1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
//
// Copyright 2017 Ettus Research, a National Instruments Company
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#ifndef INCLUDED_LIBUHD_MAGNESIUM_CPLD_CTRL_HPP
#define INCLUDED_LIBUHD_MAGNESIUM_CPLD_CTRL_HPP
#include "adf4351_regs.hpp"
#include "magnesium_cpld_regs.hpp"
#include <uhd/types/serial.hpp>
#include <memory>
#include <mutex>
#include <functional>
//! Controls the CPLD on a Magnesium daughterboard
//
// Setters are thread-safe through lock guards. This lets a CPLD control object
// be shared by multiple owners.
class magnesium_cpld_ctrl
{
public:
/**************************************************************************
* Types
*************************************************************************/
using sptr = std::shared_ptr<magnesium_cpld_ctrl>;
//! SPI write functor: Can take a SPI transaction and clock it out
using write_spi_t = std::function<void(uint32_t)>;
//! SPI read functor: Return SPI
using read_spi_t = std::function<uint32_t(uint32_t)>;
//! ATR state: The CPLD has 2 states for RX and TX each, not like the radio
// which has 4 states (one for every RX/TX state combo).
enum atr_state_t { IDLE, ON, ANY };
//! Channel select: One CPLD controls both channels on a daughterboard
enum chan_sel_t { CHAN1, CHAN2, BOTH };
enum tx_sw1_t {
TX_SW1_SHUTDOWNTXSW1 = 0,
TX_SW1_FROMTXFILTERLP1700MHZ = 1,
TX_SW1_FROMTXFILTERLP3400MHZ = 2,
TX_SW1_FROMTXFILTERLP0800MHZ = 3
};
enum tx_sw2_t {
TX_SW2_TOTXFILTERLP3400MHZ = 1,
TX_SW2_TOTXFILTERLP1700MHZ = 2,
TX_SW2_TOTXFILTERLP0800MHZ = 4,
TX_SW2_TOTXFILTERLP6400MHZ = 8
};
enum tx_sw3_t { TX_SW3_TOTXFILTERBANKS = 0, TX_SW3_BYPASSPATHTOTRXSW = 1 };
enum sw_trx_t {
SW_TRX_FROMLOWERFILTERBANKTXSW1 = 0,
SW_TRX_FROMTXUPPERFILTERBANKLP6400MHZ = 1,
SW_TRX_RXCHANNELPATH = 2,
SW_TRX_BYPASSPATHTOTXSW3 = 3
};
enum rx_sw1_t {
RX_SW1_TXRXINPUT = 0,
RX_SW1_RXLOCALINPUT = 1,
RX_SW1_TRXSWITCHOUTPUT = 2,
RX_SW1_RX2INPUT = 3
};
enum rx_sw2_t {
RX_SW2_SHUTDOWNSW2 = 0,
RX_SW2_LOWERFILTERBANKTOSWITCH3 = 1,
RX_SW2_BYPASSPATHTOSWITCH6 = 2,
RX_SW2_UPPERFILTERBANKTOSWITCH4 = 3
};
enum rx_sw3_t {
RX_SW3_FILTER2100X2850MHZ = 0,
RX_SW3_FILTER0490LPMHZ = 1,
RX_SW3_FILTER1600X2250MHZ = 2,
RX_SW3_FILTER0440X0530MHZ = 4,
RX_SW3_FILTER0650X1000MHZ = 5,
RX_SW3_FILTER1100X1575MHZ = 6,
RX_SW3_SHUTDOWNSW3 = 7
};
enum rx_sw4_t {
RX_SW4_FILTER2100X2850MHZFROM = 1,
RX_SW4_FILTER1600X2250MHZFROM = 2,
RX_SW4_FILTER2700HPMHZ = 4
};
enum rx_sw5_t {
RX_SW5_FILTER0440X0530MHZFROM = 1,
RX_SW5_FILTER1100X1575MHZFROM = 2,
RX_SW5_FILTER0490LPMHZFROM = 4,
RX_SW5_FILTER0650X1000MHZFROM = 8
};
enum rx_sw6_t {
RX_SW6_LOWERFILTERBANKFROMSWITCH5 = 1,
RX_SW6_UPPERFILTERBANKFROMSWITCH4 = 2,
RX_SW6_BYPASSPATHFROMSWITCH2 = 4
};
enum lowband_mixer_path_sel_t {
LOWBAND_MIXER_PATH_SEL_BYPASS = 0,
LOWBAND_MIXER_PATH_SEL_LOBAND = 1
};
/*! Constructor.
