_if2_freq(
    const double if1_freq, const double lo2_freq, const int mix2_m, const int mix2_n)
{
    return mix2_n * lo2_freq + mix2_m * if1_freq;
}

std::string _get_trx_string(const direction_t dir)
{
    if (dir == RX_DIRECTION) {
        return "rx";
    } else if (dir == TX_DIRECTION) {
        return "tx";
    } else {
        UHD_THROW_INVALID_CODE_PATH();
    }
}

// For various RF performance considerations (such as spur reduction), different bands
// vary between using fixed IF1 and/or IF2 or using variable IF1 and/or IF2. Bands with a
// fixed IF1/IF2 have ifX_freq_min == IFX_freq_max, and _calc_ifX_freq() will return that
// single value. Bands with variable IF1/IF2 will shift the IFX based on where in the RF
// band we are tuning by using linear interpolation. (if1 calculation takes place only if
// tune frequency is lowband)
double _calc_if1_freq(const double tune_freq, const tune_map_item_t tune_setting)
{
    if (tune_setting.if1_freq_min == tune_setting.if1_freq_max) {
        return tune_setting.if1_freq_min;
    }

    return uhd::math::linear_interp(tune_freq,
        tune_setting.min_band_freq,
        tune_setting.if1_freq_min,
        tune_setting.max_band_freq,
        tune_setting.if1_freq_max);
}

double _calc_ideal_if2_freq(const double tune_freq, const tune_map_item_t tune_setting)
{
    // linear_interp() wants to interpolate and will throw if these are identical:
    if (tune_setting.if2_freq_min == tune_setting.if2_freq_max) {
        return tune_setting.if2_freq_min;
    }

    return uhd::math::linear_interp(tune_freq,
        tune_setting.min_band_freq,
        tune_setting.if2_freq_min,
        tune_setting.max_band_freq,
        tune_setting.if2_freq_max);
}

} // namespace

/*!---------------------------------------------------------
 * EXPERT RESOLVE FUNCTIONS
 *
 * This sections contains all expert resolve functions.
 * These methods are triggered by any of the bound accessors becoming "dirty",
 * or changing value
 * --------------------------------------------------------
 */
void zbx_scheduling_expert::resolve()
{
    // We currently have no fancy scheduling, but here is where we'd add it if
    // we need to do that (e.g., plan out SYNC pulse timing vs. NCO timing etc.)
    _frontend_time = _command_time;
}

void zbx_freq_fe_expert::resolve()
{
    const double tune_freq = ZBX_FREQ_RANGE.clip(_desired_frequency);
    _tune_settings         = _get_tune_settings(tune_freq, _trx);

    // Set mixer values so the backend expert knows how to calculate final frequency
    _mixer1_m  = _tune_settings.mix1_m;
    _mixer1_n  = _tune_settings.mix1_n;
    _mixer2_m  = _tune_settings.mix2_m;
    _mixer2_n  = _tune_settings.mix2_n;

    _is_highband = _is_band_highband(_tune_settings);
    _lo1_enabled = !_is_highband.get();

    double if1_freq      = tune_freq;
    const double lo_step = _lo_freq_range.step();
    // If we need to apply an offset to avoid injection locking, we need to
    // offset in different directions for different channels on the same zbx
    const double lo_offset_sign = (_chan == 0) ? -1 : 1;
    // In high band, LO1 is not needed (the signal is already at a high enough
    // frequency for the second stage)
    if (_lo1_enabled) {
        // Calculate the ideal IF1:
        if1_freq = _calc_if1_freq(tune_freq, _tune_settings);
        // We calculate the LO1 frequency by first shifting the tune frequency to the
        // desired IF, and then applying an offset such that CH0 and CH1 tune to distinct
        // LO1 frequencies: This is done to prevent the LO's from interfering with each
        // other in a phenomenon known as injection locking.
        const double lo1_freq =
            if1_freq + (_tune_settings.mix1_n * tune_freq) + (lo_offset_sign * lo_step);
        // Now, quantize the LO frequency to the nearest valid value:
        _desired_lo1_frequency = _lo_freq_range.clip(lo1_freq, true);
        // Because LO1 frequency probably changed during quantization, we simply
        // re-calculate the now-valid IF1 (the following equation is the same as
        // the LO1 frequency calculation, but solved for if1_freq):
        if1_freq = _desired_lo1_frequency - (_tune_settings.mix1_n * tune_freq);
    }

