1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
|
//
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "neon_radio_ctrl_impl.hpp"
#include "neon_constants.hpp"
#include "neon_regs.hpp"
#include <uhd/exception.hpp>
#include <uhd/rfnoc/node_ctrl_base.hpp>
#include <uhd/transport/chdr.hpp>
#include <uhd/types/direction.hpp>
#include <uhd/types/eeprom.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <boost/make_shared.hpp>
#include <cmath>
#include <cstdlib>
#include <sstream>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::rfnoc;
using namespace uhd::math::fp_compare;
/******************************************************************************
* Structors
*****************************************************************************/
UHD_RFNOC_RADIO_BLOCK_CONSTRUCTOR(neon_radio_ctrl)
{
UHD_LOG_TRACE(unique_id(), "Entering neon_radio_ctrl_impl ctor...");
const char radio_slot_name[1] = {'A'};
_radio_slot = radio_slot_name[get_block_id().get_block_count()];
UHD_LOG_TRACE(unique_id(), "Radio slot: " << _radio_slot);
_rpc_prefix = "db_0_";
_init_defaults();
_init_peripherals();
_init_prop_tree();
}
neon_radio_ctrl_impl::~neon_radio_ctrl_impl()
{
UHD_LOG_TRACE(unique_id(), "neon_radio_ctrl_impl::dtor() ");
}
/******************************************************************************
* API Calls
*****************************************************************************/
bool neon_radio_ctrl_impl::check_radio_config()
{
// mapping of frontend to radio perif index
static const size_t FE0 = 0;
static const size_t FE1 = 1;
const size_t num_rx =
_is_streamer_active(RX_DIRECTION, FE0) + _is_streamer_active(RX_DIRECTION, FE1);
const size_t num_tx =
_is_streamer_active(TX_DIRECTION, FE0) + _is_streamer_active(TX_DIRECTION, FE1);
// setup the active chains in the codec
if ((num_rx + num_tx) == 0) {
// Ensure at least one RX chain is enabled so AD9361 outputs a sample clock
this->set_streaming_mode(false, false, true, false);
} else {
this->set_streaming_mode(_is_streamer_active(TX_DIRECTION, FE0),
_is_streamer_active(TX_DIRECTION, FE1),
_is_streamer_active(RX_DIRECTION, FE0),
_is_streamer_active(RX_DIRECTION, FE1));
}
return true;
}
void neon_radio_ctrl_impl::set_streaming_mode(
const bool tx1, const bool tx2, const bool rx1, const bool rx2)
{
UHD_LOG_TRACE(unique_id(), "Setting up streaming ...")
const size_t num_rx = rx1 + rx2;
const size_t num_tx = tx1 + tx2;
// setup the active chains in the codec
_ad9361->set_active_chains(tx1, tx2, rx1, rx2);
const std::string TIMING_MODE_2R2T = "2R2T";
const std::string TIMING_MODE_1R1T = "1R1T";
const std::string MIMO = "MIMO"; // 2R2T
const std::string SISO_TX1 = "SISO_TX1"; // 1R1T
const std::string SISO_TX0 = "SISO_TX0"; // 1R1T
// setup 1R1T/2R2T mode in catalina and fpga
// The Catalina interface in the fpga needs to know which TX channel to use for
// the data on the LVDS lines.
if ((num_rx == 2) or (num_tx == 2)) {
// AD9361 is in 2R2T mode
_ad9361->set_timing_mode(TIMING_MODE_2R2T);
this->set_channel_mode(MIMO);
} else {
// AD9361 is in 1R1T mode
_ad9361->set_timing_mode(TIMING_MODE_1R1T);
// Set to SIS0_TX1 if we're using the second TX antenna, otherwise
// default to SISO_TX0
this->set_channel_mode(tx2 ? SISO_TX1 : SISO_TX0);
}
}
void neon_radio_ctrl_impl::set_channel_mode(const std::string& channel_mode)
{
// MIMO for 2R2T mode for 2 channels
// SISO_TX1 for 1R1T mode for 1 channel - TX1
// SISO_TX0 for 1R1T mode for 1 channel - TX0
_rpcc->request_with_token<void>("set_channel_mode", channel_mode);
}
/* loopback_self_test checks the integrity of the FPGA->AD936x->FPGA sample interface.
