1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
//
// Copyright 2017 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0
//
#include "magnesium_radio_ctrl_impl.hpp"
#include "magnesium_cpld_ctrl.hpp"
#include "magnesium_constants.hpp"
#include <uhd/utils/log.hpp>
/*
* Magnesium Rev C frequency bands:
*
* RX IF frequency is 2.4418 GHz. Have 80 MHz of bandwidth for loband.
* TX IF frequency is 1.8-2.1 GHz (1.95 GHz is best).
*
* For RX:
* Band SW2-AB SW3-ABC SW4-ABC SW5-ABCD SW6-ABC SW7-AB SW8-AB MIX
* WB RF1 01 OFF 111 NA --- NA ---- RF3 001 RF2 01 RF2 01 0
* LB RF2 10 RF5 100 NA --- RF3 0010 RF1 100 RF1 10 RF1 10 1
* 440-530 RF2 10 RF2 001 NA --- RF1 1000 RF1 100 RF2 01 RF2 01 0
* 650-1000 RF2 10 RF6 101 NA --- RF4 0001 RF1 100 RF2 01 RF2 01 0
* 1100-1575 RF2 10 RF4 011 NA --- RF2 0100 RF1 100 RF2 01 RF2 01 0
* 1600-2250 RF2 10 RF3 010 RF2 010 NA ---- RF2 010 RF2 01 RF2 01 0
* 2100-2850 RF2 10 RF1 000 RF1 100 NA ---- RF2 010 RF2 01 RF2 01 0
* 2700+ RF3 11 OFF 111 RF3 001 NA ---- RF2 010 RF2 01 RF2 01 0
*
* For TX:
* Band SW5-AB SW4-AB SW3-X SW2-ABCD SW1-AB SWTRX-AB MIX
* WB RF1 10 RF2 01 RF1 0 NA ---- SHD 00 RF4 11 0
* LB RF2 01 RF1 10 RF2 1 RF3 0010 RF3 11 RF1 00 1
* <800 RF1 10 RF2 01 RF2 1 RF3 0010 RF3 11 RF1 00 0
* 800-1700 RF1 10 RF2 01 RF2 1 RF2 0100 RF2 10 RF1 00 0
* 1700-3400 RF1 10 RF2 01 RF2 1 RF1 1000 RF1 01 RF1 00 0
* 3400-6400 RF1 10 RF2 01 RF2 1 RF4 0001 SHD 00 RF2 10 0
*/
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::rfnoc;
void magnesium_radio_ctrl_impl::_update_atr_switches(
const magnesium_cpld_ctrl::chan_sel_t chan,
const direction_t dir,
const std::string &ant
){
if (dir == RX_DIRECTION or dir == DX_DIRECTION) {
// These default values work for RX2
bool trx_led = false;
bool rx2_led = true;
auto rx_sw1 = magnesium_cpld_ctrl::RX_SW1_RX2INPUT;
// The TRX switch in TX-idle mode defaults to TX-on mode. When TX is
// off, and we're receiving on TX/RX however, we need to point TRX to
// RX SW1. In all other cases, a TX state toggle (on to idle or vice
// versa) won't trigger a change of the TRX switch.
auto sw_trx = _sw_trx[chan];
UHD_LOG_TRACE(unique_id(),
"Updating all RX-ATR related switches for antenna==" << ant);
if (ant == "TX/RX") {
rx_sw1 = magnesium_cpld_ctrl::RX_SW1_TRXSWITCHOUTPUT;
sw_trx = magnesium_cpld_ctrl::SW_TRX_RXCHANNELPATH;
trx_led = true;
rx2_led = false;
}
else if (ant == "CAL") {
// It makes intuitive sense to illuminate the green TX/RX LED when
// receiving on CAL (because it goes over to the TX/RX port), but
// the problem is that CAL is only useful when we're both TXing and
// RXing, and then both green and red would be on the same LED.