    _lo2_enabled = true;
    // Calculate ideal IF2 frequency:
    const double if2_freq = _calc_ideal_if2_freq(tune_freq, _tune_settings);
    // Calculate LO2 frequency from that:
    _desired_lo2_frequency = _calc_lo2_freq(if1_freq, if2_freq, _mixer2_m, _mixer2_n);
    // Similar to LO1, apply an offset such that CH0 and CH1 tune to distinct LO2
    // frequencies to prevent potential interference between CH0 and CH1 LO2's from
    // injection locking: In highband (LO1 disabled), this must explicitly be done below.
    // In lowband (LO1 enabled), the LO1 will have already been shifted and, as a result,
    // the LO2's will have already been shifted to compensate for LO1 in previous
    // function. Note that in lowband, the LO1's and LO2's will be offset between CH0 and
    // CH1; however, they will be offset in opposite direction such that the NCO frequency
    // will be the same between CH0 and CH1. This is not the case for highband (only LO2
    // and they must be offset).
    if (!_lo1_enabled) {
        _desired_lo2_frequency = _desired_lo2_frequency + (lo_offset_sign * lo_step);
    }
    // Now, quantize the LO frequency to the nearest valid value:
    _desired_lo2_frequency = _lo_freq_range.clip(_desired_lo2_frequency, true);
    // Calculate actual IF2 frequency from LO2 and IF1 frequencies:
    _desired_if2_frequency =
        _calc_if2_freq(if1_freq, _desired_lo2_frequency, _mixer2_m, _mixer2_n);

    // If the frequency is in a different tuning band, we need to switch filters
    _rf_filter  = _tune_settings.rf_fir;
    _if1_filter = _tune_settings.if1_fir;
    _if2_filter = _tune_settings.if2_fir;
    _band_inverted =
        _is_band_inverted(_trx, _desired_if2_frequency, _rfdc_rate, _tune_settings);
}


void zbx_freq_be_expert::resolve()
{
    if (_is_highband) {
        _coerced_frequency =
            ((_coerced_if2_frequency - (_coerced_lo2_frequency * _mixer2_n)) / _mixer2_m);
    } else {
        _coerced_frequency =
            (_coerced_lo1_frequency
                + ((_coerced_lo2_frequency * _mixer2_n - _coerced_if2_frequency)
                    / _mixer2_m))
            / _mixer1_n;
    }

    // Users may change individual settings (LO frequencies, if2 frequencies) and throw
    // the output frequency out of range. We have to stop here so that the gain API
    // doesn't panic (Clipping here would have no effect on the actual output signal)
    using namespace uhd::math::fp_compare;
    if (fp_compare_delta<double>(_coerced_frequency.get()) < ZBX_MIN_FREQ
        || fp_compare_delta<double>(_coerced_frequency.get()) > ZBX_MAX_FREQ) {
        UHD_LOG_WARNING(get_name(),
            "Resulting coerced frequency " << _coerced_frequency.get()
                                           << " is out of range!");
    }
}

void zbx_lo_expert::resolve()
{
    if (_test_mode_enabled.is_dirty()) {
        _lo_ctrl->set_lo_test_mode_enabled(_test_mode_enabled);
    }

    if (_set_is_enabled.is_dirty()) {
        _lo_ctrl->set_lo_port_enabled(_set_is_enabled);
    }

    if (_set_is_enabled && _desired_lo_frequency.is_dirty()) {
        const double clipped_lo_freq = std::max(
            LMX2572_MIN_FREQ, std::min(_desired_lo_frequency.get(), LMX2572_MAX_FREQ));
        _coerced_lo_frequency = _lo_ctrl->set_lo_freq(clipped_lo_freq);
    }
}

void zbx_gain_coercer_expert::resolve()
{
    _gain_coerced = _valid_range.clip(_gain_desired, true);
}

void zbx_tx_gain_expert::resolve()
{
    if (_profile != ZBX_GAIN_PROFILE_DEFAULT) {
        return;
    }

