1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
|
//
// Copyright 2017 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "magnesium_constants.hpp"
#include "magnesium_radio_control.hpp"
#include <uhd/types/eeprom.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/utils/log.hpp>
#include <uhdlib/rfnoc/reg_iface_adapter.hpp>
#include <uhdlib/usrp/cores/spi_core_3000.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/algorithm/string/split.hpp>
#include <memory>
#include <string>
#include <vector>
using namespace uhd;
using namespace uhd::rfnoc;
namespace {
enum slave_select_t { SEN_CPLD = 1, SEN_TX_LO = 2, SEN_RX_LO = 4, SEN_PHASE_DAC = 8 };
constexpr double MAGNESIUM_DEFAULT_FREQ = 2.5e9; // Hz
constexpr double MAGNESIUM_DEFAULT_BANDWIDTH = 100e6; // Hz
} // namespace
void magnesium_radio_control_impl::_init_defaults()
{
RFNOC_LOG_TRACE("_init_defaults()");
for (size_t chan = 0; chan < get_num_output_ports(); chan++) {
radio_control_impl::set_rx_frequency(MAGNESIUM_DEFAULT_FREQ, chan);
radio_control_impl::set_rx_gain(0, chan);
radio_control_impl::set_rx_antenna(MAGNESIUM_DEFAULT_RX_ANTENNA, chan);
radio_control_impl::set_rx_bandwidth(MAGNESIUM_DEFAULT_BANDWIDTH, chan);
}
for (size_t chan = 0; chan < get_num_input_ports(); chan++) {
radio_control_impl::set_tx_frequency(MAGNESIUM_DEFAULT_FREQ, chan);
radio_control_impl::set_tx_gain(0, chan);
radio_control_impl::set_tx_antenna(MAGNESIUM_DEFAULT_TX_ANTENNA, chan);
radio_control_impl::set_tx_bandwidth(MAGNESIUM_DEFAULT_BANDWIDTH, chan);
}
const auto block_args = get_block_args();
if (block_args.has_key("tx_gain_profile")) {
RFNOC_LOG_INFO("Using user specified TX gain profile: " << block_args.get(
"tx_gain_profile"));
_gain_profile[TX_DIRECTION] = block_args.get("tx_gain_profile");
}
if (block_args.has_key("rx_gain_profile")) {
RFNOC_LOG_INFO("Using user specified RX gain profile: " << block_args.get(
"rx_gain_profile"));
_gain_profile[RX_DIRECTION] = block_args.get("rx_gain_profile");
}
if (block_args.has_key("rx_band_map")) {
RFNOC_LOG_INFO("Using user specified RX band limits");
_remap_band_limits(block_args.get("rx_band_map"), RX_DIRECTION);
}
if (block_args.has_key("tx_band_map")) {
RFNOC_LOG_INFO("Using user specified TX band limits");
_remap_band_limits(block_args.get("tx_band_map"), TX_DIRECTION);
}
}
void magnesium_radio_control_impl::_init_peripherals()
{
RFNOC_LOG_TRACE("Initializing peripherals...");
RFNOC_LOG_TRACE("Initializing SPI core...");
_spi = spi_core_3000::make(
[this](uint32_t addr, uint32_t data) {
regs().poke32(addr, data, get_command_time(0));
},
[this](uint32_t addr) { return regs().peek32(addr, get_command_time(0)); },
n310_regs::SR_SPI,
8,
n310_regs::RB_SPI);
RFNOC_LOG_TRACE("Initializing CPLD...");
RFNOC_LOG_TRACE("Creating new CPLD object...");
spi_config_t spi_config;
spi_config.use_custom_divider = true;
spi_config.divider = 125;
spi_config.mosi_edge = spi_config_t::EDGE_RISE;
spi_config.miso_edge = spi_config_t::EDGE_FALL;
RFNOC_LOG_TRACE("Making CPLD object...");
_cpld = std::make_shared<magnesium_cpld_ctrl>(
[this, spi_config](const uint32_t transaction) { // Write functor
this->_spi->write_spi(SEN_CPLD, spi_config, transaction, 24);
},
[this, spi_config](const uint32_t transaction) { // Read functor
return this->_spi->read_spi(SEN_CPLD, spi_config, transaction, 24);
});
_update_atr_switches(
magnesium_cpld_ctrl::BOTH, DX_DIRECTION, radio_control_impl::get_rx_antenna(0));
RFNOC_LOG_TRACE("Initializing TX LO...");
_tx_lo = adf435x_iface::make_adf4351([this](