// So, for CAL, we light up the green RX2 LED.
trx_led = false;
rx2_led = true;
rx_sw1 = magnesium_cpld_ctrl::RX_SW1_TXRXINPUT;
}
else if (ant == "LOCAL") {
rx_sw1 = magnesium_cpld_ctrl::RX_SW1_RXLOCALINPUT;
}
_cpld->set_rx_input_atr_bits(
chan,
magnesium_cpld_ctrl::ON,
rx_sw1,
trx_led,
rx2_led,
true /* defer commit */
);
_cpld->set_rx_atr_bits(
chan,
magnesium_cpld_ctrl::ON,
true, /* amp on */
true, /* mykonos on */
true /* defer commit */
);
_cpld->set_rx_atr_bits(
chan,
magnesium_cpld_ctrl::IDLE,
true, /* amp stays on */
true, /* mykonos on */
true /* defer commit */
);
_cpld->set_trx_sw_atr_bits(
chan,
magnesium_cpld_ctrl::IDLE, /* idle here means TX is off */
sw_trx,
false /* don't defer commit */
);
}
if (dir == TX_DIRECTION or dir == DX_DIRECTION) {
UHD_LOG_TRACE(unique_id(), "Updating all TX-ATR related switches...");
_cpld->set_tx_atr_bits(
chan,
magnesium_cpld_ctrl::ON,
true, /* LED on */
true, /* PA on */
true, /* AMP on */
true, /* Myk on */
true /* defer commit */
);
_cpld->set_tx_atr_bits(
chan,
magnesium_cpld_ctrl::IDLE,
false, /* LED off */
false, /* PA off */
false, /* AMP off */
true, /* Myk on */
false /* don't defer commit */
);
};
}
void magnesium_radio_ctrl_impl::_update_rx_freq_switches(
const double freq,
const bool bypass_lnas,
const magnesium_cpld_ctrl::chan_sel_t chan_sel
) {
UHD_LOG_TRACE(unique_id(),
"Update all RX freq related switches. f=" << freq << " Hz, "
"bypass LNAS: " << (bypass_lnas ? "Yes" : "No") << ", chan=" << chan_sel
);
auto rx_sw2 = magnesium_cpld_ctrl::RX_SW2_BYPASSPATHTOSWITCH6;
auto rx_sw3 = magnesium_cpld_ctrl::RX_SW3_SHUTDOWNSW3;
auto rx_sw4 = magnesium_cpld_ctrl::RX_SW4_FILTER2100X2850MHZFROM;
auto rx_sw5 = magnesium_cpld_ctrl::RX_SW5_FILTER1100X1575MHZFROM;
auto rx_sw6 = magnesium_cpld_ctrl::RX_SW6_BYPASSPATHFROMSWITCH2;
const auto select_lowband_mixer_path = (freq <= MAGNESIUM_LOWBAND_FREQ) ?
magnesium_cpld_ctrl::LOWBAND_MIXER_PATH_SEL_LOBAND :
magnesium_cpld_ctrl::LOWBAND_MIXER_PATH_SEL_BYPASS;
const bool enable_lowband_mixer = (freq < MAGNESIUM_LOWBAND_FREQ);
const bool rx_lna2_enable =
not bypass_lnas and (freq < MAGNESIUM_RX_BAND4_MIN_FREQ);
const bool rx_lna1_enable =
not bypass_lnas and not rx_lna2_enable;
UHD_LOG_TRACE(unique_id(),
" Enabling LNA1: " << (rx_lna1_enable ? "Yes" : "No") <<
" Enabling LNA2: " << (rx_lna2_enable ? "Yes" : "No"));
// All the defaults are OK when using the bypass path.
