1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
|
//
// Copyright 2018 Ettus Research, a National Instruments Company
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "e3xx_radio_control_impl.hpp"
#include "e3xx_constants.hpp"
#include <uhd/types/direction.hpp>
#include <uhd/types/eeprom.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/format.hpp>
#include <cmath>
#include <cstdlib>
#include <sstream>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::rfnoc;
using namespace uhd::math::fp_compare;
/******************************************************************************
* Structors
*****************************************************************************/
e3xx_radio_control_impl::e3xx_radio_control_impl(make_args_ptr make_args)
: radio_control_impl(std::move(make_args))
{
RFNOC_LOG_TRACE("Entering e3xx_radio_control_impl ctor...");
UHD_ASSERT_THROW(get_block_id().get_block_count() == 0);
UHD_ASSERT_THROW(
std::max(get_num_output_ports(), get_num_input_ports()) == E3XX_NUM_CHANS);
UHD_ASSERT_THROW(get_mb_controller());
_e3xx_mb_control = std::dynamic_pointer_cast<mpmd_mb_controller>(get_mb_controller());
UHD_ASSERT_THROW(_e3xx_mb_control);
_e3xx_timekeeper = std::dynamic_pointer_cast<mpmd_mb_controller::mpmd_timekeeper>(
_e3xx_mb_control->get_timekeeper(0));
UHD_ASSERT_THROW(_e3xx_timekeeper);
_rpcc = _e3xx_mb_control->get_rpc_client();
UHD_ASSERT_THROW(_rpcc);
RFNOC_LOG_TRACE("Instantiating AD9361 control object...");
_ad9361 = make_rpc(_rpcc);
_init_defaults();
_init_peripherals();
_init_prop_tree();
// Properties
for (auto& samp_rate_prop : _samp_rate_in) {
samp_rate_prop.set(_master_clock_rate);
}
for (auto& samp_rate_prop : _samp_rate_out) {
samp_rate_prop.set(_master_clock_rate);
}
}
e3xx_radio_control_impl::~e3xx_radio_control_impl()
{
RFNOC_LOG_TRACE("e3xx_radio_control_impl::dtor() ");
}
void e3xx_radio_control_impl::deinit()
{
_db_gpio.clear();
_leds_gpio.clear();
_fp_gpio.reset();
_wb_ifaces.clear();
}
/******************************************************************************
* API Calls
*****************************************************************************/
bool e3xx_radio_control_impl::check_topology(const std::vector<size_t>& connected_inputs,
const std::vector<size_t>& connected_outputs)
{
if (!node_t::check_topology(connected_inputs, connected_outputs)) {
return false;
}
// Now we know that the connected ports are either 0 or 1
// Check if we're running a 2x1 or 1x2 configuration -- the device does not
// support this!
if ((connected_outputs.size() == 1 && connected_inputs.size() == 2)
|| (connected_outputs.size() == 2 && connected_inputs.size() == 1)) {
const std::string err_msg("Invalid channel configuration: This device does not "
"support 1 TX x 2 RX or 2 TX x 1 RX configurations!");
RFNOC_LOG_ERROR(err_msg);
throw uhd::runtime_error(err_msg);
}
// mapping of frontend to radio perif index
const size_t FE0 = _fe_swap ? 1 : 0;
const size_t FE1 = _fe_swap ? 0 : 1;
const bool tx_fe0_active = std::any_of(connected_inputs.begin(),
connected_inputs.end(),
[FE0](const size_t port) { return port == FE0; });
const bool tx_fe1_active = std::any_of(connected_inputs.begin(),
connected_inputs.end(),
[FE1](const size_t port) { return port == FE1; });
const bool rx_fe0_active = std::any_of(connected_outputs.begin(),
connected_outputs.end(),
[FE0](const size_t port) { return port == FE0; });
const bool rx_fe1_active = std::any_of(connected_outputs.begin(),
connected_outputs.end(),
[FE1](const size_t port) { return port == FE1; });
RFNOC_LOG_TRACE("TX FE0 Active: " << tx_fe0_active);
RFNOC_LOG_TRACE("TX FE1 Active: " << tx_fe1_active);
RFNOC_LOG_TRACE("RX FE0 Active: " << rx_fe0_active);
RFNOC_LOG_TRACE("RX FE1 Active: " << rx_fe1_active);
// setup the active chains in the codec
if (connected_inputs.size() + connected_outputs.size() == 0) {
// Ensure at least one RX chain is enabled so AD9361 outputs a sample clock
this->set_streaming_mode(true, false, true, false);
} else {
this->set_streaming_mode(
tx_fe0_active, tx_fe1_active, rx_fe0_active, rx_fe1_active);
}
return true;
}
void e3xx_radio_control_impl::set_streaming_mode(
const bool tx1, const bool tx2, const bool rx1, const bool rx2)
{
RFNOC_LOG_TRACE("Setting streaming mode...")