The AD936x is put in loopback mode that sends the TX data unchanged to the RX side.
A test value is written to the codec_idle register in the TX side of the radio.
The readback register is then used to capture the values on the TX and RX sides
simultaneously for comparison. It is a reasonably effective test for AC timing
since I/Q Ch0/Ch1 alternate over the same wires. Note, however, that it uses
whatever timing is configured at the time the test is called rather than select
worst case conditions to stress the interface.
Note: This currently only tests 2R2T mode
*/
void neon_radio_ctrl_impl::loopback_self_test(
std::function<void(uint32_t)> poker_functor, std::function<uint64_t()> peeker_functor)
{
// Save current rate before running this test
const double current_rate = this->get_rate();
// Set 2R2T mode, stream on all channels
this->set_streaming_mode(true, true, true, true);
// Set maximum rate for 2R2T mode
this->set_rate(30.72e6);
// Put AD936x in loopback mode
_ad9361->data_port_loopback(true);
UHD_LOG_INFO(unique_id(), "Performing CODEC loopback test... ");
size_t hash = size_t(time(NULL));
constexpr size_t loopback_count = 100;
// Allow some time for AD936x to enter loopback mode.
// There is no clear statement in the documentation of how long it takes,
// but UG-570 does say to "allow six ADC_CLK/64 clock cycles of flush time"
// when leaving the TX or RX states. That works out to ~75us at the
// minimum clock rate of 5 MHz, which lines up with test results.
// Sleeping 1ms is far more than enough.
std::this_thread::sleep_for(std::chrono::milliseconds(1));
for (size_t i = 0; i < loopback_count; i++) {
// Create test word
boost::hash_combine(hash, i);
const uint32_t word32 = uint32_t(hash) & 0xfff0fff0;
// const uint32_t word32 = 0xCA00C100;
// Write test word to codec_idle idle register (on TX side)
poker_functor(word32);
// Read back values - TX is lower 32-bits and RX is upper 32-bits
const uint64_t rb_word64 = peeker_functor();
const uint32_t rb_tx = uint32_t(rb_word64 >> 32);
const uint32_t rb_rx = uint32_t(rb_word64 & 0xffffffff);
// Compare TX and RX values to test word
bool test_fail = word32 != rb_tx or word32 != rb_rx;
if (test_fail) {
UHD_LOG_WARNING(unique_id(),
"CODEC loopback test failed! "
<< boost::format("Expected: 0x%08X Received (TX/RX): 0x%08X/0x%08X")
% word32 % rb_tx % rb_rx);
throw uhd::runtime_error("CODEC loopback test failed.");
}
}
UHD_LOG_INFO(unique_id(), "CODEC loopback test passed");
// Zero out the idle data.
poker_functor(0);
// Take AD936x out of loopback mode
_ad9361->data_port_loopback(false);
this->set_streaming_mode(true, false, true, false);
// Switch back to current rate
this->set_rate(current_rate);
}
double neon_radio_ctrl_impl::set_rate(const double rate)
{
std::lock_guard<std::mutex> l(_set_lock);
UHD_LOG_DEBUG(unique_id(), "Asking for clock rate " << rate / 1e6 << " MHz\n");
double actual_tick_rate = _ad9361->set_clock_rate(rate);
UHD_LOG_DEBUG(
unique_id(), "Actual clock rate " << actual_tick_rate / 1e6 << " MHz\n");
radio_ctrl_impl::set_rate(rate);
return rate;
}
void neon_radio_ctrl_impl::set_tx_antenna(const std::string& ant, const size_t chan)
{
if (ant != get_tx_antenna(chan)) {
throw uhd::value_error(
str(boost::format("[%s] Requesting invalid TX antenna value: %s")
% unique_id() % ant));
}
radio_ctrl_impl::set_tx_antenna(ant, chan);
// We can't actually set the TX antenna, so let's stop here.
