aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/dboard/db_wbx_version2.cpp
blob: 0b57a6e2db5e7a4682ae3d2c2ef745cfc93504a3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include "db_wbx_common.hpp"
#include "adf4350_regs.hpp"
#include <uhd/utils/log.hpp>
#include <uhd/types/dict.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/msg.hpp>
#include <uhd/usrp/dboard_base.hpp>
#include <boost/assign/list_of.hpp>
#include <boost/format.hpp>
#include <boost/math/special_functions/round.hpp>

using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;


/***********************************************************************
 * WBX Version 2 Constants
 **********************************************************************/
static const uhd::dict<std::string, gain_range_t> wbx_v2_tx_gain_ranges = map_list_of
    ("PGA0", gain_range_t(0, 25, 0.05))
;

static const freq_range_t wbx_v2_freq_range(68.75e6, 2.2e9);

/***********************************************************************
 * Gain-related functions
 **********************************************************************/
static double tx_pga0_gain_to_dac_volts(double &gain){
    //clip the input
    gain = wbx_v2_tx_gain_ranges["PGA0"].clip(gain);

    //voltage level constants
    static const double max_volts = 0.5, min_volts = 1.4;
    static const double slope = (max_volts-min_volts)/wbx_v2_tx_gain_ranges["PGA0"].stop();

    //calculate the voltage for the aux dac
    double dac_volts = gain*slope + min_volts;

    UHD_LOGV(often) << boost::format(
        "WBX TX Gain: %f dB, dac_volts: %f V"
    ) % gain % dac_volts << std::endl;

    //the actual gain setting
    gain = (dac_volts - min_volts)/slope;

    return dac_volts;
}


/***********************************************************************
 * WBX Version 2 Implementation
 **********************************************************************/
wbx_base::wbx_version2::wbx_version2(wbx_base *_self_wbx_base) {
    //register our handle on the primary wbx_base instance
    self_base = _self_wbx_base;

    //enable the clocks that we need
    self_base->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true);
    self_base->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true);

    //set attenuator control bits
    int v2_iobits = ADF4350_CE;
    int v2_tx_mod = TXMOD_EN|ADF4350_PDBRF;

    //set the gpio directions and atr controls
    self_base->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, v2_tx_mod);
    self_base->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, RXBB_PDB|ADF4350_PDBRF);
    self_base->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, TX_PUP_5V|TX_PUP_3V|v2_tx_mod|v2_iobits);
    self_base->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, RX_PUP_5V|RX_PUP_3V|ADF4350_CE|RXBB_PDB|ADF4350_PDBRF|RX_ATTN_MASK);

    //setup ATR for the mixer enables (always enabled to prevent phase slip between bursts)
    self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_IDLE,        v2_tx_mod, TX_MIXER_DIS | v2_tx_mod);
    self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_RX_ONLY,     v2_tx_mod, TX_MIXER_DIS | v2_tx_mod);
    self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY,     v2_tx_mod, TX_MIXER_DIS | v2_tx_mod);
    self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX, v2_tx_mod, TX_MIXER_DIS | v2_tx_mod);

    self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE,        RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB);
    self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY,     RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB);
    self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY,     RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB);
    self_base->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX, RX_MIXER_ENB, RX_MIXER_DIS | RX_MIXER_ENB);

    BOOST_FOREACH(const std::string &name, wbx_v2_tx_gain_ranges.keys()) {
        set_tx_gain(wbx_v2_tx_gain_ranges[name].start(), name);
    }

    BOOST_FOREACH(const std::string &name, wbx_rx_gain_ranges.keys()) {
        self_base->set_rx_gain(wbx_rx_gain_ranges[name].start(), name);
    }

    self_base->set_rx_enabled(false);
    set_tx_enabled(false);
}

wbx_base::wbx_version2::~wbx_version2(void){
    /* NOP */
}

/***********************************************************************
 * Enables
 **********************************************************************/

void wbx_base::wbx_version2::set_tx_enabled(bool enb){
    self_base->get_iface()->set_gpio_out(dboard_iface::UNIT_TX,
        (enb)? TX_POWER_UP | ADF4350_CE : TX_POWER_DOWN, TX_POWER_UP | TX_POWER_DOWN | ADF4350_CE);
}


/***********************************************************************
 * Gain Handling
 **********************************************************************/
void wbx_base::wbx_version2::set_tx_gain(double gain, const std::string &name){
    assert_has(wbx_v2_tx_gain_ranges.keys(), name, "wbx tx gain name");
    if(name == "PGA0"){
        double dac_volts = tx_pga0_gain_to_dac_volts(gain);
        self_base->_tx_gains[name] = gain;

