1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
|
//
// Copyright 2018 Ettus Research, a National Instruments Company
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "rhodium_radio_control.hpp"
#include "rhodium_constants.hpp"
#include <uhd/exception.hpp>
#include <uhd/rfnoc/registry.hpp>
#include <uhd/types/direction.hpp>
#include <uhd/types/eeprom.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <uhdlib/usrp/common/apply_corrections.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <cmath>
#include <cstdlib>
#include <memory>
#include <sstream>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::rfnoc;
using namespace uhd::math::fp_compare;
namespace {
constexpr char RX_FE_CONNECTION_LOWBAND[] = "QI";
constexpr char RX_FE_CONNECTION_HIGHBAND[] = "IQ";
constexpr char TX_FE_CONNECTION_LOWBAND[] = "QI";
constexpr char TX_FE_CONNECTION_HIGHBAND[] = "IQ";
constexpr uint64_t SET_RATE_RPC_TIMEOUT_MS = 10000;
} // namespace
/******************************************************************************
* Structors
*****************************************************************************/
rhodium_radio_control_impl::rhodium_radio_control_impl(make_args_ptr make_args)
: radio_control_impl(std::move(make_args))
{
RFNOC_LOG_TRACE("Entering rhodium_radio_control_impl ctor...");
UHD_ASSERT_THROW(get_block_id().get_block_count() < 2);
const char radio_slot_name[] = {'A', 'B'};
_radio_slot = radio_slot_name[get_block_id().get_block_count()];
_rpc_prefix = (_radio_slot == "A") ? "db_0_" : "db_1_";
RFNOC_LOG_TRACE("Radio slot: " << _radio_slot);
UHD_ASSERT_THROW(get_num_input_ports() == RHODIUM_NUM_CHANS);
UHD_ASSERT_THROW(get_num_output_ports() == RHODIUM_NUM_CHANS);
UHD_ASSERT_THROW(get_mb_controller());
_n320_mb_control = std::dynamic_pointer_cast<mpmd_mb_controller>(get_mb_controller());
UHD_ASSERT_THROW(_n320_mb_control);
_n3xx_timekeeper = std::dynamic_pointer_cast<mpmd_mb_controller::mpmd_timekeeper>(
_n320_mb_control->get_timekeeper(0));
UHD_ASSERT_THROW(_n3xx_timekeeper);
_rpcc = _n320_mb_control->get_rpc_client();
UHD_ASSERT_THROW(_rpcc);
const auto all_dboard_info =
_rpcc->request<std::vector<std::map<std::string, std::string>>>(
"get_dboard_info");
RFNOC_LOG_TRACE("Hardware detected " << all_dboard_info.size() << " daughterboards.");
// If we two radio blocks, but there is only one dboard plugged in, we skip
// initialization. The board needs to be in slot A
if (all_dboard_info.size() > get_block_id().get_block_count()) {
_init_defaults();
_init_mpm();
_init_peripherals();
_init_prop_tree();
}
// Properties
for (auto& samp_rate_prop : _samp_rate_in) {
samp_rate_prop.set(_master_clock_rate);
}
for (auto& samp_rate_prop : _samp_rate_out) {
samp_rate_prop.set(_master_clock_rate);
}
}
rhodium_radio_control_impl::~rhodium_radio_control_impl()
{
RFNOC_LOG_TRACE("rhodium_radio_control_impl::dtor() ");
}
/******************************************************************************
* RF API Calls
*****************************************************************************/
double rhodium_radio_control_impl::set_rate(double requested_rate)
{
meta_range_t rates;
for (const double rate : RHODIUM_RADIO_RATES) {
rates.push_back(range_t(rate));
}
const double rate = rates.clip(requested_rate);
if (!math::frequencies_are_equal(requested_rate, rate)) {
RFNOC_LOG_WARNING("Coercing requested sample rate from "
<< (requested_rate / 1e6) << " MHz to " << (rate / 1e6)
<< " MHz, the closest possible rate.");
}
const double current_rate = get_rate();
if (math::frequencies_are_equal(current_rate, rate)) {
RFNOC_LOG_DEBUG(
"Rate is already at " << (rate / 1e6) << " MHz. Skipping set_rate()");
return current_rate;
}
RFNOC_LOG_TRACE("Updating master clock rate to " << rate);
_master_clock_rate = _rpcc->request_with_token<double>(
SET_RATE_RPC_TIMEOUT_MS, "db_0_set_master_clock_rate", rate);
_n3xx_timekeeper->update_tick_rate(_master_clock_rate);
radio_control_impl::set_rate(_master_clock_rate);
// The lowband LO frequency will change with the master clock rate, so
// update the tuning of the device.
