1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
|
//
// Copyright 2017 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "magnesium_radio_ctrl_impl.hpp"
#include "magnesium_constants.hpp"
#include "spi_core_3000.hpp"
#include <uhd/utils/log.hpp>
#include <uhd/types/eeprom.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/transport/chdr.hpp>
#include <vector>
#include <string>
#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/split.hpp>
#include <boost/algorithm/string/case_conv.hpp>
using namespace uhd;
using namespace uhd::rfnoc;
namespace {
enum slave_select_t {
SEN_CPLD = 1,
SEN_TX_LO = 2,
SEN_RX_LO = 4,
SEN_PHASE_DAC = 8
};
constexpr double MAGNESIUM_DEFAULT_FREQ = 2.5e9; // Hz
constexpr double MAGNESIUM_DEFAULT_BANDWIDTH = 100e6; // Hz
constexpr char MAGNESIUM_DEFAULT_RX_ANTENNA[] = "RX2";
constexpr char MAGNESIUM_DEFAULT_TX_ANTENNA[] = "TX/RX";
//! Magnesium gain profile options
const std::vector<std::string> MAGNESIUM_GP_OPTIONS = {
"manual",
"default"
};
}
//! Helper function to extract single value of port number.
//
// Each GPIO pins can be controlled by each radio output ports.
// This function convert the format of attribute "Radio_N_M"
// to a single value port number = N*number_of_port_per_radio + M
uint32_t extract_port_number(std::string radio_src_string, uhd::property_tree::sptr ptree){
std::string s_val = "0";
std::vector<std::string> radio_strings;
boost::algorithm::split(
radio_strings,
radio_src_string,
boost::is_any_of("_/"),
boost::token_compress_on);
boost::to_lower(radio_strings[0]);
if (radio_strings.size()<3) {
throw uhd::runtime_error(str(boost::format("%s is an invalid GPIO source string.") % radio_src_string));
}
size_t radio_num = std::stoi(radio_strings[1]);
size_t port_num = std::stoi(radio_strings[2]);
if (radio_strings[0] != "radio") {
throw uhd::runtime_error("Front panel GPIO bank can only accept a radio block as its driver.");
}
std::string radio_port_out = "Radio_"+ radio_strings[1] + "/ports/out";
std::string radio_port_path = radio_port_out + "/"+ radio_strings[2];
auto found = ptree->exists(fs_path("xbar")/ radio_port_path);
if (not found){
throw uhd::runtime_error(str(boost::format(
"Could not find radio port %s.\n") % radio_port_path));
}
size_t port_size = ptree->list(fs_path("xbar")/ radio_port_out).size();
return radio_num*port_size + port_num;
}
void magnesium_radio_ctrl_impl::_init_defaults()
{
UHD_LOG_TRACE(unique_id(), "Initializing defaults...");
const size_t num_rx_chans = get_output_ports().size();
const size_t num_tx_chans = get_input_ports().size();
UHD_LOG_TRACE(unique_id(),
"Num TX chans: " << num_tx_chans
<< " Num RX chans: " << num_rx_chans);
for (size_t chan = 0; chan < num_rx_chans; chan++) {
radio_ctrl_impl::set_rx_frequency(MAGNESIUM_DEFAULT_FREQ, chan);
radio_ctrl_impl::set_rx_gain(0, chan);
radio_ctrl_impl::set_rx_antenna(MAGNESIUM_DEFAULT_RX_ANTENNA, chan);
radio_ctrl_impl::set_rx_bandwidth(MAGNESIUM_DEFAULT_BANDWIDTH, chan);
}
for (size_t chan = 0; chan < num_tx_chans; chan++) {
radio_ctrl_impl::set_tx_frequency(MAGNESIUM_DEFAULT_FREQ, chan);
radio_ctrl_impl::set_tx_gain(0, chan);
radio_ctrl_impl::set_tx_antenna(MAGNESIUM_DEFAULT_TX_ANTENNA, chan);
}
/** Update default SPP (overwrites the default value from the XML file) **/
const size_t max_bytes_header =
uhd::transport::vrt::chdr::max_if_hdr_words64 * sizeof(uint64_t);
const size_t default_spp =
(_tree->access<size_t>("mtu/recv").get() - max_bytes_header)
