1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
|
//
// Copyright 2014-17 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
/***********************************************************************
* Included Files and Libraries
**********************************************************************/
#include <uhd/types/device_addr.hpp>
#include <uhd/types/dict.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/types/direction.hpp>
#include <uhd/usrp/dboard_base.hpp>
#include <uhd/usrp/dboard_manager.hpp>
#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhdlib/usrp/common/max287x.hpp>
#include <boost/shared_ptr.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/thread/mutex.hpp>
#include <map>
#include <chrono>
#include <thread>
using namespace uhd;
using namespace uhd::usrp;
/***********************************************************************
* UBX Data Structures
**********************************************************************/
enum ubx_gpio_field_id_t
{
SPI_ADDR,
TX_EN_N,
RX_EN_N,
RX_ANT,
TX_LO_LOCKED,
RX_LO_LOCKED,
CPLD_RST_N,
TX_GAIN,
RX_GAIN,
RXLO1_SYNC,
RXLO2_SYNC,
TXLO1_SYNC,
TXLO2_SYNC
};
enum ubx_cpld_field_id_t
{
TXHB_SEL = 0,
TXLB_SEL = 1,
TXLO1_FSEL1 = 2,
TXLO1_FSEL2 = 3,
TXLO1_FSEL3 = 4,
RXHB_SEL = 5,
RXLB_SEL = 6,
RXLO1_FSEL1 = 7,
RXLO1_FSEL2 = 8,
RXLO1_FSEL3 = 9,
SEL_LNA1 = 10,
SEL_LNA2 = 11,
TXLO1_FORCEON = 12,
TXLO2_FORCEON = 13,
TXMOD_FORCEON = 14,
TXMIXER_FORCEON = 15,
TXDRV_FORCEON = 16,
RXLO1_FORCEON = 17,
RXLO2_FORCEON = 18,
RXDEMOD_FORCEON = 19,
RXMIXER_FORCEON = 20,
RXDRV_FORCEON = 21,
RXAMP_FORCEON = 22,
RXLNA1_FORCEON = 23,
RXLNA2_FORCEON = 24,
CAL_ENABLE = 25
};
struct ubx_gpio_field_info_t
{
ubx_gpio_field_id_t id;
dboard_iface::unit_t unit;
uint32_t offset;
uint32_t mask;
uint32_t width;
enum {OUTPUT,INPUT} direction;
bool is_atr_controlled;
uint32_t atr_idle;
uint32_t atr_tx;
uint32_t atr_rx;
uint32_t atr_full_duplex;
};
struct ubx_gpio_reg_t
{
bool dirty;
uint32_t value;
uint32_t mask;
uint32_t ddr;
uint32_t atr_mask;
uint32_t atr_idle;
uint32_t atr_tx;
uint32_t atr_rx;
uint32_t atr_full_duplex;
};
struct ubx_cpld_reg_t
{
void set_field(ubx_cpld_field_id_t field, uint32_t val)
{
UHD_ASSERT_THROW(val == (val & 0x1));
if (val)
value |= uint32_t(1) << field;
else
value &= ~(uint32_t(1) << field);
}
uint32_t value;
};
enum spi_dest_t {
TXLO1 = 0x0, // 0x00: TXLO1, the main TXLO from 400MHz to 6000MHz
TXLO2 = 0x1, // 0x01: TXLO2, the low band mixer TXLO 10MHz to 400MHz
RXLO1 = 0x2, // 0x02: RXLO1, the main RXLO from 400MHz to 6000MHz
RXLO2 = 0x3, // 0x03: RXLO2, the low band mixer RXLO 10MHz to 400MHz
CPLD = 0x4 // 0x04: CPLD SPI Register
};
/***********************************************************************
* UBX Constants
**********************************************************************/
#define fMHz (1000000.0)
static const dboard_id_t UBX_PROTO_V3_TX_ID(0x73);
static const dboard_id_t UBX_PROTO_V3_RX_ID(0x74);
static const dboard_id_t UBX_PROTO_V4_TX_ID(0x75);
static const dboard_id_t UBX_PROTO_V4_RX_ID(0x76);
static const dboard_id_t UBX_V1_40MHZ_TX_ID(0x77);
