1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
|
//
// Copyright 2010-2012 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
// TX IO Pins
#define HB_PA_OFF_TXIO (1 << 15) // 5GHz PA, 1 = off, 0 = on
#define LB_PA_OFF_TXIO (1 << 14) // 2.4GHz PA, 1 = off, 0 = on
#define ANTSEL_TX1_RX2_TXIO (1 << 13) // 1 = Ant 1 to TX, Ant 2 to RX
#define ANTSEL_TX2_RX1_TXIO (1 << 12) // 1 = Ant 2 to TX, Ant 1 to RX
#define TX_EN_TXIO (1 << 11) // 1 = TX on, 0 = TX off
#define AD9515DIV_TXIO (1 << 4) // 1 = Div by 3, 0 = Div by 2
#define TXIO_MASK \
(HB_PA_OFF_TXIO | LB_PA_OFF_TXIO | ANTSEL_TX1_RX2_TXIO | ANTSEL_TX2_RX1_TXIO \
| TX_EN_TXIO | AD9515DIV_TXIO)
// TX IO Functions
#define HB_PA_TXIO LB_PA_OFF_TXIO
#define LB_PA_TXIO HB_PA_OFF_TXIO
#define TX_ENB_TXIO TX_EN_TXIO
#define TX_DIS_TXIO (HB_PA_OFF_TXIO | LB_PA_OFF_TXIO)
#define AD9515DIV_3_TXIO AD9515DIV_TXIO
#define AD9515DIV_2_TXIO 0
// RX IO Pins
#define LOCKDET_RXIO (1 << 15) // This is an INPUT!!!
#define POWER_RXIO (1 << 14) // 1 = power on, 0 = shutdown
#define RX_EN_RXIO (1 << 13) // 1 = RX on, 0 = RX off
#define RX_HP_RXIO (1 << 12) // 0 = Fc set by rx_hpf, 1 = 600 KHz
#define RXIO_MASK (POWER_RXIO | RX_EN_RXIO | RX_HP_RXIO)
// RX IO Functions
#define POWER_UP_RXIO POWER_RXIO
#define POWER_DOWN_RXIO 0
#define RX_ENB_RXIO RX_EN_RXIO
#define RX_DIS_RXIO 0
#include "max2829_regs.hpp"
#include <uhd/types/dict.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/usrp/dboard_base.hpp>
#include <uhd/usrp/dboard_manager.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhd/utils/static.hpp>
#include <boost/assign/list_of.hpp>
#include <boost/format.hpp>
#include <boost/math/special_functions/round.hpp>
#include <chrono>
#include <functional>
#include <thread>
#include <utility>
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* The XCVR 2450 constants
**********************************************************************/
static const freq_range_t xcvr_freq_range =
list_of(range_t(2.4e9, 2.5e9))(range_t(4.9e9, 6.0e9));
// Multiplied by 2.0 for conversion to complex bandpass from lowpass
static const freq_range_t xcvr_tx_bandwidth_range =
list_of(range_t(2.0 * 12e6))(range_t(2.0 * 18e6))(range_t(2.0 * 24e6));
// Multiplied by 2.0 for conversion to complex bandpass from lowpass
static const freq_range_t xcvr_rx_bandwidth_range =
list_of(range_t(2.0 * 0.9 * 7.5e6, 2.0 * 1.1 * 7.5e6))(
range_t(2.0 * 0.9 * 9.5e6, 2.0 * 1.1 * 9.5e6))(range_t(
2.0 * 0.9 * 14e6, 2.0 * 1.1 * 14e6))(range_t(2.0 * 0.9 * 18e6, 2.0 * 1.1 * 18e6));
static const std::vector<std::string> xcvr_antennas = list_of("J1")("J2");
static const uhd::dict<std::string, gain_range_t> xcvr_tx_gain_ranges =
map_list_of("VGA", gain_range_t(0, 30, 0.5))("BB", gain_range_t(0, 5, 1.5));
static const uhd::dict<std::string, gain_range_t> xcvr_rx_gain_ranges =
map_list_of("LNA", gain_range_t(list_of(range_t(0))(range_t(15))(range_t(30.5))))(
"VGA", gain_range_t(0, 62, 2.0));
/***********************************************************************
* The XCVR 2450 dboard class
**********************************************************************/
class xcvr2450 : public xcvr_dboard_base
{
public:
xcvr2450(ctor_args_t args);
