1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
|
//
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "rhodium_radio_ctrl_impl.hpp"
#include "rhodium_constants.hpp"
#include <uhdlib/utils/narrow.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/rfnoc/node_ctrl_base.hpp>
#include <uhd/transport/chdr.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/math.hpp>
#include <uhd/types/direction.hpp>
#include <uhd/types/eeprom.hpp>
#include <uhd/exception.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/make_shared.hpp>
#include <boost/format.hpp>
#include <sstream>
#include <cmath>
#include <cstdlib>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::rfnoc;
using namespace uhd::math::fp_compare;
namespace {
constexpr char RX_FE_CONNECTION_LOWBAND[] = "QI";
constexpr char RX_FE_CONNECTION_HIGHBAND[] = "IQ";
constexpr char TX_FE_CONNECTION_LOWBAND[] = "QI";
constexpr char TX_FE_CONNECTION_HIGHBAND[] = "IQ";
constexpr int DEFAULT_IDENTIFY_DURATION = 5; // seconds
const fs_path TX_FE_PATH = fs_path("tx_frontends") / 0 / "tune_args";
const fs_path RX_FE_PATH = fs_path("rx_frontends") / 0 / "tune_args";
device_addr_t _get_tune_args(uhd::property_tree::sptr tree, std::string _radio_slot, uhd::direction_t dir)
{
const auto subtree = tree->subtree(fs_path("dboards") / _radio_slot);
const auto tune_arg_path = (dir == RX_DIRECTION) ? RX_FE_PATH : TX_FE_PATH;
return subtree->access<device_addr_t>(tune_arg_path).get();
}
}
/******************************************************************************
* Structors
*****************************************************************************/
UHD_RFNOC_RADIO_BLOCK_CONSTRUCTOR(rhodium_radio_ctrl)
{
UHD_LOG_TRACE(unique_id(), "Entering rhodium_radio_ctrl_impl ctor...");
const char radio_slot_name[] = {'A', 'B'};
_radio_slot = radio_slot_name[get_block_id().get_block_count()];
_rpc_prefix =
(_radio_slot == "A") ? "db_0_" : "db_1_";
UHD_LOG_TRACE(unique_id(), "Radio slot: " << _radio_slot);
}
rhodium_radio_ctrl_impl::~rhodium_radio_ctrl_impl()
{
UHD_LOG_TRACE(unique_id(), "rhodium_radio_ctrl_impl::dtor() ");
}
/******************************************************************************
* API Calls
*****************************************************************************/
double rhodium_radio_ctrl_impl::set_rate(double /* rate */)
{
// TODO: implement
// TODO: set_rate may also need to update the LO since master clock rate
// changes also change the lowband LO frequency. (run set_frequency)
UHD_LOG_WARNING(unique_id(), "set_rate() called but not implemented");
return 0.0;
}
void rhodium_radio_ctrl_impl::set_tx_antenna(
const std::string &ant,
const size_t chan
) {
UHD_LOG_TRACE(unique_id(), "set_tx_antenna(ant=" << ant << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
if (!uhd::has(RHODIUM_TX_ANTENNAS, ant)) {
throw uhd::value_error(str(
boost::format("[%s] Requesting invalid TX antenna value: %s")
% unique_id()
% ant
));
}
_update_tx_output_switches(ant);
// _update_atr will set the cached antenna value, so no need to do
// it here. See comments in _update_antenna for more info.
_update_atr(ant, TX_DIRECTION);
}
void rhodium_radio_ctrl_impl::set_rx_antenna(
const std::string &ant,
const size_t chan
) {
UHD_LOG_TRACE(unique_id(), "Setting RX antenna to " << ant);
UHD_ASSERT_THROW(chan == 0);
if (!uhd::has(RHODIUM_RX_ANTENNAS, ant)) {
throw uhd::value_error(str(
boost::format("[%s] Requesting invalid RX antenna value: %s")
% unique_id()
% ant
));
}
_update_rx_input_switches(ant);
// _update_atr will set the cached antenna value, so no need to do
// it here. See comments in _update_antenna for more info.