*
* \param write_spi_fn SPI write functor
* \param read_spi_fn SPI read functor
*/
magnesium_cpld_ctrl(write_spi_t write_spi_fn, read_spi_t read_spi_fn);
/**************************************************************************
* API
*************************************************************************/
//! Reset all registers to their default state
void reset();
//! Return the current value of register at \p addr.
//
// Note: This will initiate a SPI transaction, it doesn't read from the
// internal register cache. However, it won't actually update the register
// cache.
uint16_t get_reg(const uint8_t addr);
//! Set the value of the scratch reg (no effect, for debugging only)
void set_scratch(const uint16_t val);
//! Get the value of the scratch reg.
//
// This should be zero unless set_scratch() was called beforehand (note
// that _loopback_test() will also call set_scratch()). If set_scratch()
// was previously called, this should return the previously written value.
//
// Note: This will call get_reg(), and not simply return the value of the
// internal cache.
uint16_t get_scratch();
/*! Frequency-related settings, transmit side
*
* \param chan Which channel do these settings apply to? Use BOTH to set
* both channels at once.
* \param tx_sw1 Filter bank switch 1
* \param tx_sw2 Filter bank switch 2
* \param tx_sw3 Filter bank switch 3
* \param select_lowband_mixer_path Enable the lowband mixer path
* \param enb_lowband_mixer Enable the actual lowband mixer
* \param atr_state If IDLE, only update the idle register. If ON, only
* enable the on register. If ANY, update both.
*/
void set_tx_switches(const chan_sel_t chan,
const tx_sw1_t tx_sw1,
const tx_sw2_t tx_sw2,
const tx_sw3_t tx_sw3,
const lowband_mixer_path_sel_t select_lowband_mixer_path,
const bool enb_lowband_mixer,
const atr_state_t atr_state = ANY,
const bool defer_commit = false);
/*! Frequency-related settings, receive side
*
* Note: RX switch 1 is on set_rx_atr_bits().
*
* \param chan Which channel do these settings apply to? Use BOTH to set
* both channels at once.
* \param rx_sw2 Filter bank switch 2
* \param rx_sw3 Filter bank switch 3
* \param rx_sw4 Filter bank switch 4
* \param rx_sw5 Filter bank switch 5
* \param rx_sw6 Filter bank switch 6
* \param select_lowband_mixer_path Enable the lowband mixer path
* \param enb_lowband_mixer Enable the actual lowband mixer
* \param atr_state If IDLE, only update the idle register. If ON, only
* enable the on register. If ANY, update both.
*/
void set_rx_switches(const chan_sel_t chan,
const rx_sw2_t rx_sw2,
const rx_sw3_t rx_sw3,
const rx_sw4_t rx_sw4,
const rx_sw5_t rx_sw5,
const rx_sw6_t rx_sw6,
const lowband_mixer_path_sel_t select_lowband_mixer_path,
const bool enb_lowband_mixer,
const atr_state_t atr_state = ANY,
const bool defer_commit = false);
/*! ATR settings: LEDs, PAs, LNAs, ... for TX side
*
* Note: These ATR states are not frequency dependent.
*
* Note on the tx_myk_enb bits: The AD9371 requires those pins to stay
* high for longer than we can guarantee with out clock-cycle accurate
* TX timing, so let's keep it turned on all the time.
*
* \param chan Which channel do these settings apply to? Use BOTH to set
* both channels at once.
* \param atr_state TX state for which these settings apply.
* \param tx_led State of the TX LED for this ATR state (on or off)
* \param tx_pa_enb State of the TX PA for this ATR state (on or off)
* \param tx_amp_enb State of the TX amp for this ATR state (on or off)
* \param tx_myk_enb State of the AD9371 TX enable pin for this ATR state
*/
void set_tx_atr_bits(const chan_sel_t chan,
const atr_state_t atr_state,
const bool tx_led,
const bool tx_pa_enb,
const bool tx_amp_enb,
const bool tx_myk_enb,
const bool defer_commit = false);
/*! ATR settings: TRX switch
*
* Note: This ATR state is frequency dependent.