~xcvr2450(void) override;
private:
double _lo_freq;
double _rx_bandwidth, _tx_bandwidth;
uhd::dict<std::string, double> _tx_gains, _rx_gains;
std::string _tx_ant, _rx_ant;
int _ad9515div;
max2829_regs_t _max2829_regs;
double set_lo_freq(double target_freq);
double set_lo_freq_core(double target_freq);
void set_tx_ant(const std::string& ant);
void set_rx_ant(const std::string& ant);
double set_tx_gain(double gain, const std::string& name);
double set_rx_gain(double gain, const std::string& name);
double set_rx_bandwidth(double bandwidth);
double set_tx_bandwidth(double bandwidth);
void update_atr(void);
void spi_reset(void);
void send_reg(uint8_t addr)
{
uint32_t value = _max2829_regs.get_reg(addr);
UHD_LOGGER_TRACE("XCVR2450")
<< boost::format("XCVR2450: send reg 0x%02x, value 0x%05x") % int(addr)
% value;
this->get_iface()->write_spi(
dboard_iface::UNIT_RX, spi_config_t::EDGE_RISE, value, 24);
}
static bool is_highband(double freq)
{
return freq > 3e9;
}
/*!
* Get the lock detect status of the LO.
* \return sensor for locked
*/
sensor_value_t get_locked(void)
{
const bool locked =
(this->get_iface()->read_gpio(dboard_iface::UNIT_RX) & LOCKDET_RXIO) != 0;
return sensor_value_t("LO", locked, "locked", "unlocked");
}
/*!
* Read the RSSI from the aux adc
* \return the rssi sensor in dBm
*/
sensor_value_t get_rssi(void)
{
//*FIXME* RSSI depends on LNA Gain Setting (datasheet pg 16 top middle chart)
double max_power = 0.0;
switch (_max2829_regs.rx_lna_gain) {
case 0:
case 1:
max_power = 0;
break;
case 2:
max_power = -15;
break;
case 3:
max_power = -30.5;
break;
}
// constants for the rssi calculation
static const double min_v = 2.5, max_v = 0.5;
static const double rssi_dyn_range = 60.0;
// calculate the rssi from the voltage
double voltage = this->get_iface()->read_aux_adc(
dboard_iface::UNIT_RX, dboard_iface::AUX_ADC_B);
double rssi = max_power - rssi_dyn_range * (voltage - min_v) / (max_v - min_v);
return sensor_value_t("RSSI", rssi, "dBm");
}
};
/***********************************************************************
* Register the XCVR 2450 dboard
**********************************************************************/
static dboard_base::sptr make_xcvr2450(dboard_base::ctor_args_t args)
{
return dboard_base::sptr(new xcvr2450(args));
}
UHD_STATIC_BLOCK(reg_xcvr2450_dboard)
{
// register the factory function for the rx and tx dbids
dboard_manager::register_dboard(0x0061, 0x0060, &make_xcvr2450, "XCVR2450");
dboard_manager::register_dboard(0x0061, 0x0059, &make_xcvr2450, "XCVR2450 - r2.1");
}
/***********************************************************************
* Structors
**********************************************************************/
xcvr2450::xcvr2450(ctor_args_t args) : xcvr_dboard_base(args)
{
spi_reset(); // prepare the spi
_rx_bandwidth = 9.5e6;
_tx_bandwidth = 12.0e6;
// setup the misc max2829 registers
_max2829_regs.mimo_select = max2829_regs_t::MIMO_SELECT_MIMO;
_max2829_regs.band_sel_mimo = max2829_regs_t::BAND_SEL_MIMO_MIMO;
_max2829_regs.pll_cp_select = max2829_regs_t::PLL_CP_SELECT_4MA;
_max2829_regs.rssi_high_bw = max2829_regs_t::RSSI_HIGH_BW_6MHZ;