static const dboard_id_t UBX_V1_40MHZ_RX_ID(0x78);
static const dboard_id_t UBX_V1_160MHZ_TX_ID(0x79);
static const dboard_id_t UBX_V1_160MHZ_RX_ID(0x7A);
static const dboard_id_t UBX_V2_40MHZ_TX_ID(0x7B);
static const dboard_id_t UBX_V2_40MHZ_RX_ID(0x7C);
static const dboard_id_t UBX_V2_160MHZ_TX_ID(0x7D);
static const dboard_id_t UBX_V2_160MHZ_RX_ID(0x7E);
static const dboard_id_t UBX_LP_160MHZ_TX_ID(0x0200);
static const dboard_id_t UBX_LP_160MHZ_RX_ID(0x0201);
static const dboard_id_t UBX_TDD_160MHZ_TX_ID(0x0202);
static const dboard_id_t UBX_TDD_160MHZ_RX_ID(0x0203);
static const freq_range_t ubx_freq_range(10e6, 6.0e9);
static const gain_range_t ubx_tx_gain_range(0, 31.5, double(0.5));
static const gain_range_t ubx_rx_gain_range(0, 31.5, double(0.5));
static const std::vector<std::string> ubx_pgas{"PGA-TX", "PGA-RX"};
static const std::vector<std::string> ubx_plls{"TXLO", "RXLO"};
static const std::vector<std::string> ubx_tx_antennas{"TX/RX", "CAL"};
static const std::vector<std::string> ubx_rx_antennas{"TX/RX", "RX2", "CAL"};
static const std::vector<std::string> ubx_power_modes{"performance", "powersave"};
static const std::vector<std::string> ubx_xcvr_modes{"FDX", "TX", "TX/RX", "RX"};
static const ubx_gpio_field_info_t ubx_proto_gpio_info[] = {
//Field Unit Offset Mask Width Direction ATR IDLE,TX,RX,FDX
{SPI_ADDR, dboard_iface::UNIT_TX, 0, 0x7, 3, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{TX_EN_N, dboard_iface::UNIT_TX, 3, 0x1<<3, 1, ubx_gpio_field_info_t::INPUT, true, 1, 0, 1, 0},
{RX_EN_N, dboard_iface::UNIT_TX, 4, 0x1<<4, 1, ubx_gpio_field_info_t::INPUT, true, 1, 1, 0, 0},
{RX_ANT, dboard_iface::UNIT_TX, 5, 0x1<<5, 1, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{TX_LO_LOCKED, dboard_iface::UNIT_TX, 6, 0x1<<6, 1, ubx_gpio_field_info_t::OUTPUT, false, 0, 0, 0, 0},
{RX_LO_LOCKED, dboard_iface::UNIT_TX, 7, 0x1<<7, 1, ubx_gpio_field_info_t::OUTPUT, false, 0, 0, 0, 0},
{CPLD_RST_N, dboard_iface::UNIT_TX, 9, 0x1<<9, 1, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{TX_GAIN, dboard_iface::UNIT_TX, 10, 0x3F<<10, 10, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{RX_GAIN, dboard_iface::UNIT_RX, 10, 0x3F<<10, 10, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0}
};
static const ubx_gpio_field_info_t ubx_v1_gpio_info[] = {
//Field Unit Offset Mask Width Direction ATR IDLE,TX,RX,FDX
{SPI_ADDR, dboard_iface::UNIT_TX, 0, 0x7, 3, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{CPLD_RST_N, dboard_iface::UNIT_TX, 3, 0x1<<3, 1, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{RX_ANT, dboard_iface::UNIT_TX, 4, 0x1<<4, 1, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{TX_EN_N, dboard_iface::UNIT_TX, 5, 0x1<<5, 1, ubx_gpio_field_info_t::INPUT, true, 1, 0, 1, 0},
{RX_EN_N, dboard_iface::UNIT_TX, 6, 0x1<<6, 1, ubx_gpio_field_info_t::INPUT, true, 1, 1, 0, 0},
{TXLO1_SYNC, dboard_iface::UNIT_TX, 7, 0x1<<7, 1, ubx_gpio_field_info_t::INPUT, true, 0, 0, 0, 0},
{TXLO2_SYNC, dboard_iface::UNIT_TX, 9, 0x1<<9, 1, ubx_gpio_field_info_t::INPUT, true, 0, 0, 0, 0},
{TX_GAIN, dboard_iface::UNIT_TX, 10, 0x3F<<10, 10, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0},