if (not bypass_lnas) {
if (freq < MAGNESIUM_LOWBAND_FREQ) {
rx_sw2 = magnesium_cpld_ctrl::RX_SW2_LOWERFILTERBANKTOSWITCH3;
rx_sw3 = magnesium_cpld_ctrl::RX_SW3_FILTER0490LPMHZ;
rx_sw4 = magnesium_cpld_ctrl::RX_SW4_FILTER2700HPMHZ;
rx_sw5 = magnesium_cpld_ctrl::RX_SW5_FILTER0490LPMHZFROM;
rx_sw6 = magnesium_cpld_ctrl::RX_SW6_LOWERFILTERBANKFROMSWITCH5;
} else if (freq < MAGNESIUM_RX_BAND2_MIN_FREQ) {
rx_sw2 = magnesium_cpld_ctrl::RX_SW2_LOWERFILTERBANKTOSWITCH3;
rx_sw3 = magnesium_cpld_ctrl::RX_SW3_FILTER0440X0530MHZ;
rx_sw4 = magnesium_cpld_ctrl::RX_SW4_FILTER2700HPMHZ;
rx_sw5 = magnesium_cpld_ctrl::RX_SW5_FILTER0440X0530MHZFROM;
rx_sw6 = magnesium_cpld_ctrl::RX_SW6_LOWERFILTERBANKFROMSWITCH5;
} else if (freq < MAGNESIUM_RX_BAND3_MIN_FREQ) {
rx_sw2 = magnesium_cpld_ctrl::RX_SW2_LOWERFILTERBANKTOSWITCH3;
rx_sw3 = magnesium_cpld_ctrl::RX_SW3_FILTER0650X1000MHZ;
rx_sw4 = magnesium_cpld_ctrl::RX_SW4_FILTER2700HPMHZ;
rx_sw5 = magnesium_cpld_ctrl::RX_SW5_FILTER0650X1000MHZFROM;
rx_sw6 = magnesium_cpld_ctrl::RX_SW6_LOWERFILTERBANKFROMSWITCH5;
} else if (freq < MAGNESIUM_RX_BAND4_MIN_FREQ) {
rx_sw2 = magnesium_cpld_ctrl::RX_SW2_LOWERFILTERBANKTOSWITCH3;
rx_sw3 = magnesium_cpld_ctrl::RX_SW3_FILTER1100X1575MHZ;
rx_sw4 = magnesium_cpld_ctrl::RX_SW4_FILTER2700HPMHZ;
rx_sw5 = magnesium_cpld_ctrl::RX_SW5_FILTER1100X1575MHZFROM;
rx_sw6 = magnesium_cpld_ctrl::RX_SW6_LOWERFILTERBANKFROMSWITCH5;
} else if (freq < MAGNESIUM_RX_BAND5_MIN_FREQ) {
rx_sw2 = magnesium_cpld_ctrl::RX_SW2_LOWERFILTERBANKTOSWITCH3;
rx_sw3 = magnesium_cpld_ctrl::RX_SW3_FILTER1600X2250MHZ;
rx_sw4 = magnesium_cpld_ctrl::RX_SW4_FILTER1600X2250MHZFROM;
rx_sw5 = magnesium_cpld_ctrl::RX_SW5_FILTER0440X0530MHZFROM;
rx_sw6 = magnesium_cpld_ctrl::RX_SW6_UPPERFILTERBANKFROMSWITCH4;
} else if (freq < MAGNESIUM_RX_BAND6_MIN_FREQ) {
rx_sw2 = magnesium_cpld_ctrl::RX_SW2_LOWERFILTERBANKTOSWITCH3;
rx_sw3 = magnesium_cpld_ctrl::RX_SW3_FILTER2100X2850MHZ;
rx_sw4 = magnesium_cpld_ctrl::RX_SW4_FILTER2100X2850MHZFROM;
rx_sw5 = magnesium_cpld_ctrl::RX_SW5_FILTER0440X0530MHZFROM;
rx_sw6 = magnesium_cpld_ctrl::RX_SW6_UPPERFILTERBANKFROMSWITCH4;
} else {
rx_sw2 = magnesium_cpld_ctrl::RX_SW2_UPPERFILTERBANKTOSWITCH4;
rx_sw3 = magnesium_cpld_ctrl::RX_SW3_SHUTDOWNSW3;
rx_sw4 = magnesium_cpld_ctrl::RX_SW4_FILTER2700HPMHZ;
rx_sw5 = magnesium_cpld_ctrl::RX_SW5_FILTER0440X0530MHZFROM;
rx_sw6 = magnesium_cpld_ctrl::RX_SW6_UPPERFILTERBANKFROMSWITCH4;
}
}
_cpld->set_rx_lna_atr_bits(
chan_sel,
magnesium_cpld_ctrl::ANY,
rx_lna1_enable,
rx_lna2_enable,
true /* defer commit */
);
_cpld->set_rx_switches(
chan_sel,
rx_sw2,
rx_sw3,
rx_sw4,
rx_sw5,
rx_sw6,
select_lowband_mixer_path,
enable_lowband_mixer
);
}
void magnesium_radio_ctrl_impl::_update_tx_freq_switches(
const double freq,
const bool bypass_amp,
const magnesium_cpld_ctrl::chan_sel_t chan_sel
){
UHD_LOG_TRACE(unique_id(),
"Update all TX freq related switches. f=" << freq << " Hz, "
"bypass amp: " << (bypass_amp ? "Yes" : "No") << ", chan=" << chan_sel
);
auto tx_sw1 = magnesium_cpld_ctrl::TX_SW1_SHUTDOWNTXSW1;
auto tx_sw2 = magnesium_cpld_ctrl::TX_SW2_TOTXFILTERLP6400MHZ;
auto tx_sw3 = magnesium_cpld_ctrl::TX_SW3_BYPASSPATHTOTRXSW;
const auto select_lowband_mixer_path = (freq <= MAGNESIUM_LOWBAND_FREQ) ?