_max2829_regs.tx_lpf_coarse_adj = max2829_regs_t::TX_LPF_COARSE_ADJ_12MHZ;
_max2829_regs.rx_lpf_coarse_adj = max2829_regs_t::RX_LPF_COARSE_ADJ_9_5MHZ;
_max2829_regs.rx_lpf_fine_adj = max2829_regs_t::RX_LPF_FINE_ADJ_100;
_max2829_regs.rx_vga_gain_spi = max2829_regs_t::RX_VGA_GAIN_SPI_SPI;
_max2829_regs.rssi_output_range = max2829_regs_t::RSSI_OUTPUT_RANGE_HIGH;
_max2829_regs.rssi_op_mode = max2829_regs_t::RSSI_OP_MODE_ENABLED;
_max2829_regs.rssi_pin_fcn = max2829_regs_t::RSSI_PIN_FCN_RSSI;
_max2829_regs.rx_highpass = max2829_regs_t::RX_HIGHPASS_100HZ;
_max2829_regs.tx_vga_gain_spi = max2829_regs_t::TX_VGA_GAIN_SPI_SPI;
_max2829_regs.pa_driver_linearity = max2829_regs_t::PA_DRIVER_LINEARITY_78;
_max2829_regs.tx_vga_linearity = max2829_regs_t::TX_VGA_LINEARITY_78;
_max2829_regs.tx_upconv_linearity = max2829_regs_t::TX_UPCONV_LINEARITY_78;
// send initial register settings
for (uint8_t reg = 0x2; reg <= 0xC; reg++) {
this->send_reg(reg);
}
////////////////////////////////////////////////////////////////////
// Register RX properties
////////////////////////////////////////////////////////////////////
this->get_rx_subtree()->create<std::string>("name").set("XCVR2450 RX");
this->get_rx_subtree()
->create<sensor_value_t>("sensors/lo_locked")
.set_publisher(std::bind(&xcvr2450::get_locked, this));
this->get_rx_subtree()
->create<sensor_value_t>("sensors/rssi")
.set_publisher(std::bind(&xcvr2450::get_rssi, this));
for (const std::string& name : xcvr_rx_gain_ranges.keys()) {
this->get_rx_subtree()
->create<double>("gains/" + name + "/value")
.set_coercer(
std::bind(&xcvr2450::set_rx_gain, this, std::placeholders::_1, name))
.set(xcvr_rx_gain_ranges[name].start());
this->get_rx_subtree()
->create<meta_range_t>("gains/" + name + "/range")
.set(xcvr_rx_gain_ranges[name]);
}
this->get_rx_subtree()
->create<double>("freq/value")
.set_coercer(std::bind(&xcvr2450::set_lo_freq, this, std::placeholders::_1))
.set(double(2.45e9));
this->get_rx_subtree()->create<meta_range_t>("freq/range").set(xcvr_freq_range);
this->get_rx_subtree()
->create<std::string>("antenna/value")
.add_coerced_subscriber(
std::bind(&xcvr2450::set_rx_ant, this, std::placeholders::_1))
.set(xcvr_antennas.at(0));
this->get_rx_subtree()
->create<std::vector<std::string>>("antenna/options")
.set(xcvr_antennas);
this->get_rx_subtree()->create<std::string>("connection").set("IQ");
this->get_rx_subtree()->create<bool>("enabled").set(true); // always enabled
this->get_rx_subtree()->create<bool>("use_lo_offset").set(false);
this->get_rx_subtree()
->create<double>("bandwidth/value")
.set_coercer(std::bind(&xcvr2450::set_rx_bandwidth,
this,
std::placeholders::_1)) // complex bandpass bandwidth
.set(2.0 * _rx_bandwidth); //_rx_bandwidth in lowpass, convert to complex bandpass
this->get_rx_subtree()
->create<meta_range_t>("bandwidth/range")
.set(xcvr_rx_bandwidth_range);
////////////////////////////////////////////////////////////////////
// Register TX properties
////////////////////////////////////////////////////////////////////
this->get_tx_subtree()->create<std::string>("name").set("XCVR2450 TX");
this->get_tx_subtree()
->create<sensor_value_t>("sensors/lo_locked")
.set_publisher(std::bind(&xcvr2450::get_locked, this));