    // If a user passes in a gain value, we have to set the Power API tracking mode
    if (_gain_in.is_dirty()) {
        _power_mgr->set_tracking_mode(uhd::usrp::pwr_cal_mgr::tracking_mode::TRACK_GAIN);
    }

    // Now we do the overall gain setting
    // Look up DSA values by gain
    _gain_out             = ZBX_TX_GAIN_RANGE.clip(_gain_in, true);
    const size_t gain_idx = _gain_out / TX_GAIN_STEP;
    // Clip _frequency to valid ZBX range to avoid errors in the scenario when user
    // manually configures LO frequencies and causes an illegal overall frequency
    auto dsa_settings =
        _dsa_cal->get_dsa_setting(ZBX_FREQ_RANGE.clip(_frequency), gain_idx);
    // Now write to downstream nodes, converting attenuations to gains:
    _dsa1 = static_cast<double>(ZBX_TX_DSA_MAX_ATT - dsa_settings[0]);
    _dsa2 = static_cast<double>(ZBX_TX_DSA_MAX_ATT - dsa_settings[1]);
    // Convert amp index to gain
    _amp_gain = ZBX_TX_AMP_GAIN_MAP.at(static_cast<tx_amp>(dsa_settings[2]));
}

void zbx_rx_gain_expert::resolve()
{
    if (_profile != ZBX_GAIN_PROFILE_DEFAULT) {
        return;
    }

    // If a user passes in a gain value, we have to set the Power API tracking mode
    if (_gain_in.is_dirty()) {
        _power_mgr->set_tracking_mode(uhd::usrp::pwr_cal_mgr::tracking_mode::TRACK_GAIN);
    }

    // Now we do the overall gain setting
    if (_frequency.get() <= RX_LOW_FREQ_MAX_GAIN_CUTOFF) {
        _gain_out = ZBX_RX_LOW_FREQ_GAIN_RANGE.clip(_gain_in, true);
    } else {
        _gain_out = ZBX_RX_GAIN_RANGE.clip(_gain_in, true);
    }
    // Now we do the overall gain setting
    // Look up DSA values by gain
    const size_t gain_idx = _gain_out / RX_GAIN_STEP;
    // Clip _frequency to valid ZBX range to avoid errors in the scenario when user
    // manually configures LO frequencies and causes an illegal overall frequency
    auto dsa_settings =
        _dsa_cal->get_dsa_setting(ZBX_FREQ_RANGE.clip(_frequency), gain_idx);
    // Now write to downstream nodes, converting attenuation to gains:
    _dsa1  = ZBX_RX_DSA_MAX_ATT - dsa_settings[0];
    _dsa2  = ZBX_RX_DSA_MAX_ATT - dsa_settings[1];
    _dsa3a = ZBX_RX_DSA_MAX_ATT - dsa_settings[2];
    _dsa3b = ZBX_RX_DSA_MAX_ATT - dsa_settings[3];
}

void zbx_tx_programming_expert::resolve()
{
    if (_profile.is_dirty()) {
        if (_profile == ZBX_GAIN_PROFILE_DEFAULT || _profile == ZBX_GAIN_PROFILE_MANUAL
            || _profile == ZBX_GAIN_PROFILE_CPLD) {
            _cpld->set_atr_mode(_chan,
                zbx_cpld_ctrl::atr_mode_target::DSA,
                zbx_cpld_ctrl::atr_mode::CLASSIC_ATR);
        } else {
            _cpld->set_atr_mode(_chan,
                zbx_cpld_ctrl::atr_mode_target::DSA,
                zbx_cpld_ctrl::atr_mode::SW_DEFINED);
        }
    }

