1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
|
//
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "neon_constants.hpp"
#include "neon_radio_ctrl_impl.hpp"
#include <uhd/transport/chdr.hpp>
#include <uhd/types/eeprom.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/utils/log.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/algorithm/string/split.hpp>
#include <string>
#include <vector>
using namespace uhd;
using namespace uhd::rfnoc;
//! Helper function to extract single value of port number.
//
// Each GPIO pins can be controlled by each radio output ports.
// This function convert the format of attribute "Radio_N_M"
// to a single value port number = N*number_of_port_per_radio + M
uint32_t _extract_port_number(
std::string radio_src_string, uhd::property_tree::sptr ptree)
{
std::string s_val = "0";
std::vector<std::string> radio_strings;
boost::algorithm::split(radio_strings,
radio_src_string,
boost::is_any_of("_/"),
boost::token_compress_on);
boost::to_lower(radio_strings[0]);
if (radio_strings.size() < 3) {
throw uhd::runtime_error(str(
boost::format("%s is an invalid GPIO source string.") % radio_src_string));
}
size_t radio_num = std::stoi(radio_strings[1]);
size_t port_num = std::stoi(radio_strings[2]);
if (radio_strings[0] != "radio") {
throw uhd::runtime_error(
"Front panel GPIO bank can only accept a radio block as its driver.");
}
std::string radio_port_out = "Radio_" + radio_strings[1] + "/ports/out";
std::string radio_port_path = radio_port_out + "/" + radio_strings[2];
auto found = ptree->exists(fs_path("xbar") / radio_port_path);
if (not found) {
throw uhd::runtime_error(
str(boost::format("Could not find radio port %s.\n") % radio_port_path));
}
size_t port_size = ptree->list(fs_path("xbar") / radio_port_out).size();
return radio_num * port_size + port_num;
}
void neon_radio_ctrl_impl::_init_defaults()
{
UHD_LOG_TRACE(unique_id(), "Initializing defaults...");
const size_t num_rx_chans = get_output_ports().size();
const size_t num_tx_chans = get_input_ports().size();
UHD_LOG_TRACE(unique_id(),
"Num TX chans: " << num_tx_chans << " Num RX chans: " << num_rx_chans);
for (size_t chan = 0; chan < num_rx_chans; chan++) {
radio_ctrl_impl::set_rx_frequency(NEON_DEFAULT_FREQ, chan);
radio_ctrl_impl::set_rx_gain(NEON_DEFAULT_GAIN, chan);
radio_ctrl_impl::set_rx_antenna(NEON_DEFAULT_RX_ANTENNA, chan);
radio_ctrl_impl::set_rx_bandwidth(NEON_DEFAULT_BANDWIDTH, chan);
}
for (size_t chan = 0; chan < num_tx_chans; chan++) {
radio_ctrl_impl::set_tx_frequency(NEON_DEFAULT_FREQ, chan);
radio_ctrl_impl::set_tx_gain(NEON_DEFAULT_GAIN, chan);
radio_ctrl_impl::set_tx_antenna(NEON_DEFAULT_TX_ANTENNA, chan);
radio_ctrl_impl::set_tx_bandwidth(NEON_DEFAULT_BANDWIDTH, chan);
}
/** Update default SPP (overwrites the default value from the XML file) **/
const size_t max_bytes_header =
uhd::transport::vrt::chdr::max_if_hdr_words64 * sizeof(uint64_t);
const size_t default_spp =
(_tree->access<size_t>("mtu/recv").get() - max_bytes_header)
/ (2 * sizeof(int16_t));
UHD_LOG_DEBUG(unique_id(), "Setting default spp to " << default_spp);
_tree->access<int>(get_arg_path("spp") / "value").set(default_spp);
}
void neon_radio_ctrl_impl::_init_peripherals()
{
UHD_LOG_TRACE(unique_id(), "Initializing peripherals...");
_db_gpio.clear(); // Following the as-if rule, this can get optimized out
for (size_t radio_idx = 0; radio_idx < _get_num_radios(); radio_idx++) {
UHD_LOG_TRACE(unique_id(), "Initializing GPIOs for channel " << radio_idx);
_db_gpio.emplace_back(usrp::gpio_atr::gpio_atr_3000::make_write_only(
_get_ctrl(radio_idx), regs::sr_addr(regs::GPIO)));
_db_gpio[radio_idx]->set_atr_mode(
usrp::gpio_atr::MODE_ATR, usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL);
}
_leds_gpio.clear(); // Following the as-if rule, this can get optimized out
for (size_t radio_idx = 0; radio_idx < _get_num_radios(); radio_idx++) {
UHD_LOG_TRACE(unique_id(), "Initializing GPIOs for channel " << radio_idx);
_leds_gpio.emplace_back(usrp::gpio_atr::gpio_atr_3000::make_write_only(
_get_ctrl(radio_idx), regs::sr_addr(regs::LEDS)));
_leds_gpio[radio_idx]->set_atr_mode(
usrp::gpio_atr::MODE_ATR, usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL);
}
UHD_LOG_TRACE(unique_id(), "Initializing front-panel GPIO control...")