const size_t num_rx = rx1 + rx2;
const size_t num_tx = tx1 + tx2;
// setup the active chains in the codec
if ((num_rx + num_tx) == 0) {
// Ensure at least one RX chain is enabled so AD9361 outputs a sample clock
_ad9361->set_active_chains(true, false, true, false);
} else {
// setup the active chains in the codec
_ad9361->set_active_chains(tx1, tx2, rx1, rx2);
}
// setup 1R1T/2R2T mode in catalina and fpga
// The Catalina interface in the fpga needs to know which TX channel to use for
// the data on the LVDS lines.
if ((num_rx == 2) or (num_tx == 2)) {
// AD9361 is in 1R1T mode
_ad9361->set_timing_mode(this->get_default_timing_mode());
this->set_channel_mode(MIMO);
} else {
// AD9361 is in 1R1T mode
_ad9361->set_timing_mode(TIMING_MODE_1R1T);
// Set to SIS0_TX1 if we're using the second TX antenna, otherwise
// default to SISO_TX0
this->set_channel_mode(tx2 ? SISO_TX1 : SISO_TX0);
}
}
void e3xx_radio_control_impl::set_channel_mode(const std::string& channel_mode)
{
// MIMO for 2R2T mode for 2 channels
// SISO_TX1 for 1R1T mode for 1 channel - TX1
// SISO_TX0 for 1R1T mode for 1 channel - TX0
_rpcc->request_with_token<void>("set_channel_mode", channel_mode);
}
double e3xx_radio_control_impl::set_rate(const double rate)
{
std::lock_guard<std::mutex> l(_set_lock);
RFNOC_LOG_DEBUG("Asking for clock rate " << rate / 1e6 << " MHz\n");
// On E3XX, tick rate and samp rate are always the same
double actual_tick_rate = _ad9361->set_clock_rate(rate);
RFNOC_LOG_DEBUG("Actual clock rate " << actual_tick_rate / 1e6 << " MHz\n");
set_tick_rate(actual_tick_rate);
radio_control_impl::set_rate(actual_tick_rate);
_e3xx_timekeeper->update_tick_rate(rate);
return rate;
}
uhd::meta_range_t e3xx_radio_control_impl::get_rate_range() const
{
return _ad9361->get_clock_rate_range();
}
/******************************************************************************
* RF API calls
*****************************************************************************/
void e3xx_radio_control_impl::set_tx_antenna(const std::string& ant, const size_t chan)
{
if (ant != get_tx_antenna(chan)) {
throw uhd::value_error(
str(boost::format("[%s] Requesting invalid TX antenna value: %s")
% get_unique_id() % ant));
}
radio_control_impl::set_tx_antenna(ant, chan);
// We can't actually set the TX antenna, so let's stop here.