/ (2 * sizeof(int16_t));
UHD_LOG_DEBUG(unique_id(),
"Setting default spp to " << default_spp);
_tree->access<int>(get_arg_path("spp") / "value").set(default_spp);
}
void magnesium_radio_ctrl_impl::_init_peripherals()
{
UHD_LOG_TRACE(unique_id(), "Initializing peripherals...");
fs_path cpld_path = _root_path.branch_path()
/ str(boost::format("Radio_%d") % ((get_block_id().get_block_count()/2)*2))
/ "cpld";
fs_path rx_lo_path = _root_path.branch_path()
/ str(boost::format("Radio_%d") % ((get_block_id().get_block_count()/2)*2))
/ "rx_lo";
fs_path tx_lo_path = _root_path.branch_path()
/ str(boost::format("Radio_%d") % ((get_block_id().get_block_count()/2)*2))
/ "tx_lo";
// TODO: When we move back to 2 chans per RFNoC block, this needs to be
// non-conditional, and the else-branch goes away:
if (_master) {
UHD_LOG_TRACE(unique_id(), "Initializing SPI core...");
_spi = spi_core_3000::make(_get_ctrl(0),
radio_ctrl_impl::regs::sr_addr(radio_ctrl_impl::regs::SPI),
radio_ctrl_impl::regs::RB_SPI);
} else {
UHD_LOG_TRACE(unique_id(), "Not a master radio, no SPI core.");
}
UHD_LOG_TRACE(unique_id(), "Initializing CPLD...");
UHD_LOG_TRACE(unique_id(), "CPLD path: " << cpld_path);
if (not _tree->exists(cpld_path)) {
UHD_LOG_TRACE(unique_id(), "Creating new CPLD object...");
spi_config_t spi_config;
spi_config.use_custom_divider = true;
spi_config.divider = 125;
spi_config.mosi_edge = spi_config_t::EDGE_RISE;
spi_config.miso_edge = spi_config_t::EDGE_FALL;
UHD_LOG_TRACE(unique_id(), "Making CPLD object...");
_cpld = std::make_shared<magnesium_cpld_ctrl>(
[this, spi_config](const uint32_t transaction){ // Write functor
this->_spi->write_spi(
SEN_CPLD,
spi_config,
transaction,
24
);
},
[this, spi_config](const uint32_t transaction){ // Read functor
return this->_spi->read_spi(
SEN_CPLD,
spi_config,
transaction,
24
);
}
);
_update_atr_switches(
magnesium_cpld_ctrl::BOTH,
DX_DIRECTION,
radio_ctrl_impl::get_rx_antenna(0)
);
_tree->create<magnesium_cpld_ctrl::sptr>(cpld_path).set(_cpld);
} else {
UHD_LOG_TRACE(unique_id(), "Reusing someone else's CPLD object...");
_cpld = _tree->access<magnesium_cpld_ctrl::sptr>(cpld_path).get();
}
// TODO: Same comment as above applies
if (_master) {
UHD_LOG_TRACE(unique_id(), "Initializing TX LO...");
_tx_lo = adf435x_iface::make_adf4351(
[this](const std::vector<uint32_t> transactions){
for (const uint32_t transaction: transactions) {
this->_spi->write_spi(
SEN_TX_LO,
spi_config_t::EDGE_RISE,
transaction,
32
);
}
}
);
UHD_LOG_TRACE(unique_id(), "Initializing RX LO...");
_rx_lo = adf435x_iface::make_adf4351(
[this](const std::vector<uint32_t> transactions){
for (const uint32_t transaction: transactions) {
this->_spi->write_spi(
SEN_RX_LO,
spi_config_t::EDGE_RISE,
transaction,
32
);
}
}
);
} else {
UHD_LOG_TRACE(unique_id(), "Not a master radio, no LOs.");
}
_gpio.clear(); // Following the as-if rule, this can get optimized out
for (size_t radio_idx = 0; radio_idx < _get_num_radios(); radio_idx++) {
UHD_LOG_TRACE(unique_id(),
"Initializing GPIOs for channel " << radio_idx);
_gpio.emplace_back(
usrp::gpio_atr::gpio_atr_3000::make(
_get_ctrl(radio_idx),
regs::sr_addr(regs::GPIO),
regs::RB_DB_GPIO
)
);
// DSA and AD9371 gain bits do *not* toggle on ATR modes. If we ever
// connect anything else to this core, we might need to set_atr_mode()
// to MODE_ATR on those bits. For now, all bits simply do what they're
// told, and don't toggle on RX/TX state changes.