_fp_gpio = usrp::gpio_atr::gpio_atr_3000::make(
_get_ctrl(0), regs::sr_addr(regs::FP_GPIO), regs::rb_addr(regs::RB_FP_GPIO));
}
void neon_radio_ctrl_impl::_init_frontend_subtree(
uhd::property_tree::sptr subtree, const size_t chan_idx)
{
const fs_path tx_fe_path = fs_path("tx_frontends") / chan_idx;
const fs_path rx_fe_path = fs_path("rx_frontends") / chan_idx;
UHD_LOG_TRACE(unique_id(),
"Adding non-RFNoC block properties for channel "
<< chan_idx << " to prop tree path " << tx_fe_path << " and " << rx_fe_path);
// TX Standard attributes
subtree->create<std::string>(tx_fe_path / "name").set(str(boost::format("Neon")));
subtree->create<std::string>(tx_fe_path / "connection").set("IQ");
// RX Standard attributes
subtree->create<std::string>(rx_fe_path / "name").set(str(boost::format("Neon")));
subtree->create<std::string>(rx_fe_path / "connection").set("IQ");
// TX Antenna
subtree->create<std::string>(tx_fe_path / "antenna" / "value")
.add_coerced_subscriber([this, chan_idx](const std::string& ant) {
this->set_tx_antenna(ant, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_antenna(chan_idx); });
subtree->create<std::vector<std::string>>(tx_fe_path / "antenna" / "options")
.set({NEON_DEFAULT_TX_ANTENNA})
.add_coerced_subscriber([](const std::vector<std::string>&) {
throw uhd::runtime_error("Attempting to update antenna options!");
});
// RX Antenna
subtree->create<std::string>(rx_fe_path / "antenna" / "value")
.add_coerced_subscriber([this, chan_idx](const std::string& ant) {
this->set_rx_antenna(ant, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_rx_antenna(chan_idx); });
subtree->create<std::vector<std::string>>(rx_fe_path / "antenna" / "options")
.set(NEON_RX_ANTENNAS)
.add_coerced_subscriber([](const std::vector<std::string>&) {
throw uhd::runtime_error("Attempting to update antenna options!");
});
// TX frequency
subtree->create<double>(tx_fe_path / "freq" / "value")
.set_coercer([this, chan_idx](const double freq) {
return this->set_tx_frequency(freq, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_frequency(chan_idx); });
subtree->create<meta_range_t>(tx_fe_path / "freq" / "range")
.set(meta_range_t(AD9361_TX_MIN_FREQ, AD9361_TX_MAX_FREQ, 1.0))
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update freq range!");
});
// RX frequency
subtree->create<double>(rx_fe_path / "freq" / "value")
.set_coercer([this, chan_idx](const double freq) {
return this->set_rx_frequency(freq, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_rx_frequency(chan_idx); });
subtree->create<meta_range_t>(rx_fe_path / "freq" / "range")
.set(meta_range_t(AD9361_RX_MIN_FREQ, AD9361_RX_MAX_FREQ, 1.0))
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update freq range!");
});
// TX bandwidth
subtree->create<double>(tx_fe_path / "bandwidth" / "value")
.set(AD9361_TX_MAX_BANDWIDTH)
.set_coercer([this, chan_idx](const double bw) {
return this->set_tx_bandwidth(bw, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_bandwidth(chan_idx); });
subtree->create<meta_range_t>(tx_fe_path / "bandwidth" / "range")
.set(meta_range_t(AD9361_TX_MIN_BANDWIDTH, AD9361_TX_MAX_BANDWIDTH))
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update bandwidth range!");
});
// RX bandwidth
subtree->create<double>(rx_fe_path / "bandwidth" / "value")
.set(AD9361_RX_MAX_BANDWIDTH)
.set_coercer([this, chan_idx](const double bw) {
return this->set_rx_bandwidth(bw, chan_idx);
});
subtree->create<meta_range_t>(rx_fe_path / "bandwidth" / "range")
.set(meta_range_t(AD9361_RX_MIN_BANDWIDTH, AD9361_RX_MAX_BANDWIDTH))
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update bandwidth range!");
});
// TX gains
const std::vector<std::string> tx_gain_names = ad9361_ctrl::get_gain_names("TX1");