_update_atr(ant, RX_DIRECTION);
}
void rhodium_radio_ctrl_impl::_set_tx_fe_connection(const std::string &conn)
{
UHD_LOG_TRACE(unique_id(), "set_tx_fe_connection(conn=" << conn << ")");
if (conn != _tx_fe_connection)
{
_tx_fe_core->set_mux(conn);
_tx_fe_connection = conn;
}
}
void rhodium_radio_ctrl_impl::_set_rx_fe_connection(const std::string &conn)
{
UHD_LOG_TRACE(unique_id(), "set_rx_fe_connection(conn=" << conn << ")");
if (conn != _tx_fe_connection)
{
_rx_fe_core->set_fe_connection(conn);
_rx_fe_connection = conn;
}
}
std::string rhodium_radio_ctrl_impl::_get_tx_fe_connection() const
{
UHD_LOG_TRACE(unique_id(), "get_tx_fe_connection()");
return _tx_fe_connection;
}
std::string rhodium_radio_ctrl_impl::_get_rx_fe_connection() const
{
UHD_LOG_TRACE(unique_id(), "get_rx_fe_connection()");
return _rx_fe_connection;
}
double rhodium_radio_ctrl_impl::set_tx_frequency(
const double freq,
const size_t chan
) {
UHD_LOG_TRACE(unique_id(), "set_tx_frequency(f=" << freq << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
double coerced_target_freq = uhd::clip(freq, RHODIUM_MIN_FREQ, RHODIUM_MAX_FREQ);
if (freq != coerced_target_freq) {
UHD_LOG_DEBUG(unique_id(), "Requested frequency is outside supported range. Coercing to " << coerced_target_freq);
}
const bool is_highband = !_is_tx_lowband(coerced_target_freq);
const double target_lo_freq = is_highband ?
coerced_target_freq : _get_lowband_lo_freq() - coerced_target_freq;
const double actual_lo_freq =
set_tx_lo_freq(target_lo_freq, RHODIUM_LO1, chan);
const double coerced_freq = is_highband ?
actual_lo_freq : _get_lowband_lo_freq() - actual_lo_freq;
const auto conn = is_highband ?
TX_FE_CONNECTION_HIGHBAND : TX_FE_CONNECTION_LOWBAND;
_set_tx_fe_connection(conn);
set_tx_gain(get_tx_gain(chan), 0);
radio_ctrl_impl::set_tx_frequency(coerced_freq, chan);
_update_tx_freq_switches(coerced_freq);
// if TX lowband/highband changed and antenna is TX/RX,
// the ATR and SW1 need to be updated
_update_tx_output_switches(get_tx_antenna(0));
_update_atr(get_tx_antenna(0), TX_DIRECTION);
return coerced_freq;
}
double rhodium_radio_ctrl_impl::set_rx_frequency(
const double freq,
const size_t chan
) {
UHD_LOG_TRACE(unique_id(), "set_rx_frequency(f=" << freq << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
double coerced_target_freq = uhd::clip(freq, RHODIUM_MIN_FREQ, RHODIUM_MAX_FREQ);
if (freq != coerced_target_freq) {
UHD_LOG_DEBUG(unique_id(), "Requested frequency is outside supported range. Coercing to " << coerced_target_freq);
}
const bool is_highband = !_is_rx_lowband(coerced_target_freq);
const double target_lo_freq = is_highband ?
coerced_target_freq : _get_lowband_lo_freq() - coerced_target_freq;
const double actual_lo_freq =
set_rx_lo_freq(target_lo_freq, RHODIUM_LO1, chan);
const double coerced_freq = is_highband ?
actual_lo_freq : _get_lowband_lo_freq() - actual_lo_freq;
const auto conn = is_highband ?