for (const std::string& name : xcvr_tx_gain_ranges.keys()) {
this->get_tx_subtree()
->create<double>("gains/" + name + "/value")
.set_coercer(
std::bind(&xcvr2450::set_tx_gain, this, std::placeholders::_1, name))
.set(xcvr_tx_gain_ranges[name].start());
this->get_tx_subtree()
->create<meta_range_t>("gains/" + name + "/range")
.set(xcvr_tx_gain_ranges[name]);
}
this->get_tx_subtree()
->create<double>("freq/value")
.set_coercer(std::bind(&xcvr2450::set_lo_freq, this, std::placeholders::_1))
.set(double(2.45e9));
this->get_tx_subtree()->create<meta_range_t>("freq/range").set(xcvr_freq_range);
this->get_tx_subtree()
->create<std::string>("antenna/value")
.add_coerced_subscriber(
std::bind(&xcvr2450::set_tx_ant, this, std::placeholders::_1))
.set(xcvr_antennas.at(1));
this->get_tx_subtree()
->create<std::vector<std::string>>("antenna/options")
.set(xcvr_antennas);
this->get_tx_subtree()->create<std::string>("connection").set("QI");
this->get_tx_subtree()->create<bool>("enabled").set(true); // always enabled
this->get_tx_subtree()->create<bool>("use_lo_offset").set(false);
this->get_tx_subtree()
->create<double>("bandwidth/value")
.set_coercer(std::bind(&xcvr2450::set_tx_bandwidth,
this,
std::placeholders::_1)) // complex bandpass bandwidth
.set(2.0 * _tx_bandwidth); //_tx_bandwidth in lowpass, convert to complex bandpass
this->get_tx_subtree()
->create<meta_range_t>("bandwidth/range")
.set(xcvr_tx_bandwidth_range);
// enable only the clocks we need
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true);
// set the gpio directions and atr controls (identically)
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, TXIO_MASK);
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, RXIO_MASK);
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, TXIO_MASK);
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, RXIO_MASK);
}
xcvr2450::~xcvr2450(void)
{
UHD_SAFE_CALL(spi_reset();)
}
void xcvr2450::spi_reset(void)
{
// spi reset mode: global enable = off, tx and rx enable = on
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_TX, gpio_atr::ATR_REG_IDLE, TX_ENB_TXIO);
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_RX, gpio_atr::ATR_REG_IDLE, RX_ENB_RXIO | POWER_DOWN_RXIO);
std::this_thread::sleep_for(std::chrono::milliseconds(10));
// take it back out of spi reset mode and wait a bit
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_RX, gpio_atr::ATR_REG_IDLE, RX_DIS_RXIO | POWER_UP_RXIO);
std::this_thread::sleep_for(std::chrono::milliseconds(10));
}
/***********************************************************************
* Update ATR regs which change with Antenna or Freq
**********************************************************************/
void xcvr2450::update_atr(void)
{
// calculate tx atr pins
int band_sel = (xcvr2450::is_highband(_lo_freq)) ? HB_PA_TXIO : LB_PA_TXIO;
int tx_ant_sel = (_tx_ant == "J1") ? ANTSEL_TX1_RX2_TXIO : ANTSEL_TX2_RX1_TXIO;
int rx_ant_sel = (_rx_ant == "J2") ? ANTSEL_TX1_RX2_TXIO : ANTSEL_TX2_RX1_TXIO;
int xx_ant_sel = tx_ant_sel; // Prefer the tx antenna selection for full duplex,
// due to the issue that USRP1 will take the value of full duplex for its TXATR.