_gpio.back()->set_atr_mode(
usrp::gpio_atr::MODE_GPIO, // Disable ATR mode
usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL
);
_gpio.back()->set_gpio_ddr(
usrp::gpio_atr::DDR_OUTPUT, // Make all GPIOs outputs
usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL
);
}
UHD_LOG_TRACE(unique_id(), "Initializing front-panel GPIO control...")
_fp_gpio = usrp::gpio_atr::gpio_atr_3000::make(
_get_ctrl(0), regs::sr_addr(regs::FP_GPIO), regs::RB_FP_GPIO);
}
void magnesium_radio_ctrl_impl::_init_frontend_subtree(
uhd::property_tree::sptr subtree,
const size_t chan_idx
) {
const fs_path tx_fe_path = fs_path("tx_frontends") / chan_idx;
const fs_path rx_fe_path = fs_path("rx_frontends") / chan_idx;
UHD_LOG_TRACE(unique_id(),
"Adding non-RFNoC block properties for channel " << chan_idx <<
" to prop tree path " << tx_fe_path << " and " << rx_fe_path);
// TX Standard attributes
subtree->create<std::string>(tx_fe_path / "name")
.set(str(boost::format("Magnesium")))
;
subtree->create<std::string>(tx_fe_path / "connection")
.set("IQ")
;
// RX Standard attributes
subtree->create<std::string>(rx_fe_path / "name")
.set(str(boost::format("Magnesium")))
;
subtree->create<std::string>(rx_fe_path / "connection")
.set("IQ")
;
// TX Antenna
subtree->create<std::string>(tx_fe_path / "antenna" / "value")
.add_coerced_subscriber([this, chan_idx](const std::string &ant){
this->set_tx_antenna(ant, chan_idx);
})
.set_publisher([this, chan_idx](){
return this->get_tx_antenna(chan_idx);
})
;
subtree->create<std::vector<std::string>>(tx_fe_path / "antenna" / "options")
.set({MAGNESIUM_DEFAULT_TX_ANTENNA})
.add_coerced_subscriber([](const std::vector<std::string> &){
throw uhd::runtime_error(
"Attempting to update antenna options!");
})
;
// RX Antenna
subtree->create<std::string>(rx_fe_path / "antenna" / "value")
.add_coerced_subscriber([this, chan_idx](const std::string &ant){
this->set_rx_antenna(ant, chan_idx);
})
.set_publisher([this, chan_idx](){
return this->get_rx_antenna(chan_idx);
})
;
subtree->create<std::vector<std::string>>(rx_fe_path / "antenna" / "options")
.set(MAGNESIUM_RX_ANTENNAS)
.add_coerced_subscriber([](const std::vector<std::string> &){
throw uhd::runtime_error(
"Attempting to update antenna options!");
})
;
// TX frequency
subtree->create<double>(tx_fe_path / "freq" / "value")
.set_coercer([this, chan_idx](const double freq){
return this->set_tx_frequency(freq, chan_idx);
})
.set_publisher([this, chan_idx](){
return this->get_tx_frequency(chan_idx);
})
;
subtree->create<meta_range_t>(tx_fe_path / "freq" / "range")
.set(meta_range_t(MAGNESIUM_MIN_FREQ, MAGNESIUM_MAX_FREQ, 1.0))
.add_coerced_subscriber([](const meta_range_t &){
throw uhd::runtime_error(
"Attempting to update freq range!");
})
;
// RX frequency
subtree->create<double>(rx_fe_path / "freq" / "value")
.set_coercer([this, chan_idx](const double freq){
return this->set_rx_frequency(freq, chan_idx);
})
.set_publisher([this, chan_idx](){
return this->get_rx_frequency(chan_idx);
})
;
subtree->create<meta_range_t>(rx_fe_path / "freq" / "range")
.set(meta_range_t(MAGNESIUM_MIN_FREQ, MAGNESIUM_MAX_FREQ, 1.0))
.add_coerced_subscriber([](const meta_range_t &){
throw uhd::runtime_error(
"Attempting to update freq range!");
})
;
// TX bandwidth
subtree->create<double>(tx_fe_path / "bandwidth" / "value")
.set(AD9371_TX_MAX_BANDWIDTH)
.set_coercer([this, chan_idx](const double bw){
return this->set_tx_bandwidth(bw, chan_idx);
})
.set_publisher([this, chan_idx](){
return this->get_tx_bandwidth(chan_idx);
})
;
subtree->create<meta_range_t>(tx_fe_path / "bandwidth" / "range")
.set(meta_range_t(AD9371_TX_MIN_BANDWIDTH, AD9371_TX_MAX_BANDWIDTH))