}
void e3xx_radio_control_impl::set_rx_antenna(const std::string& ant, const size_t chan)
{
UHD_ASSERT_THROW(chan <= E3XX_NUM_CHANS);
if (std::find(E3XX_RX_ANTENNAS.begin(), E3XX_RX_ANTENNAS.end(), ant)
== E3XX_RX_ANTENNAS.end()) {
throw uhd::value_error(
str(boost::format("[%s] Requesting invalid RX antenna value: %s")
% get_unique_id() % ant));
}
RFNOC_LOG_TRACE("Setting RX antenna to " << ant << " for chan " << chan);
radio_control_impl::set_rx_antenna(ant, chan);
_set_atr_bits(chan);
}
double e3xx_radio_control_impl::set_tx_frequency(const double freq, const size_t chan)
{
RFNOC_LOG_TRACE("set_tx_frequency(f=" << freq << ", chan=" << chan << ")");
std::lock_guard<std::mutex> l(_set_lock);
double clipped_freq = uhd::clip(freq, AD9361_TX_MIN_FREQ, AD9361_TX_MAX_FREQ);
double coerced_freq =
_ad9361->tune(get_which_ad9361_chain(TX_DIRECTION, chan, _fe_swap), clipped_freq);
radio_control_impl::set_tx_frequency(coerced_freq, chan);
// Front-end switching
_set_atr_bits(chan);
return coerced_freq;
}
double e3xx_radio_control_impl::set_rx_frequency(const double freq, const size_t chan)
{
RFNOC_LOG_TRACE("set_rx_frequency(f=" << freq << ", chan=" << chan << ")");
std::lock_guard<std::mutex> l(_set_lock);
double clipped_freq = uhd::clip(freq, AD9361_RX_MIN_FREQ, AD9361_RX_MAX_FREQ);
double coerced_freq =
_ad9361->tune(get_which_ad9361_chain(RX_DIRECTION, chan, _fe_swap), clipped_freq);
radio_control_impl::set_rx_frequency(coerced_freq, chan);
// Front-end switching
_set_atr_bits(chan);
return coerced_freq;
}
void e3xx_radio_control_impl::set_rx_agc(const bool enb, const size_t chan)
{
std::lock_guard<std::mutex> l(_set_lock);
RFNOC_LOG_TRACE("set_rx_agc(enb=" << enb << ", chan=" << chan << ")");
const std::string rx_fe = get_which_ad9361_chain(RX_DIRECTION, chan);
_ad9361->set_agc(rx_fe, enb);
}
double e3xx_radio_control_impl::set_rx_bandwidth(
const double bandwidth, const size_t chan)
{
std::lock_guard<std::mutex> l(_set_lock);
double clipped_bw = _ad9361->set_bw_filter(
get_which_ad9361_chain(RX_DIRECTION, chan, _fe_swap), bandwidth);
return radio_control_impl::set_rx_bandwidth(clipped_bw, chan);
}
double e3xx_radio_control_impl::set_tx_bandwidth(
const double bandwidth, const size_t chan)
{
std::lock_guard<std::mutex> l(_set_lock);
double clipped_bw = _ad9361->set_bw_filter(
get_which_ad9361_chain(TX_DIRECTION, chan, _fe_swap), bandwidth);
return radio_control_impl::set_tx_bandwidth(clipped_bw, chan);
}
double e3xx_radio_control_impl::set_tx_gain(const double gain, const size_t chan)
{
std::lock_guard<std::mutex> l(_set_lock);
RFNOC_LOG_TRACE("set_tx_gain(gain=" << gain << ", chan=" << chan << ")");
double clip_gain = uhd::clip(gain, AD9361_MIN_TX_GAIN, AD9361_MAX_TX_GAIN);
_ad9361->set_gain(get_which_ad9361_chain(TX_DIRECTION, chan, _fe_swap), clip_gain);
radio_control_impl::set_tx_gain(clip_gain, chan);
return clip_gain;
}
double e3xx_radio_control_impl::set_rx_gain(const double gain, const size_t chan)
{
std::lock_guard<std::mutex> l(_set_lock);
UHD_ASSERT_THROW(chan < get_num_output_ports());
RFNOC_LOG_TRACE("set_rx_gain(gain=" << gain << ", chan=" << chan << ")");
double clip_gain = uhd::clip(gain, AD9361_MIN_RX_GAIN, AD9361_MAX_RX_GAIN);
_ad9361->set_gain(get_which_ad9361_chain(RX_DIRECTION, chan, _fe_swap), clip_gain);
radio_control_impl::set_rx_gain(clip_gain, chan);
return clip_gain;
}
std::vector<std::string> e3xx_radio_control_impl::get_tx_antennas(const size_t) const
{
return {E3XX_DEFAULT_TX_ANTENNA};
}
std::vector<std::string> e3xx_radio_control_impl::get_rx_antennas(const size_t) const
{
return E3XX_RX_ANTENNAS;
}
freq_range_t e3xx_radio_control_impl::get_tx_frequency_range(const size_t) const
{
return freq_range_t(AD9361_TX_MIN_FREQ, AD9361_TX_MAX_FREQ, 1.0);