int ad9515div = (_ad9515div == 3) ? AD9515DIV_3_TXIO : AD9515DIV_2_TXIO;
// set the tx registers
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX,
gpio_atr::ATR_REG_IDLE,
band_sel | ad9515div | TX_DIS_TXIO);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX,
gpio_atr::ATR_REG_RX_ONLY,
band_sel | ad9515div | TX_DIS_TXIO | rx_ant_sel);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX,
gpio_atr::ATR_REG_TX_ONLY,
band_sel | ad9515div | TX_ENB_TXIO | tx_ant_sel);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX,
gpio_atr::ATR_REG_FULL_DUPLEX,
band_sel | ad9515div | TX_ENB_TXIO | xx_ant_sel);
// set the rx registers
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_RX, gpio_atr::ATR_REG_IDLE, POWER_UP_RXIO | RX_DIS_RXIO);
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_RX, gpio_atr::ATR_REG_RX_ONLY, POWER_UP_RXIO | RX_ENB_RXIO);
this->get_iface()->set_atr_reg(
dboard_iface::UNIT_RX, gpio_atr::ATR_REG_TX_ONLY, POWER_UP_RXIO | RX_DIS_RXIO);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX,
gpio_atr::ATR_REG_FULL_DUPLEX,
POWER_UP_RXIO | RX_DIS_RXIO);
}
/***********************************************************************
* Tuning
**********************************************************************/
double xcvr2450::set_lo_freq(double target_freq)
{
// tune the LO and sleep a bit for lock
// if not locked, try some carrier offsets
double actual = 0.0;
for (double offset = 0.0; offset <= 3e6; offset += 1e6) {
actual = this->set_lo_freq_core(target_freq + offset);
std::this_thread::sleep_for(std::chrono::milliseconds(50));
if (this->get_locked().to_bool())
break;
}
return actual;
}
double xcvr2450::set_lo_freq_core(double target_freq)
{
// clip the input to the range
target_freq = xcvr_freq_range.clip(target_freq);
// variables used in the calculation below
double scaler = xcvr2450::is_highband(target_freq) ? (4.0 / 5.0) : (4.0 / 3.0);
double ref_freq = this->get_iface()->get_codec_rate(dboard_iface::UNIT_TX);
int R, intdiv = 131, fracdiv = 0;
// loop through values until we get a match
for (_ad9515div = 2; _ad9515div <= 3; _ad9515div++) {
for (R = 1; R <= 7; R++) {
double N = (target_freq * scaler * R * _ad9515div) / ref_freq;
intdiv = int(std::floor(N));
fracdiv = boost::math::iround((N - intdiv) * double(1 << 16));
// actual minimum is 128, but most chips seems to require higher to lock
if (intdiv < 131 or intdiv > 255)
continue;
// constraints met: exit loop
goto done_loop;
}
}
done_loop:
// calculate the actual freq from the values above
double N = double(intdiv) + double(fracdiv) / double(1 << 16);
_lo_freq = (N * ref_freq) / (scaler * R * _ad9515div);
UHD_LOGGER_TRACE("XCVR2450")
<< boost::format("XCVR2450 tune:\n")
<< boost::format(" R=%d, N=%f, ad9515=%d, scaler=%f\n") % R % N % _ad9515div
% scaler
<< boost::format(" Ref Freq=%fMHz\n") % (ref_freq / 1e6)
<< boost::format(" Target Freq=%fMHz\n") % (target_freq / 1e6)
<< boost::format(" Actual Freq=%fMHz\n") % (_lo_freq / 1e6);
// high-high band or low-high band?
