1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
|
//
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "e3xx_constants.hpp"
#include "e3xx_radio_control_impl.hpp"
#include <uhd/types/sensors.hpp>
#include <uhd/utils/log.hpp>
#include <uhdlib/rfnoc/reg_iface_adapter.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/case_conv.hpp>
#include <boost/algorithm/string/split.hpp>
#include <string>
#include <vector>
using namespace uhd;
using namespace uhd::rfnoc;
void e3xx_radio_control_impl::_init_defaults()
{
RFNOC_LOG_TRACE("Initializing defaults...");
const size_t num_rx_chans = get_num_output_ports();
const size_t num_tx_chans = get_num_input_ports();
RFNOC_LOG_TRACE(
"Num TX chans: " << num_tx_chans << " Num RX chans: " << num_rx_chans);
// Note: MCR gets set during the init() call (prior to this), which takes
// in arguments from the device args. So if block_args contains a
// master_clock_rate key, then it should better be whatever the device is
// configured to do.
auto block_args = get_block_args();
_master_clock_rate =
_rpcc->request_with_token<double>(_rpc_prefix + "get_master_clock_rate");
const double block_args_mcr =
block_args.cast<double>("master_clock_rate", _master_clock_rate);
if (block_args_mcr != _master_clock_rate) {
throw uhd::runtime_error(
str(boost::format("Master clock rate mismatch. Device returns %f MHz, "
"but should have been %f MHz.")
% (_master_clock_rate / 1e6) % (block_args_mcr / 1e6)));
}
RFNOC_LOG_DEBUG("Master Clock Rate is: " << (_master_clock_rate / 1e6) << " MHz.");
set_tick_rate(_master_clock_rate);
_e3xx_timekeeper->update_tick_rate(_master_clock_rate);
radio_control_impl::set_rate(_master_clock_rate);
for (size_t chan = 0; chan < num_rx_chans; chan++) {
radio_control_impl::set_rx_frequency(E3XX_DEFAULT_FREQ, chan);
radio_control_impl::set_rx_gain(E3XX_DEFAULT_GAIN, chan);
radio_control_impl::set_rx_antenna(E3XX_DEFAULT_RX_ANTENNA, chan);
radio_control_impl::set_rx_bandwidth(E3XX_DEFAULT_BANDWIDTH, chan);
}
for (size_t chan = 0; chan < num_tx_chans; chan++) {
radio_control_impl::set_tx_frequency(E3XX_DEFAULT_FREQ, chan);
radio_control_impl::set_tx_gain(E3XX_DEFAULT_GAIN, chan);
radio_control_impl::set_tx_antenna(E3XX_DEFAULT_TX_ANTENNA, chan);
radio_control_impl::set_tx_bandwidth(E3XX_DEFAULT_BANDWIDTH, chan);
}
_rx_sensor_names = _rpcc->request_with_token<std::vector<std::string>>(
this->_rpc_prefix + "get_sensors", "RX");
_tx_sensor_names = _rpcc->request_with_token<std::vector<std::string>>(
this->_rpc_prefix + "get_sensors", "TX");
// Cache the filter names
// FIXME: Uncomment this
//_rx_filter_names = _ad9361->get_filter_names(
// get_which_ad9361_chain(RX_DIRECTION, 0, _fe_swap));
//_tx_filter_names = _ad9361->get_filter_names(
// get_which_ad9361_chain(TX_DIRECTION, 0, _fe_swap));
}
void e3xx_radio_control_impl::_init_peripherals()
{
RFNOC_LOG_TRACE("Initializing peripherals...");
for (size_t radio_idx = 0; radio_idx < E3XX_NUM_CHANS; radio_idx++) {
_wb_ifaces.push_back(RFNOC_MAKE_WB_IFACE(0, radio_idx));
}
_db_gpio.clear(); // Following the as-if rule, this can get optimized out
for (size_t radio_idx = 0; radio_idx < E3XX_NUM_CHANS; radio_idx++) {
RFNOC_LOG_TRACE("Initializing DB GPIOs for channel " << radio_idx);
// Note: The register offset is baked into the different _wb_iface
// objects!
_db_gpio.emplace_back(
usrp::gpio_atr::gpio_atr_3000::make_write_only(_wb_ifaces.at(radio_idx),
e3xx_regs::SR_DB_GPIO + (radio_idx * e3xx_regs::PERIPH_REG_CHAN_OFFSET),
e3xx_regs::PERIPH_REG_OFFSET));
_db_gpio[radio_idx]->set_atr_mode(
usrp::gpio_atr::MODE_ATR, usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL);
}
_leds_gpio.clear(); // Following the as-if rule, this can get optimized out
for (size_t radio_idx = 0; radio_idx < E3XX_NUM_CHANS; radio_idx++) {
RFNOC_LOG_TRACE("Initializing LED GPIOs for channel " << radio_idx);
_leds_gpio.emplace_back(
usrp::gpio_atr::gpio_atr_3000::make_write_only(_wb_ifaces.at(radio_idx),
e3xx_regs::SR_LEDS + (radio_idx * e3xx_regs::PERIPH_REG_CHAN_OFFSET),
e3xx_regs::PERIPH_REG_OFFSET));
_leds_gpio[radio_idx]->set_atr_mode(
usrp::gpio_atr::MODE_ATR, usrp::gpio_atr::gpio_atr_3000::MASK_SET_ALL);
}
RFNOC_LOG_TRACE("Initializing front-panel GPIO control...")