}
freq_range_t e3xx_radio_control_impl::get_rx_frequency_range(const size_t) const
{
return freq_range_t(AD9361_RX_MIN_FREQ, AD9361_RX_MAX_FREQ, 1.0);
}
uhd::gain_range_t e3xx_radio_control_impl::get_tx_gain_range(const size_t) const
{
return meta_range_t(AD9361_MIN_TX_GAIN, AD9361_MAX_TX_GAIN, AD9361_TX_GAIN_STEP);
}
uhd::gain_range_t e3xx_radio_control_impl::get_rx_gain_range(const size_t) const
{
return meta_range_t(AD9361_MIN_RX_GAIN, AD9361_MAX_RX_GAIN, AD9361_RX_GAIN_STEP);
}
meta_range_t e3xx_radio_control_impl::get_tx_bandwidth_range(size_t) const
{
return meta_range_t(AD9361_TX_MIN_BANDWIDTH, AD9361_TX_MAX_BANDWIDTH);
}
meta_range_t e3xx_radio_control_impl::get_rx_bandwidth_range(size_t) const
{
return meta_range_t(AD9361_RX_MIN_BANDWIDTH, AD9361_RX_MAX_BANDWIDTH);
}
/**************************************************************************
* Calibration-Related API Calls
*************************************************************************/
void e3xx_radio_control_impl::set_rx_dc_offset(const bool enb, size_t chan)
{
std::lock_guard<std::mutex> l(_set_lock);
RFNOC_LOG_TRACE("set_rx_dc_offset(enb=" << enb << ", chan=" << chan << ")");
const std::string rx_fe = get_which_ad9361_chain(RX_DIRECTION, chan);
_ad9361->set_dc_offset_auto(rx_fe, enb);
}
void e3xx_radio_control_impl::set_rx_iq_balance(const bool enb, size_t chan)
{
std::lock_guard<std::mutex> l(_set_lock);
RFNOC_LOG_TRACE("set_rx_iq_balance(enb=" << enb << ", chan=" << chan << ")");
const std::string rx_fe = get_which_ad9361_chain(RX_DIRECTION, chan);
_ad9361->set_iq_balance_auto(rx_fe, enb);
}
/**************************************************************************
* GPIO Controls
*************************************************************************/
void e3xx_radio_control_impl::set_gpio_attr(
const std::string& bank, const std::string& attr, const uint32_t value)
{
if (bank != get_gpio_banks().front()) {
RFNOC_LOG_ERROR("Invalid GPIO bank: " << bank);
throw uhd::key_error("Invalid GPIO bank!");
}
if (!gpio_atr::gpio_attr_rev_map.count(attr)) {
RFNOC_LOG_ERROR("Invalid GPIO attr: " << attr);
throw uhd::key_error("Invalid GPIO attr!");
}
const gpio_atr::gpio_attr_t gpio_attr = gpio_atr::gpio_attr_rev_map.at(attr);
if (gpio_attr == gpio_atr::GPIO_READBACK) {
RFNOC_LOG_WARNING("Cannot set READBACK attr.");
return;
}
_fp_gpio->set_gpio_attr(gpio_attr, value);
}
uint32_t e3xx_radio_control_impl::get_gpio_attr(
const std::string& bank, const std::string& attr)
{
if (bank != get_gpio_banks().front()) {
RFNOC_LOG_ERROR("Invalid GPIO bank: " << bank);
throw uhd::key_error("Invalid GPIO bank!");
}
const gpio_atr::gpio_attr_t gpio_attr = gpio_atr::gpio_attr_rev_map.at(attr);
return _fp_gpio->get_attr_reg(gpio_attr);
}
/******************************************************************************
* Sensor API
*****************************************************************************/
std::vector<std::string> e3xx_radio_control_impl::get_rx_sensor_names(const size_t) const
{
return _rx_sensor_names;
}
uhd::sensor_value_t e3xx_radio_control_impl::get_rx_sensor(
const std::string& sensor_name, const size_t chan)
{
return sensor_value_t(_rpcc->request_with_token<sensor_value_t::sensor_map_t>(
_rpc_prefix + "get_sensor", "RX", sensor_name, chan));
}
std::vector<std::string> e3xx_radio_control_impl::get_tx_sensor_names(const size_t) const
{
return _tx_sensor_names;
}
uhd::sensor_value_t e3xx_radio_control_impl::get_tx_sensor(
const std::string& sensor_name, const size_t chan)
{
return sensor_value_t(_rpcc->request_with_token<sensor_value_t::sensor_map_t>(
_rpc_prefix + "get_sensor", "TX", sensor_name, chan));
}
/* loopback_self_test checks the integrity of the FPGA->AD936x->FPGA sample interface.