if (_lo_freq > (5.35e9 + 5.47e9) / 2.0) {
UHD_LOGGER_TRACE("XCVR2450") << "XCVR2450 tune: Using high-high band";
_max2829_regs.band_select_802_11a =
max2829_regs_t::BAND_SELECT_802_11A_5_47GHZ_TO_5_875GHZ;
} else {
UHD_LOGGER_TRACE("XCVR2450") << "XCVR2450 tune: Using low-high band";
_max2829_regs.band_select_802_11a =
max2829_regs_t::BAND_SELECT_802_11A_4_9GHZ_TO_5_35GHZ;
}
// new band select settings and ad9515 divider
this->update_atr();
const bool div_ext(this->get_tx_id() == 0x0059);
if (div_ext) {
this->get_iface()->set_clock_rate(dboard_iface::UNIT_TX, ref_freq / _ad9515div);
} else {
this->get_iface()->set_clock_rate(dboard_iface::UNIT_TX, ref_freq);
}
// load new counters into registers
_max2829_regs.int_div_ratio_word = intdiv;
_max2829_regs.frac_div_ratio_lsb = fracdiv & 0x3;
_max2829_regs.frac_div_ratio_msb = fracdiv >> 2;
this->send_reg(0x3); // integer
this->send_reg(0x4); // fractional
// load the reference divider and band select into registers
// toggle the bandswitch from off to automatic (which really means start)
_max2829_regs.ref_divider = R;
_max2829_regs.band_select = (xcvr2450::is_highband(_lo_freq))
? max2829_regs_t::BAND_SELECT_5GHZ
: max2829_regs_t::BAND_SELECT_2_4GHZ;
_max2829_regs.vco_bandswitch = max2829_regs_t::VCO_BANDSWITCH_DISABLE;
this->send_reg(0x5);
_max2829_regs.vco_bandswitch = max2829_regs_t::VCO_BANDSWITCH_AUTOMATIC;
;
this->send_reg(0x5);
return _lo_freq;
}
/***********************************************************************
* Antenna Handling
**********************************************************************/
void xcvr2450::set_tx_ant(const std::string& ant)
{
assert_has(xcvr_antennas, ant, "xcvr antenna name");
_tx_ant = ant;
this->update_atr(); // sets the atr to the new antenna setting
}
void xcvr2450::set_rx_ant(const std::string& ant)
{
assert_has(xcvr_antennas, ant, "xcvr antenna name");
_rx_ant = ant;
this->update_atr(); // sets the atr to the new antenna setting
}
/***********************************************************************
* Gain Handling
**********************************************************************/
/*!
* Convert a requested gain for the tx vga into the integer register value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return 6 bit the register value
*/
static int gain_to_tx_vga_reg(double& gain)
{
// calculate the register value
int reg = uhd::clip(boost::math::iround(gain * 60 / 30.0) + 3, 0, 63);
// calculate the actual gain value
if (reg < 4)
gain = 0;
else if (reg < 48)
gain = double(reg / 2 - 1);
else
gain = double(reg / 2.0 - 1.5);
// return register value
return reg;
}
/*!
* Convert a requested gain for the tx bb into the integer register value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return gain enum value
*/
static max2829_regs_t::tx_baseband_gain_t gain_to_tx_bb_reg(double& gain)
{
int reg = uhd::clip(boost::math::iround(gain * 3 / 5.0), 0, 3);
switch (reg) {
case 0:
gain = 0;
return max2829_regs_t::TX_BASEBAND_GAIN_0DB;
case 1:
gain = 2;
return max2829_regs_t::TX_BASEBAND_GAIN_2DB;
case 2:
gain = 3.5;
return max2829_regs_t::TX_BASEBAND_GAIN_3_5DB;
case 3:
gain = 5;
return max2829_regs_t::TX_BASEBAND_GAIN_5DB;
}
UHD_THROW_INVALID_CODE_PATH();
}
/*!