}
void neon_radio_ctrl_impl::set_rx_antenna(const std::string& ant, const size_t chan)
{
UHD_ASSERT_THROW(chan <= NEON_NUM_CHANS);
if (std::find(NEON_RX_ANTENNAS.begin(), NEON_RX_ANTENNAS.end(), ant)
== NEON_RX_ANTENNAS.end()) {
throw uhd::value_error(
str(boost::format("[%s] Requesting invalid RX antenna value: %s")
% unique_id() % ant));
}
UHD_LOG_TRACE(unique_id(), "Setting RX antenna to " << ant << " for chan " << chan);
radio_ctrl_impl::set_rx_antenna(ant, chan);
_set_atr_bits(chan);
}
double neon_radio_ctrl_impl::set_tx_frequency(const double freq, const size_t chan)
{
UHD_LOG_TRACE(unique_id(), "set_tx_frequency(f=" << freq << ", chan=" << chan << ")");
std::lock_guard<std::mutex> l(_set_lock);
double clipped_freq = uhd::clip(freq, AD9361_TX_MIN_FREQ, AD9361_TX_MAX_FREQ);
double coerced_freq =
_ad9361->tune(get_which_ad9361_chain(TX_DIRECTION, chan), clipped_freq);
radio_ctrl_impl::set_tx_frequency(coerced_freq, chan);
// Front-end switching
_set_atr_bits(chan);
return coerced_freq;
}
double neon_radio_ctrl_impl::set_rx_frequency(const double freq, const size_t chan)
{
UHD_LOG_TRACE(unique_id(), "set_rx_frequency(f=" << freq << ", chan=" << chan << ")");
std::lock_guard<std::mutex> l(_set_lock);
double clipped_freq = uhd::clip(freq, AD9361_RX_MIN_FREQ, AD9361_RX_MAX_FREQ);
double coerced_freq =
_ad9361->tune(get_which_ad9361_chain(RX_DIRECTION, chan), clipped_freq);
radio_ctrl_impl::set_rx_frequency(coerced_freq, chan);
// Front-end switching
_set_atr_bits(chan);
return coerced_freq;
}
double neon_radio_ctrl_impl::set_rx_bandwidth(const double bandwidth, const size_t chan)
{
std::lock_guard<std::mutex> l(_set_lock);
double clipped_bw =
_ad9361->set_bw_filter(get_which_ad9361_chain(RX_DIRECTION, chan), bandwidth);
return radio_ctrl_impl::set_rx_bandwidth(clipped_bw, chan);
}
double neon_radio_ctrl_impl::set_tx_bandwidth(const double bandwidth, const size_t chan)
{
std::lock_guard<std::mutex> l(_set_lock);
double clipped_bw =
_ad9361->set_bw_filter(get_which_ad9361_chain(TX_DIRECTION, chan), bandwidth);
return radio_ctrl_impl::set_tx_bandwidth(clipped_bw, chan);
}
double neon_radio_ctrl_impl::set_tx_gain(const double gain, const size_t chan)
{
std::lock_guard<std::mutex> l(_set_lock);
UHD_LOG_TRACE(unique_id(), "set_tx_gain(gain=" << gain << ", chan=" << chan << ")");
double clip_gain = uhd::clip(gain, AD9361_MIN_TX_GAIN, AD9361_MAX_TX_GAIN);
_ad9361->set_gain(get_which_ad9361_chain(TX_DIRECTION, chan), clip_gain);
radio_ctrl_impl::set_tx_gain(clip_gain, chan);
return clip_gain;
}
double neon_radio_ctrl_impl::set_rx_gain(const double gain, const size_t chan)
{
std::lock_guard<std::mutex> l(_set_lock);
UHD_LOG_TRACE(unique_id(), "set_rx_gain(gain=" << gain << ", chan=" << chan << ")");