The AD936x is put in loopback mode that sends the TX data unchanged to the RX side.
A test value is written to the codec_idle register in the TX side of the radio.
The readback register is then used to capture the values on the TX and RX sides
simultaneously for comparison. It is a reasonably effective test for AC timing
since I/Q Ch0/Ch1 alternate over the same wires. Note, however, that it uses
whatever timing is configured at the time the test is called rather than select
worst case conditions to stress the interface.
Note: This currently only tests 2R2T mode
*/
void e3xx_radio_control_impl::loopback_self_test(const size_t chan)
{
// Save current rate before running this test
const double current_rate = this->get_rate();
// Set 2R2T mode, stream on all channels
this->set_streaming_mode(true, true, true, true);
_ad9361->set_clock_rate(30.72e6);
// Put AD936x in loopback mode
_ad9361->data_port_loopback(true);
RFNOC_LOG_INFO(
"Performing CODEC loopback test on channel " << std::to_string(chan) << " ... ");
size_t hash = size_t(time(NULL));
constexpr size_t loopback_count = 100;
constexpr size_t retries = 3;
// Allow some time for AD936x to enter loopback mode.
// There is no clear statement in the documentation of how long it takes,
// but UG-570 does say to "allow six ADC_CLK/64 clock cycles of flush time"
// when leaving the TX or RX states. That works out to ~75us at the
// minimum clock rate of 5 MHz, which lines up with test results.
// Sleeping 1ms is far more than enough.
std::this_thread::sleep_for(std::chrono::milliseconds(1));
bool test_fail = true;
while (test_fail) {
size_t tries = 0;
for (size_t i = 0; i < loopback_count; i++) {
// Create test word
boost::hash_combine(hash, i);
const uint32_t word32 = uint32_t(hash) & 0xfff0fff0;
// Write test word to codec_idle idle register (on TX side)
regs().poke32(regmap::RADIO_BASE_ADDR + chan * regmap::REG_CHAN_OFFSET
+ regmap::REG_TX_IDLE_VALUE,
word32);
// Read back values - TX is lower 32-bits and RX is upper 32-bits
const uint32_t rb_tx =
regs().peek32(regmap::RADIO_BASE_ADDR + chan * regmap::REG_CHAN_OFFSET
+ regmap::REG_TX_IDLE_VALUE);
const uint32_t rb_rx =
regs().peek32(regmap::RADIO_BASE_ADDR + chan * regmap::REG_CHAN_OFFSET
+ regmap::REG_RX_DATA);
// Compare TX and RX values to test word
test_fail = word32 != rb_tx or word32 != rb_rx;
if (test_fail) {
RFNOC_LOG_DEBUG(
"CODEC loopback test failure: "
<< boost::format("Expected: 0x%08X Received (TX/RX): 0x%08X/0x%08X")
% word32 % rb_tx % rb_rx);
if (tries < retries) {
// TODO: Investigate why loopback test sometimes fails
// Upon failure, setting the streaming mode again makes
// it work for some reason.
this->set_streaming_mode(true, true, true, true);
// Try again
RFNOC_LOG_DEBUG("Retrying CODEC loopback test for channel "
<< std::to_string(chan) << " ... ");
tries++;
break;
} else {
RFNOC_LOG_ERROR("CODEC loopback test failed!");
throw uhd::runtime_error("CODEC loopback test failed.");
}
}
}
}
RFNOC_LOG_INFO("CODEC loopback test passed");
// Zero out the idle data.