{RX_LO_LOCKED, dboard_iface::UNIT_RX, 0, 0x1, 1, ubx_gpio_field_info_t::OUTPUT, false, 0, 0, 0, 0},
{TX_LO_LOCKED, dboard_iface::UNIT_RX, 1, 0x1<<1, 1, ubx_gpio_field_info_t::OUTPUT, false, 0, 0, 0, 0},
{RXLO1_SYNC, dboard_iface::UNIT_RX, 5, 0x1<<5, 1, ubx_gpio_field_info_t::INPUT, true, 0, 0, 0, 0},
{RXLO2_SYNC, dboard_iface::UNIT_RX, 7, 0x1<<7, 1, ubx_gpio_field_info_t::INPUT, true, 0, 0, 0, 0},
{RX_GAIN, dboard_iface::UNIT_RX, 10, 0x3F<<10, 10, ubx_gpio_field_info_t::INPUT, false, 0, 0, 0, 0}
};
/***********************************************************************
* Macros for routing and writing SPI registers
**********************************************************************/
#define ROUTE_SPI(iface, dest) \
set_gpio_field(SPI_ADDR, dest); \
write_gpio();
#define WRITE_SPI(iface, val) \
iface->write_spi(dboard_iface::UNIT_TX, spi_config_t::EDGE_RISE, val, 32);
/***********************************************************************
* UBX Class Definition
**********************************************************************/
class ubx_xcvr : public xcvr_dboard_base
{
public:
ubx_xcvr(ctor_args_t args) : xcvr_dboard_base(args)
{
double bw = 40e6;
double pfd_freq_max = 25e6;
////////////////////////////////////////////////////////////////////
// Setup GPIO hardware
////////////////////////////////////////////////////////////////////
_iface = get_iface();
dboard_id_t rx_id = get_rx_id();
dboard_id_t tx_id = get_tx_id();
size_t revision = 1; // default to rev A
// Get revision if programmed
const std::string revision_str = get_rx_eeprom().revision;
if (not revision_str.empty())
{
revision = boost::lexical_cast<size_t>(revision_str);
}
_high_isolation = false;
if (rx_id == UBX_PROTO_V3_RX_ID and tx_id == UBX_PROTO_V3_TX_ID) {
_rev = 0;
}
else if (rx_id == UBX_PROTO_V4_RX_ID and tx_id == UBX_PROTO_V4_TX_ID) {
_rev = 1;
}
else if (rx_id == UBX_V1_40MHZ_RX_ID and tx_id == UBX_V1_40MHZ_TX_ID) {
_rev = 1;
}
else if (rx_id == UBX_V2_40MHZ_RX_ID and tx_id == UBX_V2_40MHZ_TX_ID) {
_rev = 2;
if (revision >= 4)
{
_high_isolation = true;
}
}
else if (rx_id == UBX_V1_160MHZ_RX_ID and tx_id == UBX_V1_160MHZ_TX_ID) {
bw = 160e6;
_rev = 1;
}
else if (rx_id == UBX_V2_160MHZ_RX_ID and tx_id == UBX_V2_160MHZ_TX_ID) {
bw = 160e6;
_rev = 2;
if (revision >= 4)
{
_high_isolation = true;
}
}
else if (rx_id == UBX_LP_160MHZ_RX_ID and tx_id == UBX_LP_160MHZ_TX_ID) {
// The LP version behaves and looks like a regular UBX-160 v2
bw = 160e6;
_rev = 2;
}
else if (rx_id == UBX_TDD_160MHZ_RX_ID and tx_id == UBX_TDD_160MHZ_TX_ID) {
bw = 160e6;
_rev = 2;
_high_isolation = true;
}
else {
UHD_THROW_INVALID_CODE_PATH();
}
switch(_rev)
{
case 0:
for (size_t i = 0; i < sizeof(ubx_proto_gpio_info) / sizeof(ubx_gpio_field_info_t); i++)
_gpio_map[ubx_proto_gpio_info[i].id] = ubx_proto_gpio_info[i];
pfd_freq_max = 25e6;
break;
case 1:
case 2:
for (size_t i = 0; i < sizeof(ubx_v1_gpio_info) / sizeof(ubx_gpio_field_info_t); i++)
_gpio_map[ubx_v1_gpio_info[i].id] = ubx_v1_gpio_info[i];
pfd_freq_max = 50e6;
break;
}
// Initialize GPIO registers