_fp_gpio = usrp::gpio_atr::gpio_atr_3000::make(_wb_ifaces.at(0),
e3xx_regs::SR_FP_GPIO,
e3xx_regs::RB_FP_GPIO,
e3xx_regs::PERIPH_REG_OFFSET);
auto block_args = get_block_args();
if (block_args.has_key("identify")) {
const std::string identify_val = block_args.get("identify");
int identify_duration = std::atoi(identify_val.c_str());
if (identify_duration == 0) {
identify_duration = 5;
}
_identify_with_leds(identify_duration);
}
}
void e3xx_radio_control_impl::_init_frontend_subtree(
uhd::property_tree::sptr subtree, const size_t chan_idx)
{
const fs_path tx_fe_path = fs_path("tx_frontends") / chan_idx;
const fs_path rx_fe_path = fs_path("rx_frontends") / chan_idx;
RFNOC_LOG_TRACE("Adding non-RFNoC block properties for channel "
<< chan_idx << " to prop tree path " << tx_fe_path << " and "
<< rx_fe_path);
// TX Standard attributes
subtree->create<std::string>(tx_fe_path / "name").set("E3xx");
subtree->create<std::string>(tx_fe_path / "connection").set("IQ");
// RX Standard attributes
subtree->create<std::string>(rx_fe_path / "name").set("E3xx");
subtree->create<std::string>(rx_fe_path / "connection").set("IQ");
// TX Antenna
subtree->create<std::string>(tx_fe_path / "antenna" / "value")
.add_coerced_subscriber([this, chan_idx](const std::string& ant) {
this->set_tx_antenna(ant, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_antenna(chan_idx); });
subtree->create<std::vector<std::string>>(tx_fe_path / "antenna" / "options")
.set({E3XX_DEFAULT_TX_ANTENNA})
.add_coerced_subscriber([](const std::vector<std::string>&) {
throw uhd::runtime_error("Attempting to update antenna options!");
});
// RX Antenna
subtree->create<std::string>(rx_fe_path / "antenna" / "value")
.add_coerced_subscriber([this, chan_idx](const std::string& ant) {
this->set_rx_antenna(ant, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_rx_antenna(chan_idx); });
subtree->create<std::vector<std::string>>(rx_fe_path / "antenna" / "options")
.set(E3XX_RX_ANTENNAS)
.add_coerced_subscriber([](const std::vector<std::string>&) {
throw uhd::runtime_error("Attempting to update antenna options!");
});
// TX frequency
subtree->create<double>(tx_fe_path / "freq" / "value")
.set_coercer([this, chan_idx](const double freq) {
return this->set_tx_frequency(freq, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_frequency(chan_idx); });
subtree->create<meta_range_t>(tx_fe_path / "freq" / "range")
.set_publisher([this]() { return get_tx_frequency_range(0); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update freq range!");
});
// RX frequency
subtree->create<double>(rx_fe_path / "freq" / "value")
.set_coercer([this, chan_idx](const double freq) {
return this->set_rx_frequency(freq, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_rx_frequency(chan_idx); });
subtree->create<meta_range_t>(rx_fe_path / "freq" / "range")
.set_publisher([this]() { return get_rx_frequency_range(0); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update freq range!");
});
// TX bandwidth
subtree->create<double>(tx_fe_path / "bandwidth" / "value")
.set_publisher([this, chan_idx]() { return get_tx_bandwidth(chan_idx); })
.set_coercer([this, chan_idx](const double bw) {
return this->set_tx_bandwidth(bw, chan_idx);
})
.set_publisher([this, chan_idx]() { return this->get_tx_bandwidth(chan_idx); });
subtree->create<meta_range_t>(tx_fe_path / "bandwidth" / "range")
.set_publisher([this]() { return get_tx_bandwidth_range(0); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update bandwidth range!");
});
// RX bandwidth
subtree->create<double>(rx_fe_path / "bandwidth" / "value")
.set_publisher([this, chan_idx]() { return get_rx_bandwidth(chan_idx); })
.set_coercer([this, chan_idx](const double bw) {
return this->set_rx_bandwidth(bw, chan_idx);