const std::vector<uint32_t> transactions) {
for (const uint32_t transaction : transactions) {
this->_spi->write_spi(SEN_TX_LO, spi_config_t::EDGE_RISE, transaction, 32);
}
});
RFNOC_LOG_TRACE("Initializing RX LO...");
_rx_lo = adf435x_iface::make_adf4351([this](
const std::vector<uint32_t> transactions) {
for (const uint32_t transaction : transactions) {
this->_spi->write_spi(SEN_RX_LO, spi_config_t::EDGE_RISE, transaction, 32);
}
});
_gpio.clear(); // Following the as-if rule, this can get optimized out
for (size_t radio_idx = 0; radio_idx < get_num_input_ports(); radio_idx++) {
_wb_ifaces.push_back(RFNOC_MAKE_WB_IFACE(0, radio_idx));
RFNOC_LOG_TRACE("Initializing GPIOs for channel " << radio_idx);
_gpio.emplace_back(usrp::gpio_atr::gpio_atr_3000::make(_wb_ifaces.back(),
n310_regs::SR_DB_GPIO + radio_idx * n310_regs::CHAN_REG_OFFSET,
n310_regs::RB_DB_GPIO + radio_idx * n310_regs::CHAN_REG_OFFSET,
n310_regs::PERIPH_REG_OFFSET));
// DSA and AD9371 gain bits do *not* toggle on ATR modes. If we ever
// connect anything else to this core, we might need to set_atr_mode()
// to MODE_ATR on those bits. For now, all bits simply do what they're
// told, and don't toggle on RX/TX state changes.
_gpio.back()->set_atr_mode(usrp::gpio_atr::MODE_GPIO, // Disable ATR mode
usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL);
_gpio.back()->set_gpio_ddr(usrp::gpio_atr::DDR_OUTPUT, // Make all GPIOs outputs
usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL);
}
RFNOC_LOG_TRACE("Initializing front-panel GPIO control...")
_fp_gpio = usrp::gpio_atr::gpio_atr_3000::make(_wb_ifaces.front(),
n310_regs::SR_FP_GPIO,
n310_regs::RB_FP_GPIO,
n310_regs::PERIPH_REG_OFFSET);
}
void magnesium_radio_control_impl::_init_frontend_subtree(
uhd::property_tree::sptr subtree, const size_t chan_idx)
{
const fs_path tx_fe_path = fs_path("tx_frontends") / chan_idx;
const fs_path rx_fe_path = fs_path("rx_frontends") / chan_idx;
RFNOC_LOG_TRACE("Adding non-RFNoC block properties for channel "
<< chan_idx << " to prop tree path " << tx_fe_path << " and "
<< rx_fe_path);
// TX Standard attributes
subtree->create<std::string>(tx_fe_path / "name")
.set(get_fe_name(chan_idx, TX_DIRECTION));
subtree->create<std::string>(tx_fe_path / "connection").set("IQ");
// RX Standard attributes
subtree->create<std::string>(rx_fe_path / "name")
.set(get_fe_name(chan_idx, RX_DIRECTION));
subtree->create<std::string>(rx_fe_path / "connection").set("IQ");
// TX Antenna
subtree->create<std::string>(tx_fe_path / "antenna" / "value")
.add_coerced_subscriber([this, chan_idx](const std::string& ant) {
this->set_tx_antenna(ant, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_antenna(chan_idx); });
subtree->create<std::vector<std::string>>(tx_fe_path / "antenna" / "options")
.set_publisher([this]() { return get_tx_antennas(0); })
.add_coerced_subscriber([](const std::vector<std::string>&) {
throw uhd::runtime_error("Attempting to update antenna options!");
});
// RX Antenna
subtree->create<std::string>(rx_fe_path / "antenna" / "value")
.add_coerced_subscriber([this, chan_idx](const std::string& ant) {
this->set_rx_antenna(ant, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_rx_antenna(chan_idx); });
subtree->create<std::vector<std::string>>(rx_fe_path / "antenna" / "options")
.set_publisher([this]() { return get_rx_antennas(0); })
.add_coerced_subscriber([](const std::vector<std::string>&) {
throw uhd::runtime_error("Attempting to update antenna options!");
});
// TX frequency
subtree->create<double>(tx_fe_path / "freq" / "value")