for (auto tx_gain_name : tx_gain_names) {
subtree->create<double>(tx_fe_path / "gains" / tx_gain_name / "value")
.set_coercer([this, chan_idx](const double gain) {
return this->set_tx_gain(gain, chan_idx);
})
.set_publisher(
[this, chan_idx]() { return radio_ctrl_impl::get_tx_gain(chan_idx); });
subtree->create<meta_range_t>(tx_fe_path / "gains" / tx_gain_name / "range")
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update gain range!");
})
.set_publisher([this]() {
return meta_range_t(
AD9361_MIN_TX_GAIN, AD9361_MAX_TX_GAIN, AD9361_TX_GAIN_STEP);
});
}
// RX gains
const std::vector<std::string> rx_gain_names = ad9361_ctrl::get_gain_names("RX1");
for (auto rx_gain_name : rx_gain_names) {
subtree->create<double>(rx_fe_path / "gains" / rx_gain_name / "value")
.set_coercer([this, chan_idx](const double gain) {
return this->set_rx_gain(gain, chan_idx);
})
.set_publisher(
[this, chan_idx]() { return radio_ctrl_impl::get_rx_gain(chan_idx); });
subtree->create<meta_range_t>(rx_fe_path / "gains" / rx_gain_name / "range")
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update gain range!");
})
.set_publisher([this]() {
return meta_range_t(
AD9361_MIN_RX_GAIN, AD9361_MAX_RX_GAIN, AD9361_RX_GAIN_STEP);
});
}
// TX LO lock sensor //////////////////////////////////////////////////////
// Note: The AD9361 LO lock sensors are generated programmatically in
// set_rpc_client(). The actual lo_locked publisher is also set there.
subtree->create<sensor_value_t>(tx_fe_path / "sensors" / "lo_locked")
.set(sensor_value_t("all_los", false, "locked", "unlocked"))
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this]() {
return sensor_value_t(
"all_los", this->get_lo_lock_status(TX_DIRECTION), "locked", "unlocked");
});
// RX LO lock sensor (see not on TX LO lock sensor)
subtree->create<sensor_value_t>(rx_fe_path / "sensors" / "lo_locked")
.set(sensor_value_t("all_los", false, "locked", "unlocked"))
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this]() {
return sensor_value_t(
"all_los", this->get_lo_lock_status(RX_DIRECTION), "locked", "unlocked");
});
}
void neon_radio_ctrl_impl::_init_prop_tree()
{
const fs_path fe_base = fs_path("dboards") / _radio_slot;
for (size_t chan_idx = 0; chan_idx < NEON_NUM_CHANS; chan_idx++) {
this->_init_frontend_subtree(_tree->subtree(fe_base), chan_idx);
}
_tree->create<eeprom_map_t>(_root_path / "eeprom").set(eeprom_map_t());
_tree->create<int>("rx_codecs" / _radio_slot / "gains");
_tree->create<int>("tx_codecs" / _radio_slot / "gains");
_tree->create<std::string>("rx_codecs" / _radio_slot / "name").set("AD9361 Dual ADC");
_tree->create<std::string>("tx_codecs" / _radio_slot / "name").set("AD9361 Dual DAC");
if (not _tree->exists("tick_rate")) {
_tree->create<double>("tick_rate")
.set_coercer([this](double tick_rate) { return this->set_rate(tick_rate); })
.set_publisher([this]() { return this->get_rate(); });
} else {
UHD_LOG_WARNING(unique_id(), "Cannot set tick_rate again");
}
// *****FP_GPIO************************
for (const auto& attr : usrp::gpio_atr::gpio_attr_map) {
if (not _tree->exists(fs_path("gpio") / "FP0" / attr.second)) {
switch (attr.first) {
case usrp::gpio_atr::GPIO_SRC:
// FIXME: move this creation of this branch of ptree out side of
// radio impl;
// since there's no data dependency between radio and SRC setting for
// FP0
_tree
->create<std::vector<std::string>>(
fs_path("gpio") / "FP0" / attr.second)
.set(std::vector<std::string>(
32, usrp::gpio_atr::default_attr_value_map.at(attr.first)))
.add_coerced_subscriber(
[this, attr](const std::vector<std::string> str_val) {
uint32_t radio_src_value = 0;
uint32_t master_value = 0;
for (size_t i = 0; i < str_val.size(); i++) {
if (str_val[i] == "PS") {