set_tx_frequency(get_tx_frequency(0), 0);
set_rx_frequency(get_rx_frequency(0), 0);
set_tick_rate(_master_clock_rate);
return _master_clock_rate;
}
void rhodium_radio_control_impl::set_tx_antenna(const std::string& ant, const size_t chan)
{
RFNOC_LOG_TRACE("set_tx_antenna(ant=" << ant << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
if (!uhd::has(RHODIUM_TX_ANTENNAS, ant)) {
RFNOC_LOG_ERROR("Invalid TX antenna value: " << ant);
throw uhd::value_error("Requesting invalid TX antenna value!");
}
_update_tx_output_switches(ant);
// _update_atr will set the cached antenna value, so no need to do
// it here. See comments in _update_antenna for more info.
_update_atr(ant, TX_DIRECTION);
}
void rhodium_radio_control_impl::set_rx_antenna(const std::string& ant, const size_t chan)
{
RFNOC_LOG_TRACE("Setting RX antenna to " << ant);
UHD_ASSERT_THROW(chan == 0);
if (!uhd::has(RHODIUM_RX_ANTENNAS, ant)) {
RFNOC_LOG_ERROR("Invalid RX antenna value: " << ant);
throw uhd::value_error("Requesting invalid RX antenna value!");
}
_update_rx_input_switches(ant);
// _update_atr will set the cached antenna value, so no need to do
// it here. See comments in _update_antenna for more info.
_update_atr(ant, RX_DIRECTION);
}
void rhodium_radio_control_impl::_set_tx_fe_connection(const std::string& conn)
{
RFNOC_LOG_TRACE("set_tx_fe_connection(conn=" << conn << ")");
if (conn != _tx_fe_connection) {
_tx_fe_core->set_mux(conn);
_tx_fe_connection = conn;
}
}
void rhodium_radio_control_impl::_set_rx_fe_connection(const std::string& conn)
{
RFNOC_LOG_TRACE("set_rx_fe_connection(conn=" << conn << ")");
if (conn != _rx_fe_connection) {
_rx_fe_core->set_fe_connection(conn);
_rx_fe_connection = conn;
}
}
std::string rhodium_radio_control_impl::_get_tx_fe_connection() const
{
return _tx_fe_connection;
}
std::string rhodium_radio_control_impl::_get_rx_fe_connection() const
{
return _rx_fe_connection;
}
double rhodium_radio_control_impl::set_tx_frequency(const double freq, const size_t chan)
{
RFNOC_LOG_TRACE("set_tx_frequency(f=" << freq << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
const auto old_freq = get_tx_frequency(0);
double coerced_target_freq = uhd::clip(freq, RHODIUM_MIN_FREQ, RHODIUM_MAX_FREQ);
if (freq != coerced_target_freq) {
RFNOC_LOG_DEBUG("Requested frequency is outside supported range. Coercing to "
<< coerced_target_freq);
}
const bool is_highband = !_is_tx_lowband(coerced_target_freq);
const double target_lo_freq =
is_highband ? coerced_target_freq : _get_lowband_lo_freq() - coerced_target_freq;
const double actual_lo_freq = set_tx_lo_freq(target_lo_freq, RHODIUM_LO1, chan);
const double coerced_freq = is_highband ? actual_lo_freq
: _get_lowband_lo_freq() - actual_lo_freq;
const auto conn = is_highband ? TX_FE_CONNECTION_HIGHBAND : TX_FE_CONNECTION_LOWBAND;
// update the cached frequency value now so calls to set gain and update
// switches will read the new frequency
radio_control_impl::set_tx_frequency(coerced_freq, chan);
_set_tx_fe_connection(conn);
set_tx_gain(radio_control_impl::get_tx_gain(chan), 0);
if (_get_highband_spur_reduction_enabled(TX_DIRECTION)) {
if (_get_timed_command_enabled()
and _is_tx_lowband(old_freq) != not is_highband) {
RFNOC_LOG_WARNING(
"Timed tuning commands that transition between lowband and highband, 450 "
"MHz, do not function correctly when highband_spur_reduction is enabled! "
"Disable highband_spur_reduction or avoid using timed tuning commands.");
}