.add_coerced_subscriber([](const meta_range_t &){
throw uhd::runtime_error(
"Attempting to update bandwidth range!");
})
;
// RX bandwidth
subtree->create<double>(rx_fe_path / "bandwidth" / "value")
.set(AD9371_RX_MAX_BANDWIDTH)
.set_coercer([this, chan_idx](const double bw){
return this->set_rx_bandwidth(bw, chan_idx);
})
;
subtree->create<meta_range_t>(rx_fe_path / "bandwidth" / "range")
.set(meta_range_t(AD9371_RX_MIN_BANDWIDTH, AD9371_RX_MAX_BANDWIDTH))
.add_coerced_subscriber([](const meta_range_t &){
throw uhd::runtime_error(
"Attempting to update bandwidth range!");
})
;
// TX gains
subtree->create<double>(tx_fe_path / "gains" / "all" / "value")
.set_coercer([this, chan_idx](const double gain){
return this->set_tx_gain(gain, chan_idx);
})
.set_publisher([this, chan_idx](){
return radio_ctrl_impl::get_tx_gain(chan_idx);
})
;
subtree->create<meta_range_t>(tx_fe_path / "gains" / "all" / "range")
.add_coerced_subscriber([](const meta_range_t &){
throw uhd::runtime_error(
"Attempting to update gain range!");
})
.set_publisher([this](){
if (_gain_profile[TX_DIRECTION] == "manual") {
return meta_range_t(0.0, 0.0, 0.0);
} else {
return meta_range_t(
ALL_TX_MIN_GAIN,
ALL_TX_MAX_GAIN,
ALL_TX_GAIN_STEP
);
}
})
;
subtree->create<std::vector<std::string> >(tx_fe_path / "gains/all/profile/options")
.set(boost::assign::list_of("manual")("default"));
subtree->create<std::string>(tx_fe_path / "gains/all/profile/value")
.set_coercer([this](const std::string& profile){
std::string return_profile = profile;
if (std::find(MAGNESIUM_GP_OPTIONS.begin(),
MAGNESIUM_GP_OPTIONS.end(),
profile
) == MAGNESIUM_GP_OPTIONS.end())
{
return_profile = "default";
}
_gain_profile[TX_DIRECTION] = return_profile;
return return_profile;
})
.set_publisher([this](){
return _gain_profile[TX_DIRECTION];
})
;
// RX gains
subtree->create<double>(rx_fe_path / "gains" / "all" / "value")
.set_coercer([this, chan_idx](const double gain){
return this->set_rx_gain(gain, chan_idx);
})
.set_publisher([this, chan_idx](){
return radio_ctrl_impl::get_rx_gain(chan_idx);
})
;
subtree->create<meta_range_t>(rx_fe_path / "gains" / "all" / "range")
.add_coerced_subscriber([](const meta_range_t &){
throw uhd::runtime_error(
"Attempting to update gain range!");
})
.set_publisher([this](){
if (_gain_profile[RX_DIRECTION] == "manual") {
return meta_range_t(0.0, 0.0, 0.0);
} else {
return meta_range_t(
ALL_RX_MIN_GAIN,
ALL_RX_MAX_GAIN,
ALL_RX_GAIN_STEP
);
}
})
;
subtree->create<std::vector<std::string> >(rx_fe_path / "gains/all/profile/options")
.set(MAGNESIUM_GP_OPTIONS);
subtree->create<std::string>(rx_fe_path / "gains/all/profile/value")
.set_coercer([this](const std::string& profile){
std::string return_profile = profile;
if (std::find(MAGNESIUM_GP_OPTIONS.begin(),
MAGNESIUM_GP_OPTIONS.end(),
profile
) == MAGNESIUM_GP_OPTIONS.end())
{
return_profile = "default";
}
_gain_profile[RX_DIRECTION] = return_profile;
return return_profile;
})
.set_publisher([this](){
return _gain_profile[RX_DIRECTION];
})
;
// TX mykonos attenuation
subtree->create<double>(tx_fe_path / "gains" / MAGNESIUM_GAIN1 / "value")
.set_coercer([this, chan_idx](const double gain){
return _set_tx_gain(MAGNESIUM_GAIN1, gain, chan_idx);
})
.set_publisher([this, chan_idx](){
return this->_get_tx_gain(MAGNESIUM_GAIN1, chan_idx);
})
;
subtree->create<meta_range_t>(tx_fe_path / "gains" / MAGNESIUM_GAIN1 / "range")
.add_coerced_subscriber([](const meta_range_t &){
throw uhd::runtime_error(
"Attempting to update gain range!");
})
.set_publisher([this](){
if (_gain_profile[TX_DIRECTION] == "manual") {
return meta_range_t(
AD9371_MIN_TX_GAIN,
AD9371_MAX_TX_GAIN,
AD9371_TX_GAIN_STEP
);
} else {
return meta_range_t(0.0, 0.0, 0.0);