memset(&_tx_gpio_reg,0,sizeof(ubx_gpio_reg_t));
memset(&_rx_gpio_reg,0,sizeof(ubx_gpio_reg_t));
for (std::map<ubx_gpio_field_id_t,ubx_gpio_field_info_t>::iterator entry = _gpio_map.begin(); entry != _gpio_map.end(); entry++)
{
ubx_gpio_field_info_t info = entry->second;
ubx_gpio_reg_t *reg = (info.unit == dboard_iface::UNIT_TX ? &_tx_gpio_reg : &_rx_gpio_reg);
if (info.direction == ubx_gpio_field_info_t::INPUT)
reg->ddr |= info.mask;
if (info.is_atr_controlled)
{
reg->atr_mask |= info.mask;
reg->atr_idle |= (info.atr_idle << info.offset) & info.mask;
reg->atr_tx |= (info.atr_tx << info.offset) & info.mask;
reg->atr_rx |= (info.atr_rx << info.offset) & info.mask;
reg->atr_full_duplex |= (info.atr_full_duplex << info.offset) & info.mask;
}
}
// Enable the reference clocks that we need
_rx_target_pfd_freq = pfd_freq_max;
_tx_target_pfd_freq = pfd_freq_max;
if (_rev >= 1)
{
bool can_set_clock_rate = true;
// set dboard clock rates to as close to the max PFD freq as possible
if (_iface->get_clock_rate(dboard_iface::UNIT_RX) > pfd_freq_max)
{
std::vector<double> rates = _iface->get_clock_rates(dboard_iface::UNIT_RX);
double highest_rate = 0.0;
for(double rate: rates)
{
if (rate <= pfd_freq_max and rate > highest_rate)
highest_rate = rate;
}
try {
_iface->set_clock_rate(dboard_iface::UNIT_RX, highest_rate);
} catch (const uhd::not_implemented_error &) {
UHD_LOG_WARNING("UBX",
"Unable to set dboard clock rate - phase will vary"
);
can_set_clock_rate = false;
}
_rx_target_pfd_freq = highest_rate;
}
if (can_set_clock_rate and _iface->get_clock_rate(dboard_iface::UNIT_TX) > pfd_freq_max)
{
std::vector<double> rates = _iface->get_clock_rates(dboard_iface::UNIT_TX);
double highest_rate = 0.0;
for(double rate: rates)
{
if (rate <= pfd_freq_max and rate > highest_rate)
highest_rate = rate;
}
try {
_iface->set_clock_rate(dboard_iface::UNIT_TX, highest_rate);
} catch (const uhd::not_implemented_error &) {
UHD_LOG_WARNING("UBX",
"Unable to set dboard clock rate - phase will vary"
);
}
_tx_target_pfd_freq = highest_rate;
}
}
_iface->set_clock_enabled(dboard_iface::UNIT_TX, true);
_iface->set_clock_enabled(dboard_iface::UNIT_RX, true);
// Set direction of GPIO pins (1 is input to UBX, 0 is output)
_iface->set_gpio_ddr(dboard_iface::UNIT_TX, _tx_gpio_reg.ddr);
_iface->set_gpio_ddr(dboard_iface::UNIT_RX, _rx_gpio_reg.ddr);
// Set default GPIO values
set_gpio_field(TX_GAIN, 0);
set_gpio_field(CPLD_RST_N, 0);
set_gpio_field(RX_ANT, 1);
set_gpio_field(TX_EN_N, 1);
set_gpio_field(RX_EN_N, 1);
set_gpio_field(SPI_ADDR, 0x7);
set_gpio_field(RX_GAIN, 0);
set_gpio_field(TXLO1_SYNC, 0);
set_gpio_field(TXLO2_SYNC, 0);
set_gpio_field(RXLO1_SYNC, 0);
set_gpio_field(RXLO1_SYNC, 0);
write_gpio();
// Configure ATR
_iface->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_IDLE, _tx_gpio_reg.atr_idle);
_iface->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_TX_ONLY, _tx_gpio_reg.atr_tx);
_iface->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_RX_ONLY, _tx_gpio_reg.atr_rx);
_iface->set_atr_reg(dboard_iface::UNIT_TX, gpio_atr::ATR_REG_FULL_DUPLEX, _tx_gpio_reg.atr_full_duplex);