RFNOC_LOG_TRACE("TX Lowband LO is " << (is_highband ? "disabled" : "enabled"));
_rpcc->notify_with_token(_rpc_prefix + "enable_tx_lowband_lo", (!is_highband));
}
_update_tx_freq_switches(coerced_freq);
const bool enable_corrections = is_highband
and (get_tx_lo_source(RHODIUM_LO1, 0) == "internal");
_update_corrections(actual_lo_freq, TX_DIRECTION, enable_corrections);
// if TX lowband/highband changed and antenna is TX/RX,
// the ATR and SW1 need to be updated
_update_tx_output_switches(get_tx_antenna(0));
_update_atr(get_tx_antenna(0), TX_DIRECTION);
return coerced_freq;
}
double rhodium_radio_control_impl::set_rx_frequency(const double freq, const size_t chan)
{
RFNOC_LOG_TRACE("set_rx_frequency(f=" << freq << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
const auto old_freq = get_rx_frequency(0);
double coerced_target_freq = uhd::clip(freq, RHODIUM_MIN_FREQ, RHODIUM_MAX_FREQ);
if (freq != coerced_target_freq) {
RFNOC_LOG_DEBUG("Requested frequency is outside supported range. Coercing to "
<< coerced_target_freq);
}
const bool is_highband = !_is_rx_lowband(coerced_target_freq);
const double target_lo_freq =
is_highband ? coerced_target_freq : _get_lowband_lo_freq() - coerced_target_freq;
const double actual_lo_freq = set_rx_lo_freq(target_lo_freq, RHODIUM_LO1, chan);
const double coerced_freq = is_highband ? actual_lo_freq
: _get_lowband_lo_freq() - actual_lo_freq;
const auto conn = is_highband ? RX_FE_CONNECTION_HIGHBAND : RX_FE_CONNECTION_LOWBAND;
// update the cached frequency value now so calls to set gain and update
// switches will read the new frequency
radio_control_impl::set_rx_frequency(coerced_freq, chan);
_set_rx_fe_connection(conn);
set_rx_gain(radio_control_impl::get_rx_gain(chan), 0);
if (_get_highband_spur_reduction_enabled(RX_DIRECTION)) {
if (_get_timed_command_enabled()
and _is_rx_lowband(old_freq) != not is_highband) {
RFNOC_LOG_WARNING(
"Timed tuning commands that transition between lowband and highband, 450 "
"MHz, do not function correctly when highband_spur_reduction is enabled! "
"Disable highband_spur_reduction or avoid using timed tuning commands.");
}
RFNOC_LOG_TRACE("RX Lowband LO is " << (is_highband ? "disabled" : "enabled"));
_rpcc->notify_with_token(_rpc_prefix + "enable_rx_lowband_lo", (!is_highband));
}
_update_rx_freq_switches(coerced_freq);
const bool enable_corrections = is_highband
and (get_rx_lo_source(RHODIUM_LO1, 0) == "internal");
_update_corrections(actual_lo_freq, RX_DIRECTION, enable_corrections);
return coerced_freq;
}
void rhodium_radio_control_impl::set_tx_tune_args(
const uhd::device_addr_t& args, const size_t chan)
{
UHD_ASSERT_THROW(chan == 0);
_tune_args[uhd::TX_DIRECTION] = args;
}
void rhodium_radio_control_impl::set_rx_tune_args(
const uhd::device_addr_t& args, const size_t chan)
{
UHD_ASSERT_THROW(chan == 0);
_tune_args[uhd::RX_DIRECTION] = args;
}
double rhodium_radio_control_impl::set_tx_gain(const double gain, const size_t chan)
{
RFNOC_LOG_TRACE("set_tx_gain(gain=" << gain << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
auto freq = this->get_tx_frequency(chan);
auto index = get_tx_gain_range(chan).clip(gain);
auto old_band = _is_tx_lowband(_tx_frequency_at_last_gain_write)
? rhodium_cpld_ctrl::gain_band_t::LOW
: rhodium_cpld_ctrl::gain_band_t::HIGH;
auto new_band = _is_tx_lowband(freq) ? rhodium_cpld_ctrl::gain_band_t::LOW
: rhodium_cpld_ctrl::gain_band_t::HIGH;
// The CPLD requires a rewrite of the gain control command on a change of lowband or