master_value += 1 << i;
;
} else {
auto port_num =
_extract_port_number(str_val[i], _tree);
radio_src_value =
(1 << (2 * i)) * port_num + radio_src_value;
}
}
_rpcc->notify_with_token(
"set_fp_gpio_master", master_value);
_rpcc->notify_with_token(
"set_fp_gpio_radio_src", radio_src_value);
});
break;
case usrp::gpio_atr::GPIO_CTRL:
case usrp::gpio_atr::GPIO_DDR:
_tree
->create<std::vector<std::string>>(
fs_path("gpio") / "FP0" / attr.second)
.set(std::vector<std::string>(
32, usrp::gpio_atr::default_attr_value_map.at(attr.first)))
.add_coerced_subscriber(
[this, attr](const std::vector<std::string> str_val) {
uint32_t val = 0;
for (size_t i = 0; i < str_val.size(); i++) {
val += usrp::gpio_atr::gpio_attr_value_pair
.at(attr.second)
.at(str_val[i])
<< i;
}
_fp_gpio->set_gpio_attr(attr.first, val);
});
break;
case usrp::gpio_atr::GPIO_READBACK: {
_tree->create<uint32_t>(fs_path("gpio") / "FP0" / attr.second)
.set_publisher([this]() { return _fp_gpio->read_gpio(); });
} break;
default:
_tree->create<uint32_t>(fs_path("gpio") / "FP0" / attr.second)
.set(0)
.add_coerced_subscriber([this, attr](const uint32_t val) {
_fp_gpio->set_gpio_attr(attr.first, val);
});
}
} else {
switch (attr.first) {
case usrp::gpio_atr::GPIO_SRC:
break;
case usrp::gpio_atr::GPIO_CTRL:
case usrp::gpio_atr::GPIO_DDR:
_tree
->access<std::vector<std::string>>(
fs_path("gpio") / "FP0" / attr.second)
.set(std::vector<std::string>(
32, usrp::gpio_atr::default_attr_value_map.at(attr.first)))
.add_coerced_subscriber(
[this, attr](const std::vector<std::string> str_val) {
uint32_t val = 0;
for (size_t i = 0; i < str_val.size(); i++) {
val += usrp::gpio_atr::gpio_attr_value_pair
.at(attr.second)
.at(str_val[i])
<< i;
}
_fp_gpio->set_gpio_attr(attr.first, val);
});
break;
case usrp::gpio_atr::GPIO_READBACK:
break;
default:
_tree->access<uint32_t>(fs_path("gpio") / "FP0" / attr.second)
.set(0)
.add_coerced_subscriber([this, attr](const uint32_t val) {
_fp_gpio->set_gpio_attr(attr.first, val);
});
}
}
}
}
void neon_radio_ctrl_impl::_init_codec()
{
for (size_t chan = 0; chan < _get_num_radios(); chan++) {
std::string rx_fe = get_which_ad9361_chain(RX_DIRECTION, chan);
this->set_rx_gain(NEON_DEFAULT_GAIN, chan);
this->set_rx_frequency(NEON_DEFAULT_FREQ, chan);
this->set_rx_antenna(NEON_DEFAULT_RX_ANTENNA, chan);
this->set_rx_bandwidth(NEON_DEFAULT_BANDWIDTH, chan);
_ad9361->set_dc_offset_auto(rx_fe, NEON_DEFAULT_AUTO_DC_OFFSET);
_ad9361->set_iq_balance_auto(rx_fe, NEON_DEFAULT_AUTO_IQ_BALANCE);
_ad9361->set_agc(rx_fe, NEON_DEFAULT_AGC_ENABLE);
std::string tx_fe = get_which_ad9361_chain(TX_DIRECTION, chan);
this->set_tx_gain(NEON_DEFAULT_GAIN, chan);
this->set_tx_frequency(NEON_DEFAULT_FREQ, chan);
this->set_tx_bandwidth(NEON_DEFAULT_BANDWIDTH, chan);
}
}
void neon_radio_ctrl_impl::_init_mpm_sensors(const direction_t dir, const size_t chan_idx)
{
const std::string trx = (dir == RX_DIRECTION) ? "RX" : "TX";
const fs_path fe_path = fs_path("dboards") / _radio_slot
/ (dir == RX_DIRECTION ? "rx_frontends" : "tx_frontends")
/ chan_idx;
auto sensor_list = _rpcc->request_with_token<std::vector<std::string>>(
this->_rpc_prefix + "get_sensors", trx);
UHD_LOG_TRACE(unique_id(),
"Chan " << chan_idx << ": Found " << sensor_list.size() << " " << trx
<< " sensors.");
for (const auto& sensor_name : sensor_list) {
UHD_LOG_TRACE(unique_id(), "Adding " << trx << " sensor " << sensor_name);
_tree->create<sensor_value_t>(fe_path / "sensors" / sensor_name)
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this, trx, sensor_name, chan_idx]() {
return sensor_value_t(
this->_rpcc->request_with_token<sensor_value_t::sensor_map_t>(
this->_rpc_prefix + "get_sensor", trx, sensor_name, chan_idx));
});
}
}
|