}
})
;
// TX DSA
subtree->create<double>(tx_fe_path / "gains" / MAGNESIUM_GAIN2 / "value")
.set_coercer([this, chan_idx](const double gain){
return this->_set_tx_gain(MAGNESIUM_GAIN2, gain, chan_idx);
})
.set_publisher([this, chan_idx](){
return this->_get_tx_gain(MAGNESIUM_GAIN2, chan_idx);
})
;
subtree->create<meta_range_t>(tx_fe_path / "gains" / MAGNESIUM_GAIN2 / "range")
.add_coerced_subscriber([](const meta_range_t &){
throw uhd::runtime_error(
"Attempting to update gain range!");
})
.set_publisher([this](){
if (_gain_profile[TX_DIRECTION] == "manual") {
return meta_range_t(DSA_MIN_GAIN, DSA_MAX_GAIN, DSA_GAIN_STEP);
}else{
return meta_range_t(0.0, 0.0, 0.0);
}
})
;
//TX amp
subtree->create<double>(tx_fe_path / "gains" / MAGNESIUM_AMP / "value")
.set_coercer([this, chan_idx](const double gain) {
return this->_set_tx_gain(MAGNESIUM_AMP, gain, chan_idx);
})
.set_publisher([this, chan_idx]() {
return this->_get_tx_gain(MAGNESIUM_AMP, chan_idx);
})
;
subtree->create<meta_range_t>(tx_fe_path / "gains" / MAGNESIUM_AMP / "range")
.add_coerced_subscriber([](const meta_range_t &) {
throw uhd::runtime_error(
"Attempting to update gain range!");
})
.set_publisher([this](){
if (_gain_profile[TX_DIRECTION] == "manual") {
return meta_range_t(AMP_MIN_GAIN, AMP_MAX_GAIN, AMP_GAIN_STEP);
}else{
return meta_range_t(0.0, 0.0, 0.0);
}
})
;
// RX mykonos attenuation
subtree->create<double>(rx_fe_path / "gains" / MAGNESIUM_GAIN1 / "value")
.set_coercer([this, chan_idx](const double gain){
UHD_VAR(gain);
return this->_set_rx_gain(MAGNESIUM_GAIN1, gain, chan_idx);
})
.set_publisher([this, chan_idx](){
return this->_get_rx_gain(MAGNESIUM_GAIN1, chan_idx);
})
;
subtree->create<meta_range_t>(rx_fe_path / "gains" / MAGNESIUM_GAIN1 / "range")
.add_coerced_subscriber([](const meta_range_t &) {
throw uhd::runtime_error(
"Attempting to update gain range!");
})
.set_publisher([this](){
if (_gain_profile[RX_DIRECTION] == "manual") {
return meta_range_t(
AD9371_MIN_RX_GAIN,
AD9371_MAX_RX_GAIN,
AD9371_RX_GAIN_STEP
);
} else {
return meta_range_t(0.0, 0.0, 0.0);
}
})
;
//RX DSA
subtree->create<double>(rx_fe_path / "gains" / MAGNESIUM_GAIN2 / "value")
.set_coercer([this, chan_idx](const double gain) {
UHD_VAR(gain);
return this->_set_rx_gain(MAGNESIUM_GAIN2, gain, chan_idx);
})
.set_publisher([this, chan_idx]() {
return this->_get_rx_gain(MAGNESIUM_GAIN2, chan_idx);
})
;
subtree->create<meta_range_t>(rx_fe_path / "gains" / MAGNESIUM_GAIN2 / "range")
.add_coerced_subscriber([](const meta_range_t &){
throw uhd::runtime_error(
"Attempting to update gain range!");
})
.set_publisher([this](){
if (_gain_profile[RX_DIRECTION] == "manual") {
return meta_range_t(DSA_MIN_GAIN, DSA_MAX_GAIN, DSA_MAX_GAIN);
}else{
return meta_range_t(0.0, 0.0, 0.0);
}
})
;
//RX amp
subtree->create<double>(rx_fe_path / "gains" / MAGNESIUM_AMP / "value")
.set_coercer([this, chan_idx](const double gain) {
return this->_set_rx_gain(MAGNESIUM_AMP, gain, chan_idx);
})
.set_publisher([this, chan_idx]() {
return this->_get_rx_gain(MAGNESIUM_AMP, chan_idx);
})
;
subtree->create<meta_range_t>(rx_fe_path / "gains" / MAGNESIUM_AMP / "range")
.add_coerced_subscriber([](const meta_range_t &) {
throw uhd::runtime_error(
"Attempting to update gain range!");
})
.set_publisher([this](){
if (_gain_profile[RX_DIRECTION] == "manual") {
return meta_range_t(AMP_MIN_GAIN, AMP_MAX_GAIN, AMP_GAIN_STEP);
}else{
return meta_range_t(0.0, 0.0, 0.0);
}
})
;
// TX LO lock sensor //////////////////////////////////////////////////////
// Note: The lowband and AD9371 LO lock sensors are generated
// programmatically in set_rpc_client(). The actual lo_locked publisher is
// also set there.