* Convert a requested gain for the rx vga into the integer register value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return 5 bit the register value
*/
static int gain_to_rx_vga_reg(double& gain)
{
int reg = uhd::clip(boost::math::iround(gain / 2.0), 0, 31);
gain = double(reg * 2);
return reg;
}
/*!
* Convert a requested gain for the rx lna into the integer register value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return 2 bit the register value
*/
static int gain_to_rx_lna_reg(double& gain)
{
int reg = uhd::clip(boost::math::iround(gain * 2 / 30.5) + 1, 0, 3);
switch (reg) {
case 0:
case 1:
gain = 0;
break;
case 2:
gain = 15;
break;
case 3:
gain = 30.5;
break;
}
return reg;
}
double xcvr2450::set_tx_gain(double gain, const std::string& name)
{
assert_has(xcvr_tx_gain_ranges.keys(), name, "xcvr tx gain name");
if (name == "VGA") {
_max2829_regs.tx_vga_gain = gain_to_tx_vga_reg(gain);
send_reg(0xC);
} else if (name == "BB") {
_max2829_regs.tx_baseband_gain = gain_to_tx_bb_reg(gain);
send_reg(0x9);
} else
UHD_THROW_INVALID_CODE_PATH();
_tx_gains[name] = gain;
return gain;
}
double xcvr2450::set_rx_gain(double gain, const std::string& name)
{
assert_has(xcvr_rx_gain_ranges.keys(), name, "xcvr rx gain name");
if (name == "VGA") {
_max2829_regs.rx_vga_gain = gain_to_rx_vga_reg(gain);
send_reg(0xB);
} else if (name == "LNA") {
_max2829_regs.rx_lna_gain = gain_to_rx_lna_reg(gain);
send_reg(0xB);
} else
UHD_THROW_INVALID_CODE_PATH();
_rx_gains[name] = gain;
return gain;
}
/***********************************************************************
* Bandwidth Handling
**********************************************************************/
static max2829_regs_t::tx_lpf_coarse_adj_t bandwidth_to_tx_lpf_coarse_reg(
double& bandwidth)
{
int reg = uhd::clip(boost::math::iround((bandwidth - 6.0e6) / 6.0e6), 1, 3);
switch (reg) {
case 1: // bandwidth < 15MHz
bandwidth = 12e6;
return max2829_regs_t::TX_LPF_COARSE_ADJ_12MHZ;
case 2: // 15MHz < bandwidth < 21MHz
bandwidth = 18e6;
return max2829_regs_t::TX_LPF_COARSE_ADJ_18MHZ;
case 3: // bandwidth > 21MHz
bandwidth = 24e6;
return max2829_regs_t::TX_LPF_COARSE_ADJ_24MHZ;
}
UHD_THROW_INVALID_CODE_PATH();
}
static max2829_regs_t::rx_lpf_fine_adj_t bandwidth_to_rx_lpf_fine_reg(
double& bandwidth, double requested_bandwidth)
{
int reg =
uhd::clip(boost::math::iround((requested_bandwidth / bandwidth) / 0.05), 18, 22);
switch (reg) {
case 18: // requested_bandwidth < 92.5%
bandwidth = 0.9 * bandwidth;
return max2829_regs_t::RX_LPF_FINE_ADJ_90;
case 19: // 92.5% < requested_bandwidth < 97.5%
bandwidth = 0.95 * bandwidth;
return max2829_regs_t::RX_LPF_FINE_ADJ_95;
case 20: // 97.5% < requested_bandwidth < 102.5%