*
* \param chan Which channel do these settings apply to? Use BOTH to set
* both channels at once.
* \param atr_state TX state for which these settings apply.
* \param trx_sw State of the TRX switch for this ATR state
*/
void set_trx_sw_atr_bits(const chan_sel_t chan,
const atr_state_t atr_state,
const sw_trx_t trx_sw,
const bool defer_commit = false);
/*! ATR settings: LEDs, input switches for RX side
*
* Note: These ATR states are not frequency dependent, but need to change
* when the antenna input is switched.
*
* \param chan Which channel do these settings apply to? Use BOTH to set
* both channels at once.
* \param atr_state ATR state for which these settings apply.
* \param rx_sw1 Filter bank sw1 of RX path
* \param rx_led State of the RX LED for this ATR state (on or off). This
* is the LED on the TX/RX port.
* \param rx2_led State of the RX LED for this ATR state (on or off). This
* is the LED on the RX2 port.
*/
void set_rx_input_atr_bits(const chan_sel_t chan,
const atr_state_t atr_state,
const rx_sw1_t rx_sw1,
const bool rx_led,
const bool rx2_led,
const bool defer_commit = false);
/*! ATR settings: Amp, Mykonos settings for RX side
*
* Note: These ATR states are not frequency dependent (or dependent on
* anything other than RX ATR state).
*
* Note on the rx_myk_enb bits: The AD9371 requires those pins to stay
* high for longer than we can guarantee without clock-cycle accurate
* RX timing, so let's keep it turned on all the time.
*
* \param chan Which channel do these settings apply to? Use BOTH to set
* both channels at once.
* \param atr_state ATR state for which these settings apply.
* \param rx_amp_enb State of RX amp for this ATR state (on or off).
* \param rx_myk_enb State of the AD9371 RX enable pin for this ATR state
*/
void set_rx_atr_bits(const chan_sel_t chan,
const atr_state_t atr_state,
const bool rx_amp_enb,
const bool rx_myk_en,
const bool defer_commit = false);
/*! ATR settings: LNAs for RX side
*
* Note: These ATR states are frequency dependent.
*
* Note on the rx_myk_enb bits: The AD9371 requires those pins to stay
* high for longer than we can guarantee with out clock-cycle accurate
* RX timing, so let's keep it turned on all the time.
*
* \param chan Which channel do these settings apply to? Use BOTH to set
* both channels at once.
* \param atr_state ATR state for which these settings apply.
* \param rx_lna1_enb State of RX LNA 1 for this ATR state (on or off).
* This is the high-band LNA.
* \param rx_lna2_enb State of RX LNA 2 for this ATR state (on or off).
* This is the low-band LNA.
*/
void set_rx_lna_atr_bits(const chan_sel_t chan,
const atr_state_t atr_state,
const bool rx_lna1_enb,
const bool rx_lna2_enb,
const bool defer_commit = false);
private:
//! Write functor: Take address / data pair, craft SPI transaction
using write_fn_t = std::function<void(uint32_t, uint32_t)>;
//! Read functor: Return value given address
using read_fn_t = std::function<uint32_t(uint32_t)>;
//! Dump the state of the registers into the CPLD
//
// \param save_all If true, save all registers. If false, only change those
// that changes recently.
void commit(const bool save_all = false);
//! Writes to the scratch reg and reads again. Throws on failure.
//
// Note: This is not thread-safe. Accesses to the scratch reg are not
// atomic. Only call this from a thread-safe environment, please.
void _loopback_test();
//! Write functor for regs pokes
write_fn_t _write_fn;
//! Read functor for regs peeks
read_fn_t _read_fn;
//! Current state of the CPLD registers (for write operations only)
magnesium_cpld_regs_t _regs;
//! Lock access to setters
std::mutex _set_mutex;
};
#endif /* INCLUDED_LIBUHD_MAGNESIUM_CPLD_CTRL_HPP */
|