subtree->create<sensor_value_t>(tx_fe_path / "sensors" / "lo_locked")
.set(sensor_value_t("all_los", false, "locked", "unlocked"))
.add_coerced_subscriber([](const sensor_value_t &){
throw uhd::runtime_error(
"Attempting to write to sensor!");
})
.set_publisher([this](){
return sensor_value_t(
"all_los",
this->get_lo_lock_status(TX_DIRECTION),
"locked", "unlocked"
);
})
;
// RX LO lock sensor (see not on TX LO lock sensor)
subtree->create<sensor_value_t>(rx_fe_path / "sensors" / "lo_locked")
.set(sensor_value_t("all_los", false, "locked", "unlocked"))
.add_coerced_subscriber([](const sensor_value_t &){
throw uhd::runtime_error(
"Attempting to write to sensor!");
})
.set_publisher([this](){
return sensor_value_t(
"all_los",
this->get_lo_lock_status(RX_DIRECTION),
"locked", "unlocked"
);
})
;
//LO Specific
//RX LO
subtree->create<meta_range_t>(rx_fe_path / "los"/MAGNESIUM_LO1/"freq/range")
.set_publisher([this,chan_idx](){
return this->get_rx_lo_freq_range(MAGNESIUM_LO1, chan_idx);
})
;
subtree->create<std::vector<std::string>>(rx_fe_path / "los"/MAGNESIUM_LO1/"source/options")
.set_publisher([this,chan_idx](){
return this->get_rx_lo_sources(MAGNESIUM_LO1, chan_idx);
})
;
subtree->create<std::string>(rx_fe_path / "los"/MAGNESIUM_LO1/"source/value")
.add_coerced_subscriber([this,chan_idx](std::string src){
this->set_rx_lo_source(src, MAGNESIUM_LO1,chan_idx);
})
.set_publisher([this,chan_idx](){
return this->get_rx_lo_source(MAGNESIUM_LO1, chan_idx);
})
;
subtree->create<double>(rx_fe_path / "los"/MAGNESIUM_LO1/"freq/value")
.set_publisher([this,chan_idx](){
return this->get_rx_lo_freq(MAGNESIUM_LO1, chan_idx);
})
.set_coercer([this,chan_idx](const double freq){
return this->set_rx_lo_freq(freq, MAGNESIUM_LO1, chan_idx);
})
;
subtree->create<meta_range_t>(rx_fe_path / "los"/MAGNESIUM_LO2/"freq/range")
.set_publisher([this,chan_idx](){
return this->get_rx_lo_freq_range(MAGNESIUM_LO2, chan_idx);
})
;
subtree->create<std::vector<std::string>>(rx_fe_path / "los"/MAGNESIUM_LO2/"source/options")
.set_publisher([this,chan_idx](){
return this->get_rx_lo_sources(MAGNESIUM_LO2, chan_idx);
})
;
subtree->create<std::string>(rx_fe_path / "los"/MAGNESIUM_LO2/"source/value")
.add_coerced_subscriber([this,chan_idx](std::string src){
this->set_rx_lo_source(src, MAGNESIUM_LO2, chan_idx);
})
.set_publisher([this,chan_idx](){
return this->get_rx_lo_source(MAGNESIUM_LO2, chan_idx);
})
;
subtree->create<double>(rx_fe_path / "los"/MAGNESIUM_LO2/"freq/value")
.set_publisher([this,chan_idx](){
return this->get_rx_lo_freq(MAGNESIUM_LO2, chan_idx);
})
.set_coercer([this,chan_idx](double freq){
return this->set_rx_lo_freq(freq, MAGNESIUM_LO2, chan_idx);
});
//TX LO
subtree->create<meta_range_t>(tx_fe_path / "los"/MAGNESIUM_LO1/"freq/range")
.set_publisher([this,chan_idx](){
return this->get_rx_lo_freq_range(MAGNESIUM_LO1, chan_idx);
})
;
subtree->create<std::vector<std::string>>(tx_fe_path / "los"/MAGNESIUM_LO1/"source/options")
.set_publisher([this,chan_idx](){
return this->get_tx_lo_sources(MAGNESIUM_LO1, chan_idx);
})
;
subtree->create<std::string>(tx_fe_path / "los"/MAGNESIUM_LO1/"source/value")