bandwidth = 1.0 * bandwidth;
return max2829_regs_t::RX_LPF_FINE_ADJ_100;
case 21: // 102.5% < requested_bandwidth < 107.5%
bandwidth = 1.05 * bandwidth;
return max2829_regs_t::RX_LPF_FINE_ADJ_105;
case 22: // 107.5% < requested_bandwidth
bandwidth = 1.1 * bandwidth;
return max2829_regs_t::RX_LPF_FINE_ADJ_110;
}
UHD_THROW_INVALID_CODE_PATH();
}
static max2829_regs_t::rx_lpf_coarse_adj_t bandwidth_to_rx_lpf_coarse_reg(
double& bandwidth)
{
int reg = uhd::clip(boost::math::iround((bandwidth - 7.0e6) / 1.0e6), 0, 11);
switch (reg) {
case 0: // bandwidth < 7.5MHz
case 1: // 7.5MHz < bandwidth < 8.5MHz
bandwidth = 7.5e6;
return max2829_regs_t::RX_LPF_COARSE_ADJ_7_5MHZ;
case 2: // 8.5MHz < bandwidth < 9.5MHz
case 3: // 9.5MHz < bandwidth < 10.5MHz
case 4: // 10.5MHz < bandwidth < 11.5MHz
bandwidth = 9.5e6;
return max2829_regs_t::RX_LPF_COARSE_ADJ_9_5MHZ;
case 5: // 11.5MHz < bandwidth < 12.5MHz
case 6: // 12.5MHz < bandwidth < 13.5MHz
case 7: // 13.5MHz < bandwidth < 14.5MHz
case 8: // 14.5MHz < bandwidth < 15.5MHz
bandwidth = 14e6;
return max2829_regs_t::RX_LPF_COARSE_ADJ_14MHZ;
case 9: // 15.5MHz < bandwidth < 16.5MHz
case 10: // 16.5MHz < bandwidth < 17.5MHz
case 11: // 17.5MHz < bandwidth
bandwidth = 18e6;
return max2829_regs_t::RX_LPF_COARSE_ADJ_18MHZ;
}
UHD_THROW_INVALID_CODE_PATH();
}
double xcvr2450::set_rx_bandwidth(double bandwidth)
{
double requested_bandwidth = bandwidth;
// convert complex bandpass to lowpass bandwidth
bandwidth = bandwidth / 2.0;
// compute coarse low pass cutoff frequency setting
_max2829_regs.rx_lpf_coarse_adj = bandwidth_to_rx_lpf_coarse_reg(bandwidth);
// compute fine low pass cutoff frequency setting
_max2829_regs.rx_lpf_fine_adj =
bandwidth_to_rx_lpf_fine_reg(bandwidth, requested_bandwidth);
// shadow bandwidth setting
_rx_bandwidth = bandwidth;
// update register
send_reg(0x7);
UHD_LOGGER_TRACE("XCVR2450")
<< boost::format(
"XCVR2450 RX Bandwidth (lp_fc): %f Hz, coarse reg: %d, fine reg: %d")
% _rx_bandwidth % (int(_max2829_regs.rx_lpf_coarse_adj))
% (int(_max2829_regs.rx_lpf_fine_adj));
return 2.0 * _rx_bandwidth;
}
double xcvr2450::set_tx_bandwidth(double bandwidth)
{
// convert complex bandpass to lowpass bandwidth
bandwidth = bandwidth / 2.0;
// compute coarse low pass cutoff frequency setting
_max2829_regs.tx_lpf_coarse_adj = bandwidth_to_tx_lpf_coarse_reg(bandwidth);
// shadow bandwidth setting
_tx_bandwidth = bandwidth;
// update register
send_reg(0x7);
UHD_LOGGER_TRACE("XCVR2450")
<< boost::format("XCVR2450 TX Bandwidth (lp_fc): %f Hz, coarse reg: %d")
% _tx_bandwidth % (int(_max2829_regs.tx_lpf_coarse_adj));
// convert lowpass back to complex bandpass bandwidth
return 2.0 * _tx_bandwidth;
}
|