    // If we're in any of the table modes, then we don't write DSA and amp values
    // A note on caching: The CPLD object caches state, and only pokes the CPLD
    // if it's changed. However, all DSAs are on the same register. That means
    // the DSA register changes, all DSA values written to the CPLD will come
    // from the input data nodes to this worker node. This can overwrite DSA
    // values if the cached version and the actual value on the CPLD differ.
    if (_profile == ZBX_GAIN_PROFILE_DEFAULT || _profile == ZBX_GAIN_PROFILE_MANUAL) {
        // Convert gains back to attenuation
        zbx_cpld_ctrl::tx_dsa_type dsa_settings = {
            uhd::narrow_cast<uint32_t>(ZBX_TX_DSA_MAX_ATT - _dsa1.get()),
            uhd::narrow_cast<uint32_t>(ZBX_TX_DSA_MAX_ATT - _dsa2.get())};
        _cpld->set_tx_gain_switches(_chan, ATR_ADDR_TX, dsa_settings);
        _cpld->set_tx_gain_switches(_chan, ATR_ADDR_XX, dsa_settings);
    }

    // If frequency changed, we might have changed bands and the CPLD dsa tables need to
    // be reloaded
    // TODO: This is a major hack, and these tables should be loaded outside of the
    // tuning call.  This means every tuning request involves a large amount of CPLD
    // writes.
    // We only write when we aren't using a command time, otherwise all those CPLD
    // commands will line up in the CPLD command queue, and diminish any purpose
    // of timed commands in the first place
    // Clip _frequency to valid ZBX range to avoid errors in the scenario when user
    // manually configures LO frequencies and causes an illegal overall frequency
    if (_command_time == 0.0) {
        _cpld->update_tx_dsa_settings(
            _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 0 /*dsa1*/),
            _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 1 /*dsa2*/));
    }

    for (const size_t idx : ATR_ADDRS) {
        _cpld->set_lo_source(idx,
            zbx_lo_ctrl::lo_string_to_enum(TX_DIRECTION, _chan, ZBX_LO1),
            _lo1_source);
        _cpld->set_lo_source(idx,
            zbx_lo_ctrl::lo_string_to_enum(TX_DIRECTION, _chan, ZBX_LO2),
            _lo2_source);

        _cpld->set_tx_rf_filter(_chan, idx, _rf_filter);
        _cpld->set_tx_if1_filter(_chan, idx, _if1_filter);
        _cpld->set_tx_if2_filter(_chan, idx, _if2_filter);
    }

    // Convert amp gain to amp index
    UHD_ASSERT_THROW(ZBX_TX_GAIN_AMP_MAP.count(_amp_gain.get()));
    const tx_amp amp = ZBX_TX_GAIN_AMP_MAP.at(_amp_gain.get());
    _cpld->set_tx_antenna_switches(_chan, ATR_ADDR_0X, _antenna, tx_amp::BYPASS);
    _cpld->set_tx_antenna_switches(_chan, ATR_ADDR_RX, _antenna, tx_amp::BYPASS);
    _cpld->set_tx_antenna_switches(_chan, ATR_ADDR_TX, _antenna, amp);
    _cpld->set_tx_antenna_switches(_chan, ATR_ADDR_XX, _antenna, amp);

    // We do not update LEDs on switching TX antenna value by definition
}

void zbx_rx_programming_expert::resolve()
{
    if (_profile.is_dirty()) {
        if (_profile == ZBX_GAIN_PROFILE_DEFAULT || _profile == ZBX_GAIN_PROFILE_MANUAL
            || _profile == ZBX_GAIN_PROFILE_CPLD) {
            _cpld->set_atr_mode(_chan,
                zbx_cpld_ctrl::atr_mode_target::DSA,
                zbx_cpld_ctrl::atr_mode::CLASSIC_ATR);
        } else {
            _cpld->set_atr_mode(_chan,
                zbx_cpld_ctrl::atr_mode_target::DSA,
                zbx_cpld_ctrl::atr_mode::SW_DEFINED);
        }
    }