        //write the new voltage to the aux dac
        self_base->get_iface()->write_aux_dac(dboard_iface::UNIT_TX, dboard_iface::AUX_DAC_A, dac_volts);
    }
    else UHD_THROW_INVALID_CODE_PATH();
}


/***********************************************************************
 * Tuning
 **********************************************************************/
freq_range_t wbx_base::wbx_version2::get_freq_range(void) {
    return wbx_v2_freq_range;
}

double wbx_base::wbx_version2::set_lo_freq(dboard_iface::unit_t unit, double target_freq) {
    UHD_LOGV(often) << boost::format(
        "WBX tune: target frequency %f Mhz"
    ) % (target_freq/1e6) << std::endl;

    //map prescaler setting to mininmum integer divider (N) values (pg.18 prescaler)
    static const uhd::dict<int, int> prescaler_to_min_int_div = map_list_of
        (0,23) //adf4350_regs_t::PRESCALER_4_5
        (1,75) //adf4350_regs_t::PRESCALER_8_9
    ;

    //map rf divider select output dividers to enums
    static const uhd::dict<int, adf4350_regs_t::rf_divider_select_t> rfdivsel_to_enum = map_list_of
        (1,  adf4350_regs_t::RF_DIVIDER_SELECT_DIV1)
        (2,  adf4350_regs_t::RF_DIVIDER_SELECT_DIV2)
        (4,  adf4350_regs_t::RF_DIVIDER_SELECT_DIV4)
        (8,  adf4350_regs_t::RF_DIVIDER_SELECT_DIV8)
        (16, adf4350_regs_t::RF_DIVIDER_SELECT_DIV16)
    ;

    double actual_freq, pfd_freq;
    double ref_freq = self_base->get_iface()->get_clock_rate(unit);
    int R=0, BS=0, N=0, FRAC=0, MOD=0;
    int RFdiv = 1;
    adf4350_regs_t::reference_divide_by_2_t T     = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
    adf4350_regs_t::reference_doubler_t     D     = adf4350_regs_t::REFERENCE_DOUBLER_DISABLED;    

    //Reference doubler for 50% duty cycle
    // if ref_freq < 12.5MHz enable regs.reference_divide_by_2
    if(ref_freq <= 12.5e6) D = adf4350_regs_t::REFERENCE_DOUBLER_ENABLED;

    //increase RF divider until acceptable VCO frequency
    //start with target_freq*2 because mixer has divide by 2
    double vco_freq = target_freq*2;
    while (vco_freq < 2.2e9) {
        vco_freq *= 2;
        RFdiv *= 2;
    }

    //use 8/9 prescaler for vco_freq > 3 GHz (pg.18 prescaler)
    adf4350_regs_t::prescaler_t prescaler = vco_freq > 3e9 ? adf4350_regs_t::PRESCALER_8_9 : adf4350_regs_t::PRESCALER_4_5;

    /*
     * The goal here is to loop though possible R dividers,
     * band select clock dividers, N (int) dividers, and FRAC 
     * (frac) dividers.
     *
     * Calculate the N and F dividers for each set of values.
     * The loop exists when it meets all of the constraints.
     * The resulting loop values are loaded into the registers.
     *
     * from pg.21
     *
     * f_pfd = f_ref*(1+D)/(R*(1+T))
     * f_vco = (N + (FRAC/MOD))*f_pfd
     *    N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD
     * f_rf = f_vco/RFdiv)
     * f_actual = f_rf/2
     */
    for(R = 1; R <= 1023; R+=1){
        //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T)
        pfd_freq = ref_freq*(1+D)/(R*(1+T));

        //keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth)
        if (pfd_freq > 25e6) continue;

        //ignore fractional part of tuning
        N = int(std::floor(vco_freq/pfd_freq));

        //keep N > minimum int divider requirement
        if (N < prescaler_to_min_int_div[prescaler]) continue;

        for(BS=1; BS <= 255; BS+=1){
            //keep the band select frequency at or below 100KHz
            //constraint on band select clock
            if (pfd_freq/BS > 100e3) continue;
            goto done_loop;
        }
    } done_loop:

    //Fractional-N calculation
    MOD = 4095; //max fractional accuracy
    FRAC = int((vco_freq/pfd_freq - N)*MOD);

    //Reference divide-by-2 for 50% duty cycle
    // if R even, move one divide by 2 to to regs.reference_divide_by_2
    if(R % 2 == 0){
        T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED;
        R /= 2;
    }

    //actual frequency calculation
    actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T)))/RFdiv/2);


    UHD_LOGV(often)
        << boost::format("WBX Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f") % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl

        << boost::format("WBX tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d, LD=%d"
            ) % R % BS % N % FRAC % MOD % T % D % RFdiv % self_base->get_locked(unit)<< std::endl
        << boost::format("WBX Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f"
            ) % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl;