_iface->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_IDLE, _rx_gpio_reg.atr_idle);
_iface->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_TX_ONLY, _rx_gpio_reg.atr_tx);
_iface->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_RX_ONLY, _rx_gpio_reg.atr_rx);
_iface->set_atr_reg(dboard_iface::UNIT_RX, gpio_atr::ATR_REG_FULL_DUPLEX, _rx_gpio_reg.atr_full_duplex);
// Engage ATR control (1 is ATR control, 0 is manual control)
_iface->set_pin_ctrl(dboard_iface::UNIT_TX, _tx_gpio_reg.atr_mask);
_iface->set_pin_ctrl(dboard_iface::UNIT_RX, _rx_gpio_reg.atr_mask);
// bring CPLD out of reset
std::this_thread::sleep_for(std::chrono::milliseconds(20)); // hold CPLD reset for minimum of 20 ms
set_gpio_field(CPLD_RST_N, 1);
write_gpio();
// Initialize LOs
if (_rev == 0)
{
_txlo1 = max287x_iface::make<max2870>(boost::bind(&ubx_xcvr::write_spi_regs, this, TXLO1, _1));
_txlo2 = max287x_iface::make<max2870>(boost::bind(&ubx_xcvr::write_spi_regs, this, TXLO2, _1));
_rxlo1 = max287x_iface::make<max2870>(boost::bind(&ubx_xcvr::write_spi_regs, this, RXLO1, _1));
_rxlo2 = max287x_iface::make<max2870>(boost::bind(&ubx_xcvr::write_spi_regs, this, RXLO2, _1));
std::vector<max287x_iface::sptr> los{_txlo1, _txlo2, _rxlo1, _rxlo2};
for(max287x_iface::sptr lo: los)
{
lo->set_auto_retune(false);
lo->set_muxout_mode(max287x_iface::MUXOUT_DLD);
lo->set_ld_pin_mode(max287x_iface::LD_PIN_MODE_DLD);
}
}
else if (_rev == 1 or _rev == 2)
{
_txlo1 = max287x_iface::make<max2871>(boost::bind(&ubx_xcvr::write_spi_regs, this, TXLO1, _1));
_txlo2 = max287x_iface::make<max2871>(boost::bind(&ubx_xcvr::write_spi_regs, this, TXLO2, _1));
_rxlo1 = max287x_iface::make<max2871>(boost::bind(&ubx_xcvr::write_spi_regs, this, RXLO1, _1));
_rxlo2 = max287x_iface::make<max2871>(boost::bind(&ubx_xcvr::write_spi_regs, this, RXLO2, _1));
std::vector<max287x_iface::sptr> los{_txlo1, _txlo2, _rxlo1, _rxlo2};
for(max287x_iface::sptr lo: los)
{
lo->set_auto_retune(false);
//lo->set_cycle_slip_mode(true); // tried it - caused longer lock times
lo->set_charge_pump_current(max287x_iface::CHARGE_PUMP_CURRENT_5_12MA);
lo->set_muxout_mode(max287x_iface::MUXOUT_SYNC);
lo->set_ld_pin_mode(max287x_iface::LD_PIN_MODE_DLD);
}
}
else
{
UHD_THROW_INVALID_CODE_PATH();
}
// Initialize CPLD register
_prev_cpld_value = 0xFFFF;
_cpld_reg.value = 0;
write_cpld_reg();
////////////////////////////////////////////////////////////////////
// Register power save properties
////////////////////////////////////////////////////////////////////
get_rx_subtree()->create<std::vector<std::string> >("power_mode/options")
.set(ubx_power_modes);
get_rx_subtree()->create<std::string>("power_mode/value")
.add_coerced_subscriber(boost::bind(&ubx_xcvr::set_power_mode, this, _1))
.set("performance");
get_rx_subtree()->create<std::vector<std::string> >("xcvr_mode/options")
.set(ubx_xcvr_modes);
get_rx_subtree()->create<std::string>("xcvr_mode/value")
.add_coerced_subscriber(boost::bind(&ubx_xcvr::set_xcvr_mode, this, _1))
.set("FDX");
get_tx_subtree()->create<std::vector<std::string> >("power_mode/options")