.set_coercer([this, chan_idx](const double freq) {
return this->set_tx_frequency(freq, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_frequency(chan_idx); });
subtree->create<meta_range_t>(tx_fe_path / "freq" / "range")
.set_publisher([this, chan_idx]() { return get_tx_frequency_range(chan_idx); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update freq range!");
});
// RX frequency
subtree->create<double>(rx_fe_path / "freq" / "value")
.set_coercer([this, chan_idx](const double freq) {
return this->set_rx_frequency(freq, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_rx_frequency(chan_idx); });
subtree->create<meta_range_t>(rx_fe_path / "freq" / "range")
.set_publisher([this, chan_idx]() { return get_rx_frequency_range(chan_idx); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update freq range!");
});
// TX bandwidth
subtree->create<double>(tx_fe_path / "bandwidth" / "value")
.set(AD9371_TX_MAX_BANDWIDTH)
.set_coercer([this, chan_idx](const double bw) {
return this->set_tx_bandwidth(bw, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_bandwidth(chan_idx); });
subtree->create<meta_range_t>(tx_fe_path / "bandwidth" / "range")
.set_publisher([this, chan_idx]() { return get_tx_bandwidth_range(chan_idx); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update bandwidth range!");
});
// RX bandwidth
subtree->create<double>(rx_fe_path / "bandwidth" / "value")
.set(AD9371_RX_MAX_BANDWIDTH)
.set_coercer([this, chan_idx](const double bw) {
return this->set_rx_bandwidth(bw, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_rx_bandwidth(chan_idx); });
subtree->create<meta_range_t>(rx_fe_path / "bandwidth" / "range")
.set_publisher([this, chan_idx]() { return get_rx_bandwidth_range(chan_idx); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update bandwidth range!");
});
// TX gains
std::vector<std::string> tx_gain_names = get_tx_gain_names(chan_idx);
tx_gain_names.push_back("all");
for (const auto gain_name : tx_gain_names) {
subtree->create<double>(tx_fe_path / "gains" / gain_name / "value")
.set_coercer([this, chan_idx, gain_name](const double gain) {
return this->set_tx_gain(gain, gain_name, chan_idx);
})
.set_publisher([this, chan_idx, gain_name]() {
return get_tx_gain(gain_name, chan_idx);
});
subtree->create<meta_range_t>(tx_fe_path / "gains" / gain_name / "range")
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update gain range!");
})
.set_publisher([this, gain_name, chan_idx]() {
return get_tx_gain_range(gain_name, chan_idx);
});
}
subtree->create<std::vector<std::string>>(tx_fe_path / "gains/all/profile/options")
.set_publisher(
[this, chan_idx]() { return get_tx_gain_profile_names(chan_idx); });
subtree->create<std::string>(tx_fe_path / "gains/all/profile/value")
.set_coercer([this, chan_idx](const std::string& profile) {
set_tx_gain_profile(profile, chan_idx);
return profile;
})
.set_publisher([this, chan_idx]() { return get_tx_gain_profile(chan_idx); });
// RX gains
std::vector<std::string> rx_gain_names = get_rx_gain_names(chan_idx);
rx_gain_names.push_back("all");
for (const auto gain_name : rx_gain_names) {
subtree->create<double>(rx_fe_path / "gains" / gain_name / "value")
.set_coercer([this, chan_idx, gain_name](const double gain) {
return this->set_rx_gain(gain, gain_name, chan_idx);
})
.set_publisher([this, chan_idx, gain_name]() {
return get_rx_gain(gain_name, chan_idx);
});
subtree->create<meta_range_t>(rx_fe_path / "gains" / gain_name / "range")
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update gain range!");