// highband
if (radio_control_impl::get_tx_gain(chan) != index or old_band != new_band) {
RFNOC_LOG_TRACE("Writing new TX gain index: " << index);
_cpld->set_gain_index(index, new_band, TX_DIRECTION);
_tx_frequency_at_last_gain_write = freq;
radio_control_impl::set_tx_gain(index, chan);
} else {
RFNOC_LOG_TRACE(
"No change in index or band, skipped writing TX gain index: " << index);
}
return index;
}
double rhodium_radio_control_impl::set_rx_gain(const double gain, const size_t chan)
{
RFNOC_LOG_TRACE("set_rx_gain(gain=" << gain << ", chan=" << chan << ")");
UHD_ASSERT_THROW(chan == 0);
auto freq = this->get_rx_frequency(chan);
auto index = get_rx_gain_range(chan).clip(gain);
auto old_band = _is_rx_lowband(_rx_frequency_at_last_gain_write)
? rhodium_cpld_ctrl::gain_band_t::LOW
: rhodium_cpld_ctrl::gain_band_t::HIGH;
auto new_band = _is_rx_lowband(freq) ? rhodium_cpld_ctrl::gain_band_t::LOW
: rhodium_cpld_ctrl::gain_band_t::HIGH;
// The CPLD requires a rewrite of the gain control command on a change of lowband or
// highband
if (radio_control_impl::get_rx_gain(chan) != index or old_band != new_band) {
RFNOC_LOG_TRACE("Writing new RX gain index: " << index);
_cpld->set_gain_index(index, new_band, RX_DIRECTION);
_rx_frequency_at_last_gain_write = freq;
radio_control_impl::set_rx_gain(index, chan);
} else {
RFNOC_LOG_TRACE(
"No change in index or band, skipped writing RX gain index: " << index);
}
return index;
}
void rhodium_radio_control_impl::_identify_with_leds(double identify_duration)
{
auto duration_ms = static_cast<uint64_t>(identify_duration * 1000);
auto end_time =
std::chrono::steady_clock::now() + std::chrono::milliseconds(duration_ms);
bool led_state = true;
{
std::lock_guard<std::mutex> lock(_ant_mutex);
while (std::chrono::steady_clock::now() < end_time) {
auto atr = led_state ? (LED_RX | LED_RX2 | LED_TX) : 0;
_gpio->set_atr_reg(gpio_atr::ATR_REG_IDLE, atr, RHODIUM_GPIO_MASK);
led_state = !led_state;
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
}
_update_atr(get_tx_antenna(0), TX_DIRECTION);
_update_atr(get_rx_antenna(0), RX_DIRECTION);
}
void rhodium_radio_control_impl::_update_atr(
const std::string& ant, const direction_t dir)
{
// This function updates sw10 based on the value of both antennas, so we
// use a mutex to prevent other calls in this class instance from running
// at the same time.
std::lock_guard<std::mutex> lock(_ant_mutex);
RFNOC_LOG_TRACE(
"Updating ATRs for " << ((dir == RX_DIRECTION) ? "RX" : "TX") << " to " << ant);
const auto rx_ant = (dir == RX_DIRECTION) ? ant : get_rx_antenna(0);
const auto tx_ant = (dir == TX_DIRECTION) ? ant : get_tx_antenna(0);
const auto sw10_tx = _is_tx_lowband(get_tx_frequency(0)) ? SW10_FROMTXLOWBAND
: SW10_FROMTXHIGHBAND;
const uint32_t atr_idle = SW10_ISOLATION;
const uint32_t atr_rx = [rx_ant] {
if (rx_ant == "TX/RX") {
return SW10_TORX | LED_RX;
} else if (rx_ant == "RX2") {
return SW10_ISOLATION | LED_RX2;
} else {
return SW10_ISOLATION;
}
}();
const uint32_t atr_tx = (tx_ant == "TX/RX") ? (sw10_tx | LED_TX) : SW10_ISOLATION;
const uint32_t atr_dx = [tx_ant, rx_ant, sw10_tx] {
uint32_t sw10_return;
if (tx_ant == "TX/RX") {
// if both channels are set to TX/RX, TX will override
sw10_return = sw10_tx | LED_TX;
} else if (rx_ant == "TX/RX") {
sw10_return = SW10_TORX | LED_RX;
} else {
sw10_return = SW10_ISOLATION;
}
sw10_return |= (rx_ant == "RX2") ? LED_RX2 : 0;
return sw10_return;
}();