.set(ubx_power_modes);
get_tx_subtree()->create<std::string>("power_mode/value")
.add_coerced_subscriber(boost::bind(&uhd::property<std::string>::set, &get_rx_subtree()->access<std::string>("power_mode/value"), _1))
.set_publisher(boost::bind(&uhd::property<std::string>::get, &get_rx_subtree()->access<std::string>("power_mode/value")));
get_tx_subtree()->create<std::vector<std::string> >("xcvr_mode/options")
.set(ubx_xcvr_modes);
get_tx_subtree()->create<std::string>("xcvr_mode/value")
.add_coerced_subscriber(boost::bind(&uhd::property<std::string>::set, &get_rx_subtree()->access<std::string>("xcvr_mode/value"), _1))
.set_publisher(boost::bind(&uhd::property<std::string>::get, &get_rx_subtree()->access<std::string>("xcvr_mode/value")));
////////////////////////////////////////////////////////////////////
// Register TX properties
////////////////////////////////////////////////////////////////////
get_tx_subtree()->create<std::string>("name").set("UBX TX");
get_tx_subtree()->create<device_addr_t>("tune_args")
.set(device_addr_t());
get_tx_subtree()->create<sensor_value_t>("sensors/lo_locked")
.set_publisher(boost::bind(&ubx_xcvr::get_locked, this, "TXLO"));
get_tx_subtree()->create<double>("gains/PGA0/value")
.set_coercer(boost::bind(&ubx_xcvr::set_tx_gain, this, _1)).set(0);
get_tx_subtree()->create<meta_range_t>("gains/PGA0/range")
.set(ubx_tx_gain_range);
get_tx_subtree()->create<double>("freq/value")
.set_coercer(boost::bind(&ubx_xcvr::set_tx_freq, this, _1))
.set(ubx_freq_range.start());
get_tx_subtree()->create<meta_range_t>("freq/range")
.set(ubx_freq_range);
get_tx_subtree()->create<std::vector<std::string> >("antenna/options")
.set(ubx_tx_antennas);
get_tx_subtree()->create<std::string>("antenna/value")
.set_coercer(boost::bind(&ubx_xcvr::set_tx_ant, this, _1))
.set(ubx_tx_antennas.at(0));
get_tx_subtree()->create<std::string>("connection")
.set("QI");
get_tx_subtree()->create<bool>("enabled")
.set(true); //always enabled
get_tx_subtree()->create<bool>("use_lo_offset")
.set(false);
get_tx_subtree()->create<double>("bandwidth/value")
.set(bw);
get_tx_subtree()->create<meta_range_t>("bandwidth/range")
.set(freq_range_t(bw, bw));
get_tx_subtree()->create<int64_t>("sync_delay")
.add_coerced_subscriber(boost::bind(&ubx_xcvr::set_sync_delay, this, true, _1))
.set(0);
////////////////////////////////////////////////////////////////////
// Register RX properties
////////////////////////////////////////////////////////////////////
get_rx_subtree()->create<std::string>("name").set("UBX RX");
get_rx_subtree()->create<device_addr_t>("tune_args")
.set(device_addr_t());
get_rx_subtree()->create<sensor_value_t>("sensors/lo_locked")
.set_publisher(boost::bind(&ubx_xcvr::get_locked, this, "RXLO"));
get_rx_subtree()->create<double>("gains/PGA0/value")
.set_coercer(boost::bind(&ubx_xcvr::set_rx_gain, this, _1))
.set(0);
get_rx_subtree()->create<meta_range_t>("gains/PGA0/range")
.set(ubx_rx_gain_range);
get_rx_subtree()->create<double>("freq/value")
.set_coercer(boost::bind(&ubx_xcvr::set_rx_freq, this, _1))
.set(ubx_freq_range.start());