    // If we're in any of the table modes, then we don't write DSA values
    // A note on caching: The CPLD object caches state, and only pokes the CPLD
    // if it's changed. However, all DSAs are on the same register. That means
    // the DSA register changes, all DSA values written to the CPLD will come
    // from the input data nodes to this worker node. This can overwrite DSA
    // values if the cached version and the actual value on the CPLD differ.
    if (_profile == ZBX_GAIN_PROFILE_DEFAULT || _profile == ZBX_GAIN_PROFILE_MANUAL) {
        zbx_cpld_ctrl::rx_dsa_type dsa_settings = {
            uhd::narrow_cast<uint32_t>(ZBX_RX_DSA_MAX_ATT - _dsa1.get()),
            uhd::narrow_cast<uint32_t>(ZBX_RX_DSA_MAX_ATT - _dsa2.get()),
            uhd::narrow_cast<uint32_t>(ZBX_RX_DSA_MAX_ATT - _dsa3a.get()),
            uhd::narrow_cast<uint32_t>(ZBX_RX_DSA_MAX_ATT - _dsa3b.get())};
        _cpld->set_rx_gain_switches(_chan, ATR_ADDR_RX, dsa_settings);
        _cpld->set_rx_gain_switches(_chan, ATR_ADDR_XX, dsa_settings);
    }


    // If frequency changed, we might have changed bands and the CPLD dsa tables need to
    // be reloaded
    // TODO: This is a major hack, and these tables should be loaded outside of the
    // tuning call.  This means every tuning request involves a large amount of CPLD
    // writes.
    // We only write when we aren't using a command time, otherwise all those CPLD
    // commands will line up in the CPLD command queue, and diminish any purpose
    // of timed commands in the first place
    // Clip _frequency to valid ZBX range to avoid errors in the scenario when user
    // manually configures LO frequencies and causes an illegal overall frequency
    if (_command_time == 0.0) {
        _cpld->update_rx_dsa_settings(
            _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 0 /*dsa1*/),
            _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 1 /*dsa2*/),
            _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 2 /*dsa3a*/),
            _dsa_cal->get_band_settings(ZBX_FREQ_RANGE.clip(_frequency), 3 /*dsa3b*/));
    }

    for (const size_t idx : ATR_ADDRS) {
        _cpld->set_lo_source(idx,
            zbx_lo_ctrl::lo_string_to_enum(RX_DIRECTION, _chan, ZBX_LO1),
            _lo1_source);
        _cpld->set_lo_source(idx,
            zbx_lo_ctrl::lo_string_to_enum(RX_DIRECTION, _chan, ZBX_LO2),
            _lo2_source);

        // If using the TX/RX terminal, only configure the ATR RX state since the
        // state of the switch at other times is controlled by TX
        if (_antenna != ANTENNA_TXRX || idx == ATR_ADDR_RX) {
            _cpld->set_rx_antenna_switches(_chan, idx, _antenna);
        }

        _cpld->set_rx_rf_filter(_chan, idx, _rf_filter);
        _cpld->set_rx_if1_filter(_chan, idx, _if1_filter);
        _cpld->set_rx_if2_filter(_chan, idx, _if2_filter);
    }

    _update_leds();
}

void zbx_rx_programming_expert::_update_leds()
{
    if (_atr_mode != zbx_cpld_ctrl::atr_mode::CLASSIC_ATR) {
        return;
    }
    // We default to the RX1 LED for all RX antenna values that are not TX/RX0
    const bool rx_on_trx = _antenna == ANTENNA_TXRX;
    // clang-format off
    // G==Green, R==Red                RX2         TX/RX-G    TX/RX-R
    _cpld->set_leds(_chan, ATR_ADDR_0X, false,      false,     false);
    _cpld->set_leds(_chan, ATR_ADDR_RX, !rx_on_trx, rx_on_trx, false);
    _cpld->set_leds(_chan, ATR_ADDR_TX, false,      false,     true );
    _cpld->set_leds(_chan, ATR_ADDR_XX, !rx_on_trx, rx_on_trx, true );
    // clang-format on
}

void zbx_band_inversion_expert::resolve()
{
    _rpcc->enable_iq_swap(_is_band_inverted.get(), _get_trx_string(_trx), _chan);
}

void zbx_rfdc_freq_expert::resolve()
{
    // Because we can configure both IF2 and the RFDC NCO frequency, these may
    // come into conflict. We choose IF2 over RFDC in that case. In other words
    // the only time we choose the desired RFDC frequency over the IF2 (when in
    // conflict) is when the RFDC freq was changed directly.
    const double desired_rfdc_freq = [&]() -> double {
        if (_rfdc_freq_desired.is_dirty() && !_if2_frequency_desired.is_dirty()) {
            return _rfdc_freq_desired;
        }
        return _if2_frequency_desired;
    }();