_gpio->set_atr_reg(gpio_atr::ATR_REG_IDLE, atr_idle, RHODIUM_GPIO_MASK);
_gpio->set_atr_reg(gpio_atr::ATR_REG_RX_ONLY, atr_rx, RHODIUM_GPIO_MASK);
_gpio->set_atr_reg(gpio_atr::ATR_REG_TX_ONLY, atr_tx, RHODIUM_GPIO_MASK);
_gpio->set_atr_reg(gpio_atr::ATR_REG_FULL_DUPLEX, atr_dx, RHODIUM_GPIO_MASK);
RFNOC_LOG_TRACE(
str(boost::format("Wrote ATR registers i:0x%02X, r:0x%02X, t:0x%02X, d:0x%02X")
% atr_idle % atr_rx % atr_tx % atr_dx));
if (dir == RX_DIRECTION) {
radio_control_impl::set_rx_antenna(ant, 0);
} else {
radio_control_impl::set_tx_antenna(ant, 0);
}
}
void rhodium_radio_control_impl::_update_corrections(
const double freq, const direction_t dir, const bool enable)
{
const std::string fe_path_part = dir == RX_DIRECTION ? "rx_fe_corrections"
: "tx_fe_corrections";
const fs_path fe_corr_path = FE_PATH / fe_path_part / 0;
if (enable) {
const std::vector<uint8_t> db_serial_u8 = get_db_eeprom().count("serial")
? std::vector<uint8_t>()
: get_db_eeprom().at("serial");
const std::string db_serial =
db_serial_u8.empty() ? "unknown"
: std::string(db_serial_u8.begin(), db_serial_u8.end());
RFNOC_LOG_DEBUG("Loading any available frontend corrections for "
<< ((dir == RX_DIRECTION) ? "RX" : "TX") << " at " << freq);
if (dir == RX_DIRECTION) {
apply_rx_fe_corrections(get_tree(), db_serial, fe_corr_path, freq);
} else {
apply_tx_fe_corrections(get_tree(), db_serial, fe_corr_path, freq);
}
} else {
RFNOC_LOG_DEBUG("Disabling frontend corrections for "
<< ((dir == RX_DIRECTION) ? "RX" : "TX"));
if (dir == RX_DIRECTION) {
_rx_fe_core->set_iq_balance(rx_frontend_core_3000::DEFAULT_IQ_BALANCE_VALUE);
} else {
_tx_fe_core->set_dc_offset(tx_frontend_core_200::DEFAULT_DC_OFFSET_VALUE);
_tx_fe_core->set_iq_balance(tx_frontend_core_200::DEFAULT_IQ_BALANCE_VALUE);
}
}
}
bool rhodium_radio_control_impl::_get_spur_dodging_enabled(uhd::direction_t dir) const
{
// get the current tune_arg for spur_dodging
// if the tune_arg doesn't exist, use the radio block argument instead
const std::string spur_dodging_arg = _tune_args.at(dir).cast<std::string>(
SPUR_DODGING_PROP_NAME, _spur_dodging_mode.get());
RFNOC_LOG_TRACE("_get_spur_dodging_enabled returning " << spur_dodging_arg);
if (spur_dodging_arg == "enabled") {
return true;
} else if (spur_dodging_arg == "disabled") {
return false;
} else {
const std::string err_msg = str(
boost::format(
"Invalid spur_dodging argument: %s Valid options are [enabled, disabled]")
% spur_dodging_arg);
RFNOC_LOG_ERROR(err_msg);
throw uhd::value_error(err_msg);
}
}
double rhodium_radio_control_impl::_get_spur_dodging_threshold(uhd::direction_t dir) const
{
// get the current tune_arg for spur_dodging_threshold
// if the tune_arg doesn't exist, use the radio block argument instead
const double threshold = _tune_args.at(dir).cast<double>(
SPUR_DODGING_THRESHOLD_PROP_NAME, _spur_dodging_threshold.get());
RFNOC_LOG_TRACE("_get_spur_dodging_threshold returning " << threshold);
return threshold;
}
bool rhodium_radio_control_impl::_get_highband_spur_reduction_enabled(
uhd::direction_t dir) const
{
const std::string highband_spur_reduction_arg = _tune_args.at(dir).cast<std::string>(
HIGHBAND_SPUR_REDUCTION_PROP_NAME, _highband_spur_reduction_mode.get());
RFNOC_LOG_TRACE(__func__ << " returning " << highband_spur_reduction_arg);
if (highband_spur_reduction_arg == "enabled") {
return true;
} else if (highband_spur_reduction_arg == "disabled") {
return false;
} else {
throw uhd::value_error(