get_rx_subtree()->create<meta_range_t>("freq/range")
.set(ubx_freq_range);
get_rx_subtree()->create<std::vector<std::string> >("antenna/options")
.set(ubx_rx_antennas);
get_rx_subtree()->create<std::string>("antenna/value")
.set_coercer(boost::bind(&ubx_xcvr::set_rx_ant, this, _1)).set("RX2");
get_rx_subtree()->create<std::string>("connection")
.set("IQ");
get_rx_subtree()->create<bool>("enabled")
.set(true); //always enabled
get_rx_subtree()->create<bool>("use_lo_offset")
.set(false);
get_rx_subtree()->create<double>("bandwidth/value")
.set(bw);
get_rx_subtree()->create<meta_range_t>("bandwidth/range")
.set(freq_range_t(bw, bw));
get_rx_subtree()->create<int64_t>("sync_delay")
.add_coerced_subscriber(boost::bind(&ubx_xcvr::set_sync_delay, this, false, _1))
.set(0);
}
virtual ~ubx_xcvr(void)
{
UHD_SAFE_CALL
(
// Shutdown synthesizers
_txlo1->shutdown();
_txlo2->shutdown();
_rxlo1->shutdown();
_rxlo2->shutdown();
// Reset CPLD values
_cpld_reg.value = 0;
write_cpld_reg();
// Reset GPIO values
set_gpio_field(TX_GAIN, 0);
set_gpio_field(CPLD_RST_N, 0);
set_gpio_field(RX_ANT, 1);
set_gpio_field(TX_EN_N, 1);
set_gpio_field(RX_EN_N, 1);
set_gpio_field(SPI_ADDR, 0x7);
set_gpio_field(RX_GAIN, 0);
set_gpio_field(TXLO1_SYNC, 0);
set_gpio_field(TXLO2_SYNC, 0);
set_gpio_field(RXLO1_SYNC, 0);
set_gpio_field(RXLO1_SYNC, 0);
write_gpio();
)
}
private:
enum power_mode_t {PERFORMANCE,POWERSAVE};
enum xcvr_mode_t {FDX, TDD, TX, RX, FAST_TDD};
/***********************************************************************
* Helper Functions
**********************************************************************/
void write_spi_reg(spi_dest_t dest, uint32_t value)
{
boost::mutex::scoped_lock lock(_spi_mutex);
ROUTE_SPI(_iface, dest);
WRITE_SPI(_iface, value);
}
void write_spi_regs(spi_dest_t dest, std::vector<uint32_t> values)
{
boost::mutex::scoped_lock lock(_spi_mutex);
ROUTE_SPI(_iface, dest);
for(uint32_t value: values)
WRITE_SPI(_iface, value);
}
void set_cpld_field(ubx_cpld_field_id_t id, uint32_t value)
{
_cpld_reg.set_field(id, value);
}
void write_cpld_reg()
{
if (_cpld_reg.value != _prev_cpld_value)
{
write_spi_reg(CPLD, _cpld_reg.value);
_prev_cpld_value = _cpld_reg.value;
}
}
void set_gpio_field(ubx_gpio_field_id_t id, uint32_t value)
{
// Look up field info
std::map<ubx_gpio_field_id_t,ubx_gpio_field_info_t>::iterator entry = _gpio_map.find(id);
if (entry == _gpio_map.end())
return;
ubx_gpio_field_info_t field_info = entry->second;
if (field_info.direction == ubx_gpio_field_info_t::OUTPUT)
return;
ubx_gpio_reg_t *reg = (field_info.unit == dboard_iface::UNIT_TX ? &_tx_gpio_reg : &_rx_gpio_reg);
uint32_t _value = reg->value;
uint32_t _mask = reg->mask;
// Set field and mask
_value &= ~field_info.mask;
_value |= (value << field_info.offset) & field_info.mask;
_mask |= field_info.mask;
// Mark whether register is dirty or not
if (_value != reg->value)
{
reg->value = _value;
reg->mask = _mask;
reg->dirty = true;
}
}
uint32_t get_gpio_field(ubx_gpio_field_id_t id)
{
// Look up field info
std::map<ubx_gpio_field_id_t,ubx_gpio_field_info_t>::iterator entry = _gpio_map.find(id);