.add_coerced_subscriber([this,chan_idx](std::string src){
this->set_tx_lo_source(src, MAGNESIUM_LO1, chan_idx);
})
.set_publisher([this,chan_idx](){
return this->get_tx_lo_source(MAGNESIUM_LO1, chan_idx);
})
;
subtree->create<double>(tx_fe_path / "los"/MAGNESIUM_LO1/"freq/value ")
.set_publisher([this,chan_idx](){
return this->get_tx_lo_freq(MAGNESIUM_LO1, chan_idx);
})
.set_coercer([this,chan_idx](double freq){
return this->set_tx_lo_freq(freq, MAGNESIUM_LO1, chan_idx);
})
;
subtree->create<meta_range_t>(tx_fe_path / "los"/MAGNESIUM_LO2/"freq/range")
.set_publisher([this,chan_idx](){
return this->get_tx_lo_freq_range(MAGNESIUM_LO2,chan_idx);
})
;
subtree->create<std::vector<std::string>>(tx_fe_path / "los"/MAGNESIUM_LO2/"source/options")
.set_publisher([this,chan_idx](){
return this->get_tx_lo_sources(MAGNESIUM_LO2, chan_idx);
})
;
subtree->create<std::string>(tx_fe_path / "los"/MAGNESIUM_LO2/"source/value")
.add_coerced_subscriber([this,chan_idx](std::string src){
this->set_tx_lo_source(src, MAGNESIUM_LO2, chan_idx);
})
.set_publisher([this,chan_idx](){
return this->get_tx_lo_source(MAGNESIUM_LO2, chan_idx);
})
;
subtree->create<double>(tx_fe_path / "los"/MAGNESIUM_LO2/"freq/value")
.set_publisher([this,chan_idx](){
return this->get_tx_lo_freq(MAGNESIUM_LO2, chan_idx);
})
.set_coercer([this,chan_idx](double freq){
return this->set_tx_lo_freq(freq, MAGNESIUM_LO2, chan_idx);
});
}
void magnesium_radio_ctrl_impl::_init_prop_tree()
{
const fs_path fe_base = fs_path("dboards") / _radio_slot;
this->_init_frontend_subtree(_tree->subtree(fe_base), 0);
// TODO: When we go to one radio per dboard, the above if statement goes
// away, and instead we have something like this:
/*
*for (chan_idx = 0; chan_idx < MAGNESIUM_NUM_CHANS; chan_idx++) {
* this->_init_frontend_subtree(
* _tree->get_subtree(fe_base), chan_idx);
*}
*/
// EEPROM paths subject to change FIXME
_tree->create<eeprom_map_t>(_root_path / "eeprom")
.set(eeprom_map_t());
// TODO change codec names
_tree->create<int>("rx_codecs" / _radio_slot / "gains");
_tree->create<int>("tx_codecs" / _radio_slot / "gains");
_tree->create<std::string>("rx_codecs" / _radio_slot / "name").set("AD9371 Dual ADC");
_tree->create<std::string>("tx_codecs" / _radio_slot / "name").set("AD9371 Dual DAC");
// TODO remove this dirty hack
if (not _tree->exists("tick_rate"))
{
_tree->create<double>("tick_rate")
.set_publisher([this](){ return this->get_rate(); })
;
}
// *****FP_GPIO************************
for(const auto& attr: usrp::gpio_atr::gpio_attr_map) {
if (not _tree->exists(fs_path("gpio") / "FP0" / attr.second)){
switch (attr.first){
case usrp::gpio_atr::GPIO_SRC:
//FIXME: move this creation of this branch of ptree out side of radio impl;
// since there's no data dependency between radio and SRC setting for FP0
_tree->create<std::vector<std::string>>(fs_path("gpio") / "FP0" / attr.second)
.set(std::vector<std::string>(
32,
usrp::gpio_atr::default_attr_value_map.at(attr.first)))
.add_coerced_subscriber([this, attr](
const std::vector<std::string> str_val){
uint32_t radio_src_value = 0;