double clip_gain = uhd::clip(gain, AD9361_MIN_RX_GAIN, AD9361_MAX_RX_GAIN);
_ad9361->set_gain(get_which_ad9361_chain(RX_DIRECTION, chan), clip_gain);
radio_ctrl_impl::set_rx_gain(clip_gain, chan);
return clip_gain;
}
size_t neon_radio_ctrl_impl::get_chan_from_dboard_fe(
const std::string& fe, const direction_t /* dir */
)
{
const size_t chan = boost::lexical_cast<size_t>(fe);
if (chan > _get_num_radios() - 1) {
UHD_LOG_WARNING(unique_id(),
boost::format("Invalid channel determined from dboard frontend %s.") % fe);
}
return chan;
}
std::string neon_radio_ctrl_impl::get_dboard_fe_from_chan(
const size_t chan, const direction_t /* dir */
)
{
return std::to_string(chan);
}
void neon_radio_ctrl_impl::set_rpc_client(
uhd::rpc_client::sptr rpcc, const uhd::device_addr_t& block_args)
{
_rpcc = rpcc;
_block_args = block_args;
UHD_LOG_TRACE(unique_id(), "Instantiating AD9361 control object...");
_ad9361 = make_rpc(_rpcc);
UHD_LOG_TRACE(unique_id(), "Setting Catalina Defaults... ");
// Initialize catalina
this->_init_codec();
if (block_args.has_key("identify")) {
const std::string identify_val = block_args.get("identify");
int identify_duration = std::atoi(identify_val.c_str());
if (identify_duration == 0) {
identify_duration = 5;
}
UHD_LOG_INFO(unique_id(),
"Running LED identification process for " << identify_duration
<< " seconds.");
_identify_with_leds(identify_duration);
}
// Note: MCR gets set during the init() call (prior to this), which takes
// in arguments from the device args. So if block_args contains a
// master_clock_rate key, then it should better be whatever the device is
// configured to do.
_master_clock_rate =
_rpcc->request_with_token<double>(_rpc_prefix + "get_master_clock_rate");
if (block_args.cast<double>("master_clock_rate", _master_clock_rate)
!= _master_clock_rate) {
throw uhd::runtime_error(str(
boost::format("Master clock rate mismatch. Device returns %f MHz, "
"but should have been %f MHz.")
% (_master_clock_rate / 1e6)
% (block_args.cast<double>("master_clock_rate", _master_clock_rate) / 1e6)));
}
UHD_LOG_DEBUG(
unique_id(), "Master Clock Rate is: " << (_master_clock_rate / 1e6) << " MHz.");
this->set_rate(_master_clock_rate);
// Loopback test
for (size_t chan = 0; chan < _get_num_radios(); chan++) {
loopback_self_test(
[this, chan](
const uint32_t value) { this->sr_write(regs::CODEC_IDLE, value, chan); },
[this, chan]() {
return this->user_reg_read64(regs::RB_CODEC_READBACK, chan);
});
}
const size_t db_idx = get_block_id().get_block_count();
_tree->access<eeprom_map_t>(_root_path / "eeprom")
.add_coerced_subscriber([this, db_idx](const eeprom_map_t& db_eeprom) {
this->_rpcc->notify_with_token("set_db_eeprom", db_idx, db_eeprom);
})
.set_publisher([this, db_idx]() {
return this->_rpcc->request_with_token<eeprom_map_t>("get_db_eeprom", db_idx);