})
.set_publisher([this, gain_name, chan_idx]() {
return get_rx_gain_range(gain_name, chan_idx);
});
}
subtree->create<std::vector<std::string>>(rx_fe_path / "gains/all/profile/options")
.set_publisher(
[this, chan_idx]() { return get_rx_gain_profile_names(chan_idx); });
subtree->create<std::string>(rx_fe_path / "gains/all/profile/value")
.set_coercer([this, chan_idx](const std::string& profile) {
set_rx_gain_profile(profile, chan_idx);
return profile;
})
.set_publisher([this, chan_idx]() { return get_rx_gain_profile(chan_idx); });
// LO Specific
// RX LO
subtree->create<meta_range_t>(rx_fe_path / "los" / MAGNESIUM_LO1 / "freq/range")
.set_publisher([this, chan_idx]() {
return this->get_rx_lo_freq_range(MAGNESIUM_LO1, chan_idx);
});
subtree
->create<std::vector<std::string>>(
rx_fe_path / "los" / MAGNESIUM_LO1 / "source/options")
.set_publisher([this, chan_idx]() {
return this->get_rx_lo_sources(MAGNESIUM_LO1, chan_idx);
});
subtree->create<std::string>(rx_fe_path / "los" / MAGNESIUM_LO1 / "source/value")
.add_coerced_subscriber([this, chan_idx](std::string src) {
this->set_rx_lo_source(src, MAGNESIUM_LO1, chan_idx);
})
.set_publisher([this, chan_idx]() {
return this->get_rx_lo_source(MAGNESIUM_LO1, chan_idx);
});
subtree->create<double>(rx_fe_path / "los" / MAGNESIUM_LO1 / "freq/value")
.set_publisher(
[this, chan_idx]() { return this->get_rx_lo_freq(MAGNESIUM_LO1, chan_idx); })
.set_coercer([this, chan_idx](const double freq) {
return this->set_rx_lo_freq(freq, MAGNESIUM_LO1, chan_idx);
});
subtree->create<meta_range_t>(rx_fe_path / "los" / MAGNESIUM_LO2 / "freq/range")
.set_publisher([this, chan_idx]() {
return this->get_rx_lo_freq_range(MAGNESIUM_LO2, chan_idx);
});
subtree
->create<std::vector<std::string>>(
rx_fe_path / "los" / MAGNESIUM_LO2 / "source/options")
.set_publisher([this, chan_idx]() {
return this->get_rx_lo_sources(MAGNESIUM_LO2, chan_idx);
});
subtree->create<std::string>(rx_fe_path / "los" / MAGNESIUM_LO2 / "source/value")
.add_coerced_subscriber([this, chan_idx](std::string src) {
this->set_rx_lo_source(src, MAGNESIUM_LO2, chan_idx);
})
.set_publisher([this, chan_idx]() {
return this->get_rx_lo_source(MAGNESIUM_LO2, chan_idx);
});
subtree->create<double>(rx_fe_path / "los" / MAGNESIUM_LO2 / "freq/value")
.set_publisher(
[this, chan_idx]() { return this->get_rx_lo_freq(MAGNESIUM_LO2, chan_idx); })
.set_coercer([this, chan_idx](double freq) {
return this->set_rx_lo_freq(freq, MAGNESIUM_LO2, chan_idx);
});
// TX LO
subtree->create<meta_range_t>(tx_fe_path / "los" / MAGNESIUM_LO1 / "freq/range")
.set_publisher([this, chan_idx]() {
return this->get_rx_lo_freq_range(MAGNESIUM_LO1, chan_idx);
});
subtree
->create<std::vector<std::string>>(
tx_fe_path / "los" / MAGNESIUM_LO1 / "source/options")
.set_publisher([this, chan_idx]() {
return this->get_tx_lo_sources(MAGNESIUM_LO1, chan_idx);
});
subtree->create<std::string>(tx_fe_path / "los" / MAGNESIUM_LO1 / "source/value")
.add_coerced_subscriber([this, chan_idx](std::string src) {
this->set_tx_lo_source(src, MAGNESIUM_LO1, chan_idx);
})
.set_publisher([this, chan_idx]() {
return this->get_tx_lo_source(MAGNESIUM_LO1, chan_idx);
});
subtree->create<double>(tx_fe_path / "los" / MAGNESIUM_LO1 / "freq/value ")
.set_publisher(
[this, chan_idx]() { return this->get_tx_lo_freq(MAGNESIUM_LO1, chan_idx); })
.set_coercer([this, chan_idx](double freq) {
return this->set_tx_lo_freq(freq, MAGNESIUM_LO1, chan_idx);
});
subtree->create<meta_range_t>(tx_fe_path / "los" / MAGNESIUM_LO2 / "freq/range")