RX_FE_CONNECTION_HIGHBAND : RX_FE_CONNECTION_LOWBAND;
_set_rx_fe_connection(conn);
set_rx_gain(get_rx_gain(chan), 0);
radio_ctrl_impl::set_rx_frequency(coerced_freq, chan);
_update_rx_freq_switches(coerced_freq);
return coerced_freq;
}
double rhodium_radio_ctrl_impl::set_rx_bandwidth(
const double bandwidth,
const size_t chan
) {
UHD_LOG_TRACE(unique_id(), "set_rx_bandwidth(bandwidth=" << bandwidth << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
return get_rx_bandwidth(chan);
}
double rhodium_radio_ctrl_impl::set_tx_bandwidth(
const double bandwidth,
const size_t chan
) {
UHD_LOG_TRACE(unique_id(), "set_tx_bandwidth(bandwidth=" << bandwidth << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
return get_tx_bandwidth(chan);
}
double rhodium_radio_ctrl_impl::set_tx_gain(
const double gain,
const size_t chan
) {
UHD_LOG_TRACE(unique_id(), "set_tx_gain(gain=" << gain << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
auto freq = this->get_tx_frequency(chan);
auto index = _get_gain_range(TX_DIRECTION).clip(gain);
auto old_band = _is_tx_lowband(_tx_frequency_at_last_gain_write) ?
rhodium_cpld_ctrl::gain_band_t::LOW :
rhodium_cpld_ctrl::gain_band_t::HIGH;
auto new_band = _is_tx_lowband(freq) ?
rhodium_cpld_ctrl::gain_band_t::LOW :
rhodium_cpld_ctrl::gain_band_t::HIGH;
// The CPLD requires a rewrite of the gain control command on a change of lowband or highband
if (get_tx_gain(chan) != index or old_band != new_band) {
UHD_LOG_TRACE(unique_id(), "Writing new TX gain index: " << index);
_cpld->set_gain_index(index, new_band, TX_DIRECTION);
_tx_frequency_at_last_gain_write = freq;
radio_ctrl_impl::set_tx_gain(index, chan);
} else {
UHD_LOG_TRACE(unique_id(), "No change in index or band, skipped writing TX gain index: " << index);
}
return index;
}
double rhodium_radio_ctrl_impl::set_rx_gain(
const double gain,
const size_t chan
) {
UHD_LOG_TRACE(unique_id(), "set_rx_gain(gain=" << gain << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
auto freq = this->get_rx_frequency(chan);
auto index = _get_gain_range(RX_DIRECTION).clip(gain);
auto old_band = _is_rx_lowband(_rx_frequency_at_last_gain_write) ?
rhodium_cpld_ctrl::gain_band_t::LOW :
rhodium_cpld_ctrl::gain_band_t::HIGH;
auto new_band = _is_rx_lowband(freq) ?
rhodium_cpld_ctrl::gain_band_t::LOW :
rhodium_cpld_ctrl::gain_band_t::HIGH;
// The CPLD requires a rewrite of the gain control command on a change of lowband or highband
if (get_rx_gain(chan) != index or old_band != new_band) {
UHD_LOG_TRACE(unique_id(), "Writing new RX gain index: " << index);
_cpld->set_gain_index(index, new_band, RX_DIRECTION);
_rx_frequency_at_last_gain_write = freq;
radio_ctrl_impl::set_rx_gain(index, chan);
} else {
UHD_LOG_TRACE(unique_id(), "No change in index or band, skipped writing RX gain index: " << index);
}
return index;
}
void rhodium_radio_ctrl_impl::_update_atr(
const std::string& ant,
const direction_t dir
) {
// This function updates sw10 based on the value of both antennas, so we
// use a mutex to prevent other calls in this class instance from running
// at the same time.
std::lock_guard<std::mutex> lock(_ant_mutex);
UHD_LOG_TRACE(unique_id(),
"Updating ATRs for " << ((dir == RX_DIRECTION) ? "RX" : "TX") << " to " << ant);
const auto rx_ant = (dir == RX_DIRECTION) ? ant : get_rx_antenna(0);
const auto tx_ant = (dir == TX_DIRECTION) ? ant : get_tx_antenna(0);
const auto sw10_tx = _is_tx_lowband(get_tx_frequency(0)) ?