});
subtree->create<meta_range_t>(rx_fe_path / "bandwidth" / "range")
.set_publisher([this]() { return get_rx_bandwidth_range(0); })
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update bandwidth range!");
});
// TX gains
const std::vector<std::string> tx_gain_names = ad9361_ctrl::get_gain_names("TX1");
for (auto tx_gain_name : tx_gain_names) {
subtree->create<double>(tx_fe_path / "gains" / tx_gain_name / "value")
.set_coercer([this, chan_idx](const double gain) {
return this->set_tx_gain(gain, chan_idx);
})
.set_publisher(
[this, chan_idx]() { return radio_control_impl::get_tx_gain(chan_idx); });
subtree->create<meta_range_t>(tx_fe_path / "gains" / tx_gain_name / "range")
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update gain range!");
})
.set_publisher([]() {
return meta_range_t(
AD9361_MIN_TX_GAIN, AD9361_MAX_TX_GAIN, AD9361_TX_GAIN_STEP);
});
}
// RX gains
const std::vector<std::string> rx_gain_names = ad9361_ctrl::get_gain_names("RX1");
for (auto rx_gain_name : rx_gain_names) {
subtree->create<double>(rx_fe_path / "gains" / rx_gain_name / "value")
.set_coercer([this, chan_idx](const double gain) {
return this->set_rx_gain(gain, chan_idx);
})
.set_publisher(
[this, chan_idx]() { return radio_control_impl::get_rx_gain(chan_idx); });
subtree->create<meta_range_t>(rx_fe_path / "gains" / rx_gain_name / "range")
.add_coerced_subscriber([](const meta_range_t&) {
throw uhd::runtime_error("Attempting to update gain range!");
})
.set_publisher([]() {
return meta_range_t(
AD9361_MIN_RX_GAIN, AD9361_MAX_RX_GAIN, AD9361_RX_GAIN_STEP);
});
}
auto rx_sensor_names = get_rx_sensor_names(chan_idx);
for (const auto& rx_sensor_name : rx_sensor_names) {
RFNOC_LOG_TRACE("Adding RX sensor " << rx_sensor_name);
get_tree()
->create<sensor_value_t>(rx_fe_path / "sensors" / rx_sensor_name)
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this, rx_sensor_name, chan_idx]() {
return get_rx_sensor(rx_sensor_name, chan_idx);
});
}
auto tx_sensor_names = get_tx_sensor_names(chan_idx);
for (const auto& tx_sensor_name : tx_sensor_names) {
RFNOC_LOG_TRACE("Adding TX sensor " << tx_sensor_name);
get_tree()
->create<sensor_value_t>(tx_fe_path / "sensors" / tx_sensor_name)
.add_coerced_subscriber([](const sensor_value_t&) {
throw uhd::runtime_error("Attempting to write to sensor!");
})
.set_publisher([this, tx_sensor_name, chan_idx]() {
return get_tx_sensor(tx_sensor_name, chan_idx);
});
}
}
void e3xx_radio_control_impl::_init_prop_tree()
{
for (size_t chan_idx = 0; chan_idx < E3XX_NUM_CHANS; chan_idx++) {
this->_init_frontend_subtree(get_tree()->subtree(DB_PATH), chan_idx);
}
get_tree()->create<std::string>("rx_codec/name").set("AD9361 Dual ADC");
get_tree()->create<std::string>("tx_codec/name").set("AD9361 Dual DAC");
}
void e3xx_radio_control_impl::_init_mpm()
{
// Initialize catalina
_init_codec();
// Loopback test
for (size_t chan = 0; chan < E3XX_NUM_CHANS; chan++) {
loopback_self_test(chan);
}
}
void e3xx_radio_control_impl::_init_codec()
{
RFNOC_LOG_TRACE("Setting Catalina Defaults... ");
for (size_t chan = 0; chan < E3XX_NUM_CHANS; chan++) {
std::string rx_fe = get_which_ad9361_chain(RX_DIRECTION, chan);
this->set_rx_gain(E3XX_DEFAULT_GAIN, chan);
this->set_rx_frequency(E3XX_DEFAULT_FREQ, chan);
this->set_rx_antenna(E3XX_DEFAULT_RX_ANTENNA, chan);
this->set_rx_bandwidth(E3XX_DEFAULT_BANDWIDTH, chan);
_ad9361->set_dc_offset_auto(rx_fe, E3XX_DEFAULT_AUTO_DC_OFFSET);
_ad9361->set_iq_balance_auto(rx_fe, E3XX_DEFAULT_AUTO_IQ_BALANCE);
_ad9361->set_agc(rx_fe, E3XX_DEFAULT_AGC_ENABLE);
std::string tx_fe = get_which_ad9361_chain(TX_DIRECTION, chan);
this->set_tx_gain(E3XX_DEFAULT_GAIN, chan);
this->set_tx_frequency(E3XX_DEFAULT_FREQ, chan);
this->set_tx_bandwidth(E3XX_DEFAULT_BANDWIDTH, chan);
}
}
|