regs().poke32(regmap::RADIO_BASE_ADDR + chan * regmap::REG_CHAN_OFFSET
+ regmap::REG_TX_IDLE_VALUE,
0);
// Take AD936x out of loopback mode
_ad9361->data_port_loopback(false);
this->set_streaming_mode(true, false, true, false);
// Switch back to current rate
_ad9361->set_clock_rate(current_rate);
}
void e3xx_radio_control_impl::_identify_with_leds(const int identify_duration)
{
RFNOC_LOG_INFO(
"Running LED identification process for " << identify_duration << " seconds.");
auto end_time =
std::chrono::steady_clock::now() + std::chrono::seconds(identify_duration);
bool led_state = true;
while (std::chrono::steady_clock::now() < end_time) {
// Add update_leds
led_state = !led_state;
std::this_thread::sleep_for(std::chrono::milliseconds(500));
}
}
void e3xx_radio_control_impl::_set_atr_bits(const size_t chan)
{
const auto rx_freq = radio_control_impl::get_rx_frequency(chan);
const auto tx_freq = radio_control_impl::get_tx_frequency(chan);
const auto rx_ant = radio_control_impl::get_rx_antenna(chan);
const uint32_t rx_regs = this->get_rx_switches(chan, rx_freq, rx_ant);
const uint32_t tx_regs = this->get_tx_switches(chan, tx_freq);
const uint32_t idle_regs = this->get_idle_switches();
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_IDLE, idle_regs);
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_RX_ONLY, rx_regs);
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_TX_ONLY, tx_regs);
_db_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_FULL_DUPLEX, rx_regs | tx_regs);
// The LED signal names are reversed, but are consistent with the schematic
const bool is_txrx = rx_ant == "TX/RX";
const int idle_led = 0;
const int rx_led = this->get_rx_led();
const int tx_led = this->get_tx_led();
const int txrx_led = this->get_txrx_led();
_leds_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_IDLE, idle_led);
_leds_gpio[chan]->set_atr_reg(
usrp::gpio_atr::ATR_REG_RX_ONLY, is_txrx ? txrx_led : rx_led);
_leds_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_TX_ONLY, tx_led);
_leds_gpio[chan]->set_atr_reg(usrp::gpio_atr::ATR_REG_FULL_DUPLEX, rx_led | tx_led);
}
void e3xx_radio_control_impl::set_db_eeprom(const eeprom_map_t& db_eeprom)
{
_rpcc->notify_with_token("set_db_eeprom", 0, db_eeprom);
}
eeprom_map_t e3xx_radio_control_impl::get_db_eeprom()
{
return _rpcc->request_with_token<eeprom_map_t>("get_db_eeprom", 0);
}
/**************************************************************************
* Filter API
*************************************************************************/
std::vector<std::string> e3xx_radio_control_impl::get_rx_filter_names(const size_t) const
{
return _rx_filter_names;
}
uhd::filter_info_base::sptr e3xx_radio_control_impl::get_rx_filter(
const std::string& name, const size_t chan)
{
return _ad9361->get_filter(
get_which_ad9361_chain(RX_DIRECTION, chan, _fe_swap), name);
}
void e3xx_radio_control_impl::set_rx_filter(
const std::string& name, uhd::filter_info_base::sptr filter, const size_t chan)
{
_ad9361->set_filter(
get_which_ad9361_chain(RX_DIRECTION, chan, _fe_swap), name, filter);
}
std::vector<std::string> e3xx_radio_control_impl::get_tx_filter_names(const size_t) const
{
return _tx_filter_names;
}
uhd::filter_info_base::sptr e3xx_radio_control_impl::get_tx_filter(
const std::string& name, const size_t chan)
{
return _ad9361->get_filter(
get_which_ad9361_chain(TX_DIRECTION, chan, _fe_swap), name);
}
void e3xx_radio_control_impl::set_tx_filter(
const std::string& name, uhd::filter_info_base::sptr filter, const size_t chan)
{
_ad9361->set_filter(
get_which_ad9361_chain(TX_DIRECTION, chan, _fe_swap), name, filter);
}
/**************************************************************************
* Radio Identification API Calls
*************************************************************************/
size_t e3xx_radio_control_impl::get_chan_from_dboard_fe(
const std::string& fe, const uhd::direction_t) const
{
// A and B are available here for backward compat
if (fe == "A" || fe == "0") {
return 0;
}
if (fe == "B" || fe == "1") {
return 1;
}
throw uhd::key_error(std::string("[E3xx] Invalid frontend: ") + fe);
}
std::string e3xx_radio_control_impl::get_dboard_fe_from_chan(
const size_t chan, const uhd::direction_t) const
{
if (chan == 0) {
return "0";
}
if (chan == 1) {
return "1";
}
throw uhd::lookup_error(
std::string("[E3xx] Invalid channel: ") + std::to_string(chan));
}
std::string e3xx_radio_control_impl::get_fe_name(
const size_t, const uhd::direction_t) const
{
return "E3xx";
}
|