str(boost::format("Invalid highband_spur_reduction argument: %s Valid "
"options are [enabled, disabled]")
% highband_spur_reduction_arg));
}
}
bool rhodium_radio_control_impl::_get_timed_command_enabled() const
{
return get_command_time(0) != time_spec_t::ASAP;
}
std::vector<std::string> rhodium_radio_control_impl::get_tx_antennas(const size_t) const
{
return RHODIUM_TX_ANTENNAS;
}
std::vector<std::string> rhodium_radio_control_impl::get_rx_antennas(const size_t) const
{
return RHODIUM_RX_ANTENNAS;
}
uhd::freq_range_t rhodium_radio_control_impl::get_tx_frequency_range(const size_t) const
{
return meta_range_t(RHODIUM_MIN_FREQ, RHODIUM_MAX_FREQ, 1.0);
}
uhd::freq_range_t rhodium_radio_control_impl::get_rx_frequency_range(const size_t) const
{
return meta_range_t(RHODIUM_MIN_FREQ, RHODIUM_MAX_FREQ, 1.0);
}
uhd::gain_range_t rhodium_radio_control_impl::get_tx_gain_range(const size_t) const
{
return gain_range_t(TX_MIN_GAIN, TX_MAX_GAIN, TX_GAIN_STEP);
}
uhd::gain_range_t rhodium_radio_control_impl::get_rx_gain_range(const size_t) const
{
return gain_range_t(RX_MIN_GAIN, RX_MAX_GAIN, RX_GAIN_STEP);
}
uhd::meta_range_t rhodium_radio_control_impl::get_tx_bandwidth_range(size_t) const
{
return meta_range_t(RHODIUM_DEFAULT_BANDWIDTH, RHODIUM_DEFAULT_BANDWIDTH);
}
uhd::meta_range_t rhodium_radio_control_impl::get_rx_bandwidth_range(size_t) const
{
return meta_range_t(RHODIUM_DEFAULT_BANDWIDTH, RHODIUM_DEFAULT_BANDWIDTH);
}
/**************************************************************************
* Radio Identification API Calls
*************************************************************************/
size_t rhodium_radio_control_impl::get_chan_from_dboard_fe(
const std::string& fe, const direction_t /* dir */
) const
{
UHD_ASSERT_THROW(boost::lexical_cast<size_t>(fe) == 0);
return 0;
}
std::string rhodium_radio_control_impl::get_dboard_fe_from_chan(
const size_t chan, const direction_t /* dir */
) const
{
UHD_ASSERT_THROW(chan == 0);
return "0";
}
std::string rhodium_radio_control_impl::get_fe_name(
const size_t, const uhd::direction_t) const
{
return RHODIUM_FE_NAME;
}
/******************************************************************************
* Calibration Identification API Calls
*****************************************************************************/
void rhodium_radio_control_impl::set_tx_dc_offset(
const std::complex<double>& offset, size_t)
{
_tx_fe_core->set_dc_offset(offset);
}
meta_range_t rhodium_radio_control_impl::get_tx_dc_offset_range(size_t) const
{
return get_tree()
->access<meta_range_t>(FE_PATH / "tx_fe_corrections" / 0 / "dc_offset/range")
.get();
}
void rhodium_radio_control_impl::set_tx_iq_balance(
const std::complex<double>& correction, size_t)
{
_tx_fe_core->set_iq_balance(correction);
}
void rhodium_radio_control_impl::set_rx_dc_offset(const bool enb, size_t)
{
_rx_fe_core->set_dc_offset(enb);
}
void rhodium_radio_control_impl::set_rx_dc_offset(
const std::complex<double>& offset, size_t)
{
_rx_fe_core->set_dc_offset(offset);
}
meta_range_t rhodium_radio_control_impl::get_rx_dc_offset_range(size_t) const
{
return get_tree()
->access<meta_range_t>(FE_PATH / "rx_fe_corrections" / 0 / "dc_offset/range")
.get();
}
void rhodium_radio_control_impl::set_rx_iq_balance(const bool enb, size_t)
{
_rx_fe_core->set_iq_balance(enb);
}
void rhodium_radio_control_impl::set_rx_iq_balance(
const std::complex<double>& correction, size_t)
{
_rx_fe_core->set_iq_balance(correction);
}