SW10_FROMTXLOWBAND : SW10_FROMTXHIGHBAND;
const uint32_t atr_idle = SW10_ISOLATION;
const uint32_t atr_rx = [rx_ant]{
if (rx_ant == "TX/RX") {
return SW10_TORX | LED_RX;
} else if (rx_ant == "RX2") {
return SW10_ISOLATION | LED_RX2;
} else {
return SW10_ISOLATION;
}
}();
const uint32_t atr_tx = (tx_ant == "TX/RX") ?
(sw10_tx | LED_TX) : SW10_ISOLATION;
const uint32_t atr_dx = [tx_ant, rx_ant, sw10_tx] {
uint32_t sw10_return;
if (tx_ant == "TX/RX") {
// if both channels are set to TX/RX, TX will override
sw10_return = sw10_tx | LED_TX;
} else if (rx_ant == "TX/RX") {
sw10_return = SW10_TORX | LED_RX;
} else {
sw10_return = SW10_ISOLATION;
}
sw10_return |= (rx_ant == "RX2") ? LED_RX2 : 0;
return sw10_return;
}();
_gpio->set_atr_reg(gpio_atr::ATR_REG_IDLE, atr_idle, RHODIUM_GPIO_MASK);
_gpio->set_atr_reg(gpio_atr::ATR_REG_RX_ONLY, atr_rx, RHODIUM_GPIO_MASK);
_gpio->set_atr_reg(gpio_atr::ATR_REG_TX_ONLY, atr_tx, RHODIUM_GPIO_MASK);
_gpio->set_atr_reg(gpio_atr::ATR_REG_FULL_DUPLEX, atr_dx, RHODIUM_GPIO_MASK);
UHD_LOG_TRACE(unique_id(),
str(boost::format("Wrote ATR registers i:0x%02X, r:0x%02X, t:0x%02X, d:0x%02X")
% atr_idle % atr_rx % atr_tx % atr_dx));
if (dir == RX_DIRECTION) {
radio_ctrl_impl::set_rx_antenna(ant, 0);
} else {
radio_ctrl_impl::set_tx_antenna(ant, 0);
}
}
uhd::gain_range_t rhodium_radio_ctrl_impl::_get_gain_range(direction_t dir)
{
if (dir == RX_DIRECTION) {
return gain_range_t(RX_MIN_GAIN, RX_MAX_GAIN, RX_GAIN_STEP);
} else if (dir == TX_DIRECTION) {
return gain_range_t(TX_MIN_GAIN, TX_MAX_GAIN, TX_GAIN_STEP);
} else {
UHD_THROW_INVALID_CODE_PATH();
}
}
bool rhodium_radio_ctrl_impl::_get_spur_dodging_enabled(uhd::direction_t dir) const
{
UHD_ASSERT_THROW(_tree->exists(get_arg_path(SPUR_DODGING_ARG_NAME) / "value"));
auto block_value = _tree->access<std::string>(get_arg_path(SPUR_DODGING_ARG_NAME) / "value").get();
auto dict = _get_tune_args(_tree, _radio_slot, dir);
// get the current tune_arg for spur_dodging
// if the tune_arg doesn't exist, use the radio block argument instead
std::string spur_dodging_arg = dict.cast<std::string>(
SPUR_DODGING_ARG_NAME,
block_value);
if (spur_dodging_arg == "enabled")
{
UHD_LOG_TRACE(unique_id(), "_get_spur_dodging_enabled returning enabled");
return true;
}
else if (spur_dodging_arg == "disabled") {
UHD_LOG_TRACE(unique_id(), "_get_spur_dodging_enabled returning disabled");
return false;
}
else {
throw uhd::value_error(
str(boost::format("Invalid spur_dodging argument: %s Valid options are [enabled, disabled]")
% spur_dodging_arg));
}
}
double rhodium_radio_ctrl_impl::_get_spur_dodging_threshold(uhd::direction_t dir) const
{
UHD_ASSERT_THROW(_tree->exists(get_arg_path(SPUR_DODGING_THRESHOLD_ARG_NAME) / "value"));
auto block_value = _tree->access<double>(get_arg_path(SPUR_DODGING_THRESHOLD_ARG_NAME) / "value").get();
auto dict = _get_tune_args(_tree, _radio_slot, dir);
// get the current tune_arg for spur_dodging_threshold
// if the tune_arg doesn't exist, use the radio block argument instead
auto threshold = dict.cast<double>(SPUR_DODGING_THRESHOLD_ARG_NAME, block_value);
UHD_LOG_TRACE(unique_id(), "_get_spur_dodging_threshold returning " << threshold);
return threshold;
}