magnesium_cpld_ctrl::LOWBAND_MIXER_PATH_SEL_LOBAND :
magnesium_cpld_ctrl::LOWBAND_MIXER_PATH_SEL_BYPASS;
const bool enable_lowband_mixer = (freq <= MAGNESIUM_LOWBAND_FREQ);
// Defaults are fine for bypassing the amp stage
if (bypass_amp) {
_sw_trx[chan_sel] = magnesium_cpld_ctrl::SW_TRX_BYPASSPATHTOTXSW3;
} else {
// Set filters based on frequency
if (freq < MAGNESIUM_TX_BAND1_MIN_FREQ) {
_sw_trx[chan_sel] =
magnesium_cpld_ctrl::SW_TRX_FROMLOWERFILTERBANKTXSW1;
tx_sw1 = magnesium_cpld_ctrl::TX_SW1_FROMTXFILTERLP0800MHZ;
tx_sw2 = magnesium_cpld_ctrl::TX_SW2_TOTXFILTERLP0800MHZ;
tx_sw3 = magnesium_cpld_ctrl::TX_SW3_TOTXFILTERBANKS;
} else if (freq < MAGNESIUM_TX_BAND2_MIN_FREQ) {
_sw_trx[chan_sel] =
magnesium_cpld_ctrl::SW_TRX_FROMLOWERFILTERBANKTXSW1;
tx_sw1 = magnesium_cpld_ctrl::TX_SW1_FROMTXFILTERLP0800MHZ;
tx_sw2 = magnesium_cpld_ctrl::TX_SW2_TOTXFILTERLP0800MHZ;
tx_sw3 = magnesium_cpld_ctrl::TX_SW3_TOTXFILTERBANKS;
} else if (freq < MAGNESIUM_TX_BAND3_MIN_FREQ) {
_sw_trx[chan_sel] =
magnesium_cpld_ctrl::SW_TRX_FROMLOWERFILTERBANKTXSW1;
tx_sw1 = magnesium_cpld_ctrl::TX_SW1_FROMTXFILTERLP1700MHZ;
tx_sw2 = magnesium_cpld_ctrl::TX_SW2_TOTXFILTERLP1700MHZ;
tx_sw3 = magnesium_cpld_ctrl::TX_SW3_TOTXFILTERBANKS;
} else if (freq < MAGNESIUM_TX_BAND4_MIN_FREQ) {
_sw_trx[chan_sel] =
magnesium_cpld_ctrl::SW_TRX_FROMLOWERFILTERBANKTXSW1;
tx_sw1 = magnesium_cpld_ctrl::TX_SW1_FROMTXFILTERLP3400MHZ;
tx_sw2 = magnesium_cpld_ctrl::TX_SW2_TOTXFILTERLP3400MHZ;
tx_sw3 = magnesium_cpld_ctrl::TX_SW3_TOTXFILTERBANKS;
} else {
_sw_trx[chan_sel] =
magnesium_cpld_ctrl::SW_TRX_FROMTXUPPERFILTERBANKLP6400MHZ;
tx_sw1 = magnesium_cpld_ctrl::TX_SW1_SHUTDOWNTXSW1;
tx_sw2 = magnesium_cpld_ctrl::TX_SW2_TOTXFILTERLP6400MHZ;
tx_sw3 = magnesium_cpld_ctrl::TX_SW3_TOTXFILTERBANKS;
}
}
_cpld->set_trx_sw_atr_bits(
chan_sel,
magnesium_cpld_ctrl::ON,
_sw_trx[chan_sel],
true /* defer commit */
);
_cpld->set_tx_switches(
chan_sel,
tx_sw1,
tx_sw2,
tx_sw3,
select_lowband_mixer_path,
enable_lowband_mixer,
magnesium_cpld_ctrl::ON
);
}
|