/**************************************************************************
* GPIO Controls
*************************************************************************/
std::vector<std::string> rhodium_radio_control_impl::get_gpio_banks() const
{
return {RHODIUM_FPGPIO_BANK};
}
void rhodium_radio_control_impl::set_gpio_attr(
const std::string& bank, const std::string& attr, const uint32_t value)
{
if (bank != RHODIUM_FPGPIO_BANK) {
RFNOC_LOG_ERROR("Invalid GPIO bank: " << bank);
throw uhd::key_error("Invalid GPIO bank!");
}
if (!gpio_atr::gpio_attr_rev_map.count(attr)) {
RFNOC_LOG_ERROR("Invalid GPIO attr: " << attr);
throw uhd::key_error("Invalid GPIO attr!");
}
const gpio_atr::gpio_attr_t gpio_attr = gpio_atr::gpio_attr_rev_map.at(attr);
if (gpio_attr == gpio_atr::GPIO_READBACK) {
RFNOC_LOG_WARNING("Cannot set READBACK attr.");
return;
}
_fp_gpio->set_gpio_attr(gpio_attr, value);
}
uint32_t rhodium_radio_control_impl::get_gpio_attr(
const std::string& bank, const std::string& attr)
{
if (bank != RHODIUM_FPGPIO_BANK) {
RFNOC_LOG_ERROR("Invalid GPIO bank: " << bank);
throw uhd::key_error("Invalid GPIO bank!");
}
return _fp_gpio->get_attr_reg(usrp::gpio_atr::gpio_attr_rev_map.at(attr));
}
/******************************************************************************
* EEPROM API
*****************************************************************************/
void rhodium_radio_control_impl::set_db_eeprom(const eeprom_map_t& db_eeprom)
{
const size_t db_idx = get_block_id().get_block_count();
_rpcc->notify_with_token("set_db_eeprom", db_idx, db_eeprom);
_db_eeprom = this->_rpcc->request_with_token<eeprom_map_t>("get_db_eeprom", db_idx);
}
eeprom_map_t rhodium_radio_control_impl::get_db_eeprom()
{
return _db_eeprom;
}
/**************************************************************************
* Sensor API
*************************************************************************/
std::vector<std::string> rhodium_radio_control_impl::get_rx_sensor_names(size_t) const
{
return _rx_sensor_names;
}
sensor_value_t rhodium_radio_control_impl::get_rx_sensor(
const std::string& name, size_t chan)
{
if (!uhd::has(_rx_sensor_names, name)) {
RFNOC_LOG_ERROR("Invalid RX sensor name: " << name);
throw uhd::key_error("Invalid RX sensor name!");
}
if (name == "lo_locked") {
return sensor_value_t(
"all_los", this->get_lo_lock_status(RX_DIRECTION), "locked", "unlocked");
}
return sensor_value_t(_rpcc->request_with_token<sensor_value_t::sensor_map_t>(
_rpc_prefix + "get_sensor", "RX", name, chan));
}
std::vector<std::string> rhodium_radio_control_impl::get_tx_sensor_names(size_t) const
{
return _tx_sensor_names;
}
sensor_value_t rhodium_radio_control_impl::get_tx_sensor(
const std::string& name, size_t chan)
{
if (!uhd::has(_rx_sensor_names, name)) {
RFNOC_LOG_ERROR("Invalid RX sensor name: " << name);
throw uhd::key_error("Invalid RX sensor name!");
}
if (name == "lo_locked") {
return sensor_value_t(
"all_los", this->get_lo_lock_status(TX_DIRECTION), "locked", "unlocked");
}
return sensor_value_t(_rpcc->request_with_token<sensor_value_t::sensor_map_t>(
_rpc_prefix + "get_sensor", "TX", name, chan));
}
bool rhodium_radio_control_impl::get_lo_lock_status(const direction_t dir) const
{
return (dir == RX_DIRECTION) ? _rx_lo->get_lock_status() : _tx_lo->get_lock_status();
}
// Register the block
UHD_RFNOC_BLOCK_REGISTER_FOR_DEVICE_DIRECT(
rhodium_radio_control, RADIO_BLOCK, N320, "Radio", true, "radio_clk", "bus_clk");
|