    //load the register values
    adf4350_regs_t regs;

    regs.frac_12_bit = FRAC;
    regs.int_16_bit = N;
    regs.mod_12_bit = MOD;
    regs.prescaler = prescaler;
    regs.r_counter_10_bit = R;
    regs.reference_divide_by_2 = T;
    regs.reference_doubler = D;
    regs.band_select_clock_div = BS;
    UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv));
    regs.rf_divider_select = rfdivsel_to_enum[RFdiv];

    if (unit == dboard_iface::UNIT_RX) {
        freq_range_t rx_lo_5dbm = list_of
            (range_t(0.05e9, 1.4e9))
        ;

        freq_range_t rx_lo_2dbm = list_of
            (range_t(1.4e9, 2.2e9))
        ;

        if (actual_freq == rx_lo_5dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM;

        if (actual_freq == rx_lo_2dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_2DBM;

    } else if (unit == dboard_iface::UNIT_TX) {
        freq_range_t tx_lo_5dbm = list_of
            (range_t(0.05e9, 1.7e9))
            (range_t(1.9e9, 2.2e9))
        ;

        freq_range_t tx_lo_m1dbm = list_of
            (range_t(1.7e9, 1.9e9))
        ;

        if (actual_freq == tx_lo_5dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM;

        if (actual_freq == tx_lo_m1dbm.clip(actual_freq)) regs.output_power = adf4350_regs_t::OUTPUT_POWER_M1DBM;

    }

    //write the registers
    //correct power-up sequence to write registers (5, 4, 3, 2, 1, 0)
    int addr;

    for(addr=5; addr>=0; addr--){
        UHD_LOGV(often) << boost::format(
            "WBX SPI Reg (0x%02x): 0x%08x"
        ) % addr % regs.get_reg(addr) << std::endl;
        self_base->get_iface()->write_spi(
            unit, spi_config_t::EDGE_RISE,
            regs.get_reg(addr), 32
        );
    }

    //return the actual frequency
    UHD_LOGV(often) << boost::format(
        "WBX tune: actual frequency %f Mhz"
    ) % (actual_freq/1e6) << std::endl;
    return actual_freq;
}


/***********************************************************************
 * TX Get and Set
 **********************************************************************/
void wbx_base::wbx_version2::tx_get(const wax::obj &key_, wax::obj &val){
    named_prop_t key = named_prop_t::extract(key_);

    //handle the get request conditioned on the key
    switch(key.as<subdev_prop_t>()){
    case SUBDEV_PROP_NAME:
        val = self_base->get_tx_id().to_pp_string();
        return;

    case SUBDEV_PROP_OTHERS:
        val = prop_names_t(); //empty
        return;

    case SUBDEV_PROP_GAIN:
        assert_has(self_base->_tx_gains.keys(), key.name, "wbx tx gain name");
        val = self_base->_tx_gains[key.name];
        return;

    case SUBDEV_PROP_GAIN_RANGE:
        assert_has(wbx_v2_tx_gain_ranges.keys(), key.name, "wbx tx gain name");
        val = wbx_v2_tx_gain_ranges[key.name];
        return;

    case SUBDEV_PROP_GAIN_NAMES:
        val = prop_names_t(wbx_v2_tx_gain_ranges.keys());
        return;

    case SUBDEV_PROP_FREQ:
        val = 0.0;
        return;

    case SUBDEV_PROP_FREQ_RANGE:
        val = freq_range_t(0.0, 0.0, 0.0);
        return;

    case SUBDEV_PROP_ANTENNA:
        val = std::string("");
        return;

    case SUBDEV_PROP_ANTENNA_NAMES:
        val = prop_names_t(1, "");
        return;

    case SUBDEV_PROP_CONNECTION:
        val = SUBDEV_CONN_COMPLEX_IQ;
        return;

    case SUBDEV_PROP_ENABLED:
        val = self_base->_tx_enabled;
        return;

    case SUBDEV_PROP_USE_LO_OFFSET:
        val = false;
        return;

    case SUBDEV_PROP_SENSOR:
        UHD_ASSERT_THROW(key.name == "lo_locked");
        val = sensor_value_t("LO", self_base->get_locked(dboard_iface::UNIT_TX), "locked", "unlocked");
        return;

    case SUBDEV_PROP_SENSOR_NAMES:
        val = prop_names_t(1, "lo_locked");
        return;

    case SUBDEV_PROP_BANDWIDTH:
        val = 2*20.0e6; //20MHz low-pass, we want complex double-sided
        return;

    default: UHD_THROW_PROP_GET_ERROR();
    }
}