size_t rhodium_radio_ctrl_impl::get_chan_from_dboard_fe(
const std::string &fe, const direction_t /* dir */
) {
UHD_ASSERT_THROW(boost::lexical_cast<size_t>(fe) == 0);
return 0;
}
std::string rhodium_radio_ctrl_impl::get_dboard_fe_from_chan(
const size_t chan,
const direction_t /* dir */
) {
UHD_ASSERT_THROW(chan == 0);
return "0";
}
void rhodium_radio_ctrl_impl::set_rpc_client(
uhd::rpc_client::sptr rpcc,
const uhd::device_addr_t &block_args
) {
_rpcc = rpcc;
_block_args = block_args;
// Get and verify the MCR before _init_peripherals, which will use this value
// Note: MCR gets set during the init() call (prior to this), which takes
// in arguments from the device args. So if block_args contains a
// master_clock_rate key, then it should better be whatever the device is
// configured to do.
_master_clock_rate = _rpcc->request_with_token<double>(_rpc_prefix + "get_master_clock_rate");
if (block_args.cast<double>("master_clock_rate", _master_clock_rate)
!= _master_clock_rate) {
throw uhd::runtime_error(str(
boost::format("Master clock rate mismatch. Device returns %f MHz, "
"but should have been %f MHz.")
% (_master_clock_rate / 1e6)
% (block_args.cast<double>(
"master_clock_rate", _master_clock_rate) / 1e6)
));
}
UHD_LOG_DEBUG(unique_id(),
"Master Clock Rate is: " << (_master_clock_rate / 1e6) << " MHz.");
radio_ctrl_impl::set_rate(_master_clock_rate);
UHD_LOG_TRACE(unique_id(), "Checking for existence of Rhodium DB in slot " << _radio_slot);
const auto dboard_info = _rpcc->request<std::vector<std::map<std::string, std::string>>>("get_dboard_info");
// There is a bug that if only one DB is plugged into slot B the vector
// will only have 1 element but not be correlated to slot B at all.
// For now, we assume a 1 element array means the DB is in slot A.
if (dboard_info.size() <= get_block_id().get_block_count())
{
UHD_LOG_DEBUG(unique_id(), "No DB detected in slot " << _radio_slot);
// Name and master clock rate are needed for RFNoC init, so set the
// name now and let this function continue to set the MCR
_tree->subtree(fs_path("dboards") / _radio_slot / "tx_frontends" / "0")
->create<std::string>("name").set("Unknown");
_tree->subtree(fs_path("dboards") / _radio_slot / "rx_frontends" / "0")
->create<std::string>("name").set("Unknown");
}
else {
UHD_LOG_DEBUG(unique_id(),
"Rhodium DB detected in slot " <<
_radio_slot <<
". Serial: " <<
dboard_info.at(get_block_id().get_block_count()).at("serial"));
_init_defaults();
_init_peripherals();
_init_prop_tree();
}
if (block_args.has_key("identify")) {
const std::string identify_val = block_args.get("identify");
int identify_duration = std::atoi(identify_val.c_str());
if (identify_duration == 0) {
identify_duration = DEFAULT_IDENTIFY_DURATION;
}
// TODO: Update this when LED control is added
//UHD_LOG_INFO(unique_id(),
// "Running LED identification process for " << identify_duration
// << " seconds.");
//_identify_with_leds(identify_duration);
}
}
bool rhodium_radio_ctrl_impl::get_lo_lock_status(
const direction_t dir
) const
{
return
((dir == RX_DIRECTION) or _tx_lo->get_lock_status()) and
((dir == TX_DIRECTION) or _rx_lo->get_lock_status());
}
UHD_RFNOC_BLOCK_REGISTER(rhodium_radio_ctrl, "RhodiumRadio");
|