    _rfdc_freq_coerced = _rpcc->rfdc_set_nco_freq(
        _get_trx_string(_trx), _db_idx, _chan, desired_rfdc_freq);
    _if2_frequency_coerced = _rfdc_freq_coerced;
}

void zbx_sync_expert::resolve()
{
    // Some local helper consts
    // clang-format off
    constexpr std::array<std::array<zbx_lo_t, 4>, 2> los{{{
        zbx_lo_t::RX0_LO1,
        zbx_lo_t::RX0_LO2,
        zbx_lo_t::TX0_LO1,
        zbx_lo_t::TX0_LO2
    }, {
        zbx_lo_t::RX1_LO1,
        zbx_lo_t::RX1_LO2,
        zbx_lo_t::TX1_LO1,
        zbx_lo_t::TX1_LO2
    }}};
    constexpr std::array<std::array<rfdc_control::rfdc_type, 2>, 2> ncos{{
        {rfdc_control::rfdc_type::RX0, rfdc_control::rfdc_type::TX0},
        {rfdc_control::rfdc_type::RX1, rfdc_control::rfdc_type::TX1}
    }};
    // clang-format on

    // Now do some timing checks
    const std::vector<bool> chan_needs_sync = {_fe_time.at(0) != uhd::time_spec_t::ASAP,
        _fe_time.at(1) != uhd::time_spec_t::ASAP};
    // If there's no command time, no need to synchronize anything
    if (!chan_needs_sync[0] && !chan_needs_sync[1]) {
        UHD_LOG_TRACE(get_name(), "No command time: Skipping phase sync.");
        return;
    }
    const bool times_match = _fe_time.at(0) == _fe_time.at(1);

    // ** Find LOs to synchronize *********************************************
    // Find dirty LOs which need sync'ing
    std::set<zbx_lo_t> los_to_sync;
    for (const size_t chan : ZBX_CHANNELS) {
        if (chan_needs_sync[chan]) {
            for (const auto& lo_idx : los[chan]) {
                if (_lo_freqs.at(lo_idx).is_dirty()) {
                    los_to_sync.insert(lo_idx);
                }
            }
        }
    }

    // ** Find NCOs to synchronize ********************************************
    // Same rules apply as for LOs.
    std::set<rfdc_control::rfdc_type> ncos_to_sync;
    for (const size_t chan : ZBX_CHANNELS) {
        if (chan_needs_sync[chan]) {
            for (const auto& nco_idx : ncos[chan]) {
                if (_nco_freqs.at(nco_idx).is_dirty()) {
                    ncos_to_sync.insert(nco_idx);
                }
            }
        }
    }

    // ** Find ADC/DAC gearboxes to synchronize *******************************
    // Gearboxes are special, because they only need to be synchronized once
    // per session, assuming the command time has been set. Unfortunately we
    // have no way here to know if the timekeeper time was updated, but it is
    // well documented that in order to synchronize devices, one first has to
    // make sure the timekeepers are running in sync (by calling
    // set_time_next_pps() accordingly).
    // The logic we use here is that we will always have to update the NCO when
    // doing a synced tune, so we update all the gearboxes for the NCOs -- but
    // only if they have not yet been synchronized.
    std::set<rfdc_control::rfdc_type> gearboxes_to_sync;
    if (!_adcs_synced) {
        for (const auto rfdc :
            {rfdc_control::rfdc_type::RX0, rfdc_control::rfdc_type::RX1}) {
            if (ncos_to_sync.count(rfdc)) {
                gearboxes_to_sync.insert(rfdc);
                // Technically, they're not synced yet but this saves us from
                // having to look up which RFDCs map to RX again later
                _adcs_synced = true;
            }
        }
    }
    if (!_dacs_synced) {
        for (const auto rfdc :
            {rfdc_control::rfdc_type::TX0, rfdc_control::rfdc_type::TX1}) {
            if (ncos_to_sync.count(rfdc)) {
                gearboxes_to_sync.insert(rfdc);
                // Technically, they're not synced yet but this saves us from
                // having to look up which RFDCs map to TX again later
                _dacs_synced = true;
            }
        }
    }