});
// Init sensors
for (const auto& dir : std::vector<direction_t>{RX_DIRECTION, TX_DIRECTION}) {
for (size_t chan_idx = 0; chan_idx < NEON_NUM_CHANS; chan_idx++) {
_init_mpm_sensors(dir, chan_idx);
}
}
}
bool neon_radio_ctrl_impl::get_lo_lock_status(const direction_t dir)
{
if (not(bool(_rpcc))) {
UHD_LOG_DEBUG(unique_id(), "Reported no LO lock due to lack of RPC connection.");
return false;
}
const std::string trx = (dir == RX_DIRECTION) ? "rx" : "tx";
bool lo_lock =
_rpcc->request_with_token<bool>(_rpc_prefix + "get_ad9361_lo_lock", trx);
UHD_LOG_TRACE(unique_id(),
"AD9361 " << trx << " LO reports lock: " << (lo_lock ? "Yes" : "No"));
return lo_lock;
}
void neon_radio_ctrl_impl::_set_atr_bits(const size_t chan)
{
const auto rx_freq = radio_ctrl_impl::get_rx_frequency(chan);
const auto tx_freq = radio_ctrl_impl::get_tx_frequency(chan);
const auto rx_ant = radio_ctrl_impl::get_rx_antenna(chan);
const uint32_t rx_regs = _get_rx_switches(chan, rx_freq, rx_ant);
const uint32_t tx_regs = _get_tx_switches(chan, tx_freq);
const uint32_t idle_regs = TX_AMP_OFF << TX_AMP_SHIFT | TRX1_SW_TX_HB << TRX_SW_SHIFT
| TX_SW2_LB_80 << TX_SW2_SHIFT
| TX_SW1_LB_80 << TX_SW1_SHIFT | RX_SW3_OFF << RX_SW3_SHIFT
| RX_SW2_OFF << RX_SW2_SHIFT | RX_SW1_OFF << RX_SW1_SHIFT;
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_IDLE, idle_regs);
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_RX_ONLY, rx_regs);
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_TX_ONLY, tx_regs);
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_FULL_DUPLEX, rx_regs | tx_regs);
// The LED signal names are reversed, but are consistent with the schematic
const int idle_led = 0;
const bool is_txrx = rx_ant == "TX/RX";
const int rx_led = 1 << TRX_LED_GRN_SHIFT;
const int tx_led = 1 << TX_LED_RED_SHIFT;
const int txrx_led = 1 << RX_LED_GRN_SHIFT;
_leds_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_IDLE, idle_led);
_leds_gpio[chan]->set_atr_reg(
usrp::gpio_atr::ATR_REG_RX_ONLY, is_txrx ? txrx_led : rx_led);
_leds_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_TX_ONLY, tx_led);
_leds_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_FULL_DUPLEX, rx_led | tx_led);
}
void neon_radio_ctrl_impl::_identify_with_leds(const int identify_duration)
{
auto end_time =
std::chrono::steady_clock::now() + std::chrono::seconds(identify_duration);
bool led_state = true;
while (std::chrono::steady_clock::now() < end_time) {
// Add update_leds
led_state = !led_state;
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
}
uint32_t neon_radio_ctrl_impl::_get_tx_switches(const size_t chan, const double freq)
{
UHD_LOG_TRACE(
unique_id(), "Update all TX freq related switches. f=" << freq << " Hz, ");
auto tx_sw1 = TX_SW1_LB_160;