uint32_t master_value = 0;
for(size_t i = 0 ; i<str_val.size(); i++){
if(str_val[i] == "PS"){
master_value += 1<<i;;
}else{
auto port_num = extract_port_number(str_val[i],_tree);
radio_src_value =(1<<(2*i))*port_num + radio_src_value;
}
}
_rpcc->notify_with_token("set_fp_gpio_master", master_value);
_rpcc->notify_with_token("set_fp_gpio_radio_src", radio_src_value);
});
break;
case usrp::gpio_atr::GPIO_CTRL:
case usrp::gpio_atr::GPIO_DDR:
_tree->create<std::vector<std::string>>(fs_path("gpio") / "FP0" / attr.second)
.set(std::vector<std::string>(
32,
usrp::gpio_atr::default_attr_value_map.at(attr.first)))
.add_coerced_subscriber([this, attr](
const std::vector<std::string> str_val){
uint32_t val = 0;
for(size_t i = 0 ; i < str_val.size() ; i++){
val += usrp::gpio_atr::gpio_attr_value_pair.at(attr.second).at(str_val[i])<<i;
}
_fp_gpio->set_gpio_attr(attr.first, val);
});
break;
case usrp::gpio_atr::GPIO_READBACK:{
_tree->create<uint32_t>(fs_path("gpio") / "FP0" / attr.second)
.set_publisher([this](){
return _fp_gpio->read_gpio();
}
);
}
break;
default:
_tree->create<uint32_t>(fs_path("gpio") / "FP0" / attr.second)
.set(0)
.add_coerced_subscriber([this, attr](const uint32_t val){
_fp_gpio->set_gpio_attr(attr.first, val);
});
}
}else{
switch (attr.first){
case usrp::gpio_atr::GPIO_SRC:
break;
case usrp::gpio_atr::GPIO_CTRL:
case usrp::gpio_atr::GPIO_DDR:
_tree->access<std::vector<std::string>>(fs_path("gpio") / "FP0" / attr.second)
.set(std::vector<std::string>(32, usrp::gpio_atr::default_attr_value_map.at(attr.first)))
.add_coerced_subscriber([this, attr](const std::vector<std::string> str_val){
uint32_t val = 0;
for(size_t i = 0 ; i < str_val.size() ; i++){
val += usrp::gpio_atr::gpio_attr_value_pair.at(attr.second).at(str_val[i])<<i;
}
_fp_gpio->set_gpio_attr(attr.first, val);
});
break;
case usrp::gpio_atr::GPIO_READBACK:
break;
default:
_tree->access<uint32_t>(fs_path("gpio") / "FP0" / attr.second)
.set(0)
.add_coerced_subscriber([this, attr](const uint32_t val){
_fp_gpio->set_gpio_attr(attr.first, val);
});
}
}
}
}
void magnesium_radio_ctrl_impl::_init_mpm_sensors(
const direction_t dir,
const size_t chan_idx
) {
const std::string trx = (dir == RX_DIRECTION) ? "RX" : "TX";
const fs_path fe_path =
fs_path("dboards") / _radio_slot /
(dir == RX_DIRECTION ? "rx_frontends" : "tx_frontends") / chan_idx;
auto sensor_list =
_rpcc->request_with_token<std::vector<std::string>>(
this->_rpc_prefix + "get_sensors", trx);
UHD_LOG_TRACE(unique_id(),
"Chan " << chan_idx << ": Found "
<< sensor_list.size() << " " << trx << " sensors.");
for (const auto &sensor_name : sensor_list) {
UHD_LOG_TRACE(unique_id(),
"Adding " << trx << " sensor " << sensor_name);
_tree->create<sensor_value_t>(fe_path / "sensors" / sensor_name)
.add_coerced_subscriber([](const sensor_value_t &){
throw uhd::runtime_error(
"Attempting to write to sensor!");
})
.set_publisher([this, trx, sensor_name, chan_idx](){
return sensor_value_t(
this->_rpcc->request_with_token<sensor_value_t::sensor_map_t>(
this->_rpc_prefix + "get_sensor",
trx, sensor_name, chan_idx)
);
})
;
}
}
|