.set_publisher([this, chan_idx]() {
return this->get_tx_lo_freq_range(MAGNESIUM_LO2, chan_idx);
});
subtree
->create<std::vector<std::string>>(
tx_fe_path / "los" / MAGNESIUM_LO2 / "source/options")
.set_publisher([this, chan_idx]() {
return this->get_tx_lo_sources(MAGNESIUM_LO2, chan_idx);
});
subtree->create<std::string>(tx_fe_path / "los" / MAGNESIUM_LO2 / "source/value")
.add_coerced_subscriber([this, chan_idx](std::string src) {
this->set_tx_lo_source(src, MAGNESIUM_LO2, chan_idx);
})
.set_publisher([this, chan_idx]() {
return this->get_tx_lo_source(MAGNESIUM_LO2, chan_idx);
});
subtree->create<double>(tx_fe_path / "los" / MAGNESIUM_LO2 / "freq/value")
.set_publisher(
[this, chan_idx]() { return this->get_tx_lo_freq(MAGNESIUM_LO2, chan_idx); })
.set_coercer([this, chan_idx](double freq) {
return this->set_tx_lo_freq(freq, MAGNESIUM_LO2, chan_idx);
});
// Sensors
auto rx_sensor_names = get_rx_sensor_names(chan_idx);
for (const auto& sensor_name : rx_sensor_names) {
RFNOC_LOG_TRACE("Adding RX sensor " << sensor_name);
get_tree()
->create<sensor_value_t>(rx_fe_path / "sensors" / sensor_name)
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this, sensor_name, chan_idx]() {
return get_rx_sensor(sensor_name, chan_idx);
});
}
auto tx_sensor_names = get_tx_sensor_names(chan_idx);
for (const auto& sensor_name : tx_sensor_names) {
RFNOC_LOG_TRACE("Adding TX sensor " << sensor_name);
get_tree()
->create<sensor_value_t>(tx_fe_path / "sensors" / sensor_name)
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this, sensor_name, chan_idx]() {
return get_tx_sensor(sensor_name, chan_idx);
});
}
}
void magnesium_radio_control_impl::_init_prop_tree()
{
for (size_t chan_idx = 0; chan_idx < MAGNESIUM_NUM_CHANS; chan_idx++) {
this->_init_frontend_subtree(get_tree()->subtree(DB_PATH), chan_idx);
}
// DB EEPROM
get_tree()
->create<eeprom_map_t>("eeprom")
.add_coerced_subscriber(
[this](const eeprom_map_t& db_eeprom) { set_db_eeprom(db_eeprom); })
.set_publisher([this]() { return get_db_eeprom(); });
}
void magnesium_radio_control_impl::_init_mpm()
{
auto block_args = get_block_args();
RFNOC_LOG_TRACE("Instantiating AD9371 control object...");
_ad9371 = magnesium_ad9371_iface::uptr(
new magnesium_ad9371_iface(_rpcc, (_radio_slot == "A") ? 0 : 1));
if (block_args.has_key("identify")) {
const std::string identify_val = block_args.get("identify");
int identify_duration = std::atoi(identify_val.c_str());
if (identify_duration == 0) {
identify_duration = 5;
}
RFNOC_LOG_INFO("Running LED identification process for " << identify_duration
<< " seconds.");
_identify_with_leds(identify_duration);
}
// Note: MCR gets set during the init() call (prior to this), which takes
// in arguments from the device args. So if block_args contains a
// master_clock_rate key, then it should better be whatever the device is
// configured to do.
_master_clock_rate =
_rpcc->request_with_token<double>(_rpc_prefix + "get_master_clock_rate");
if (block_args.cast<double>("master_clock_rate", _master_clock_rate)
!= _master_clock_rate) {
throw uhd::runtime_error(str(
boost::format("Master clock rate mismatch. Device returns %f MHz, "
"but should have been %f MHz.")
% (_master_clock_rate / 1e6)
% (block_args.cast<double>("master_clock_rate", _master_clock_rate) / 1e6)));
}
RFNOC_LOG_DEBUG("Master Clock Rate is: " << (_master_clock_rate / 1e6) << " MHz.");
set_tick_rate(_master_clock_rate);
_n3xx_timekeeper->update_tick_rate(_master_clock_rate);
radio_control_impl::set_rate(_master_clock_rate);
}
|