auto tx_sw2 = TX_SW2_LB_160;
auto trx_sw = (chan == 0) ? TRX1_SW_TX_LB : TRX2_SW_TX_LB;
auto tx_amp = TX_AMP_LF_ON;
const auto band = _map_freq_to_tx_band(freq);
switch (band) {
case tx_band::LB_80:
tx_sw1 = TX_SW1_LB_80;
tx_sw2 = TX_SW2_LB_80;
break;
case tx_band::LB_160:
tx_sw1 = TX_SW1_LB_160;
tx_sw2 = TX_SW2_LB_160;
break;
case tx_band::LB_225:
tx_sw1 = TX_SW1_LB_225;
tx_sw2 = TX_SW2_LB_225;
break;
case tx_band::LB_400:
tx_sw1 = TX_SW1_LB_400;
tx_sw2 = TX_SW2_LB_400;
break;
case tx_band::LB_575:
tx_sw1 = TX_SW1_LB_575;
tx_sw2 = TX_SW2_LB_575;
break;
case tx_band::LB_1000:
tx_sw1 = TX_SW1_LB_1000;
tx_sw2 = TX_SW2_LB_1000;
break;
case tx_band::LB_1700:
tx_sw1 = TX_SW1_LB_1700;
tx_sw2 = TX_SW2_LB_1700;
break;
case tx_band::LB_2750:
tx_sw1 = TX_SW1_LB_2750;
tx_sw2 = TX_SW2_LB_2750;
break;
case tx_band::HB:
trx_sw = (chan == 0) ? TRX1_SW_TX_HB : TRX2_SW_TX_HB;
tx_amp = TX_AMP_HF_ON;
break;
case tx_band::INVALID_BAND:
UHD_LOG_ERROR(unique_id(), "Cannot map TX frequency to band: " << freq);
UHD_THROW_INVALID_CODE_PATH();
break;
}
auto tx_regs = tx_amp << TX_AMP_SHIFT | trx_sw << TRX_SW_SHIFT
| tx_sw2 << TX_SW2_SHIFT | tx_sw1 << TX_SW1_SHIFT;
return tx_regs;
}
uint32_t neon_radio_ctrl_impl::_get_rx_switches(
const size_t chan, const double freq, const std::string& ant)
{
UHD_LOG_TRACE(
unique_id(), "Update all RX freq related switches. f=" << freq << " Hz, ");
// Default to OFF
auto rx_sw1 = RX_SW1_OFF;
auto rx_sw2 = RX_SW2_OFF;
auto rx_sw3 = RX_SW3_OFF;
auto trx_sw = (chan == 0) ? TRX1_SW_RX : TRX2_SW_RX;
if (ant == "TX/RX") {
rx_sw3 = RX_SW3_HBRX_LBTRX;
trx_sw = (chan == 0) ? TRX1_SW_RX : TRX2_SW_RX;
} else if (ant == "RX2") {
rx_sw3 = RX_SW3_HBTRX_LBRX;
// Set TRX switch to TX when receiving on RX2
trx_sw = TRX1_SW_TX_HB;
}
const auto band = _map_freq_to_rx_band(freq);
switch (band) {
case rx_band::LB_B2:
rx_sw1 = RX_SW1_LB_B2;
rx_sw2 = RX_SW2_LB_B2;
break;
case rx_band::LB_B3:
rx_sw1 = RX_SW1_LB_B3;
rx_sw2 = RX_SW2_LB_B3;
break;
case rx_band::LB_B4:
rx_sw1 = RX_SW1_LB_B4;
rx_sw2 = RX_SW2_LB_B4;
break;
case rx_band::LB_B5:
rx_sw1 = RX_SW1_LB_B5;
rx_sw2 = RX_SW2_LB_B5;
break;
case rx_band::LB_B6:
rx_sw1 = RX_SW1_LB_B6;
rx_sw2 = RX_SW2_LB_B6;
break;
case rx_band::LB_B7:
rx_sw1 = RX_SW1_LB_B7;
rx_sw2 = RX_SW2_LB_B7;
break;
case rx_band::HB:
rx_sw1 = RX_SW1_OFF;
rx_sw2 = RX_SW2_OFF;
if (ant == "TX/RX") {
rx_sw3 = RX_SW3_HBTRX_LBRX;
} else if (ant == "RX2") {
rx_sw3 = RX_SW3_HBRX_LBTRX;
}
break;
case rx_band::INVALID_BAND:
UHD_LOG_ERROR(unique_id(), "Cannot map RX frequency to band: " << freq);
UHD_THROW_INVALID_CODE_PATH();
break;
}
auto rx_regs = trx_sw << TRX_SW_SHIFT | rx_sw3 << RX_SW3_SHIFT
| rx_sw2 << RX_SW2_SHIFT | rx_sw1 << RX_SW1_SHIFT;
return rx_regs;
}
UHD_RFNOC_BLOCK_REGISTER(neon_radio_ctrl, "NeonRadio");
|