    // ** Do synchronization **************************************************
    // This is where we orchestrate the sync commands. If sync commands happen
    // at different times, we make sure to send out the earlier one first.
    // If we need to schedule things a bit differently, e.g., we need to
    // manually calculate offsets from the command time so that LO and NCO sync
    // pulses line up, it most likely makes sense to use the scheduling expert
    // for that, and calculate different times for different events there.
    if (times_match) {
        UHD_LOG_TRACE(get_name(),
            "Syncing all channels: " << los_to_sync.size() << " LO(s), "
                                     << ncos_to_sync.size() << " NCO(s), and "
                                     << gearboxes_to_sync.size() << " gearbox(es).")
        if (!gearboxes_to_sync.empty()) {
            _rfdcc->reset_gearboxes(
                std::vector<rfdc_control::rfdc_type>(
                    gearboxes_to_sync.cbegin(), gearboxes_to_sync.cend()),
                _fe_time.at(0).get());
        }
        if (!los_to_sync.empty()) {
            _cpld->pulse_lo_sync(
                0, std::vector<zbx_lo_t>(los_to_sync.cbegin(), los_to_sync.cend()));
        }
        if (!ncos_to_sync.empty()) {
            _rfdcc->reset_ncos(std::vector<rfdc_control::rfdc_type>(
                                   ncos_to_sync.cbegin(), ncos_to_sync.cend()),
                _fe_time.at(0).get());
        }
    } else {
        // If the command times differ, we need to manually reorder the commands
        // such that the channel with the earlier time gets precedence
        const size_t first_sync_chan =
            (times_match || (_fe_time.at(0) <= _fe_time.at(1))) ? 0 : 1;
        const auto sync_order = (first_sync_chan == 0) ? std::vector<size_t>{0, 1}
                                                       : std::vector<size_t>{1, 0};
        for (const size_t chan : sync_order) {
            std::vector<zbx_lo_t> this_chan_los;
            for (const zbx_lo_t lo_idx : los[chan]) {
                if (los_to_sync.count(lo_idx)) {
                    this_chan_los.push_back(lo_idx);
                }
            }

            std::vector<rfdc_control::rfdc_type> this_chan_ncos;
            for (const auto nco_idx : ncos[chan]) {
                if (ncos_to_sync.count(nco_idx)) {
                    this_chan_ncos.push_back(nco_idx);
                }
            }
            std::vector<rfdc_control::rfdc_type> this_chan_gearboxes;
            for (const auto gb_idx : ncos[chan]) {
                if (gearboxes_to_sync.count(gb_idx)) {
                    this_chan_gearboxes.push_back(gb_idx);
                }
            }
            UHD_LOG_TRACE(get_name(),
                "Syncing channel " << chan << ": " << this_chan_los.size()
                                   << " LO(s) and " << this_chan_ncos.size()
                                   << " NCO(s).");
            if (!this_chan_gearboxes.empty()) {
                UHD_LOG_TRACE(get_name(),
                    "Resetting " << this_chan_gearboxes.size() << " gearboxes.");
                _rfdcc->reset_gearboxes(this_chan_gearboxes, _fe_time.at(chan).get());
            }
            if (!this_chan_los.empty()) {
                _cpld->pulse_lo_sync(chan, this_chan_los);
            }
            if (!this_chan_ncos.empty()) {
                _rfdcc->reset_ncos(this_chan_ncos, _fe_time.at(chan).get());
            }
        }
    }
} // zbx_sync_expert::resolve()

// End expert resolve sections

}}} // namespace uhd::usrp::zbx