if (entry == _gpio_map.end())
return 0;
ubx_gpio_field_info_t field_info = entry->second;
if (field_info.direction == ubx_gpio_field_info_t::INPUT)
{
ubx_gpio_reg_t *reg = (field_info.unit == dboard_iface::UNIT_TX ? &_tx_gpio_reg : &_rx_gpio_reg);
return (reg->value >> field_info.offset) & field_info.mask;
}
// Read register
uint32_t value = _iface->read_gpio(field_info.unit);
value &= field_info.mask;
value >>= field_info.offset;
// Return field value
return value;
}
void write_gpio()
{
if (_tx_gpio_reg.dirty)
{
_iface->set_gpio_out(dboard_iface::UNIT_TX, _tx_gpio_reg.value, _tx_gpio_reg.mask);
_tx_gpio_reg.dirty = false;
_tx_gpio_reg.mask = 0;
}
if (_rx_gpio_reg.dirty)
{
_iface->set_gpio_out(dboard_iface::UNIT_RX, _rx_gpio_reg.value, _rx_gpio_reg.mask);
_rx_gpio_reg.dirty = false;
_rx_gpio_reg.mask = 0;
}
}
void sync_phase(uhd::time_spec_t cmd_time, uhd::direction_t dir)
{
// Send phase sync signal only if the command time is set
if (cmd_time != uhd::time_spec_t(0.0))
{
// Delay 400 microseconds to allow LOs to lock
cmd_time += uhd::time_spec_t(0.0004);
// Phase synchronization for MAX2871 requires that the sync signal
// is at least 4/(N*PFD_freq) + 2.6ns before the rising edge of the
// ref clock and 4/(N*PFD_freq) after the rising edge of the ref clock.
// Since the MAX2871 requires the ref freq and PFD freq be the same
// for phase synchronization, the dboard clock rate is used as the PFD
// freq and the sync signal is aligned to the falling edge to meet
// the setup and hold requirements. Since the command time ticks
// at the radio clock rate, this only works if the radio clock is
// an even multiple of the dboard clock, the dboard clock is a
// multiple of the system reference, and the device time has been
// set on a PPS edge sampled by the system reference clock.
const double pfd_freq = _iface->get_clock_rate(dir == TX_DIRECTION ? dboard_iface::UNIT_TX : dboard_iface::UNIT_RX);
const double tick_rate = _iface->get_codec_rate(dir == TX_DIRECTION ? dboard_iface::UNIT_TX : dboard_iface::UNIT_RX);
const int64_t ticks_per_pfd_cycle = (int64_t)(tick_rate / pfd_freq);
// Convert time to ticks
int64_t ticks = cmd_time.to_ticks(tick_rate);
// Align time to next falling edge of dboard clock
ticks += ticks_per_pfd_cycle - (ticks % ticks_per_pfd_cycle) + (ticks_per_pfd_cycle / 2);
// Add any user specified delay
ticks += dir == TX_DIRECTION ? _tx_sync_delay : _rx_sync_delay;
// Set the command time
cmd_time = uhd::time_spec_t::from_ticks(ticks, tick_rate);
_iface->set_command_time(cmd_time);
// Assert SYNC
ubx_gpio_field_info_t lo1_field_info = _gpio_map.find(dir == TX_DIRECTION ? TXLO1_SYNC : RXLO1_SYNC)->second;
ubx_gpio_field_info_t lo2_field_info = _gpio_map.find(dir == TX_DIRECTION ? TXLO2_SYNC : RXLO2_SYNC)->second;
uint16_t value = (1 << lo1_field_info.offset) | (1 << lo2_field_info.offset);
uint16_t mask = lo1_field_info.mask | lo2_field_info.mask;
dboard_iface::unit_t unit = lo1_field_info.unit;
UHD_ASSERT_THROW(lo1_field_info.unit == lo2_field_info.unit);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_IDLE, value, mask);
cmd_time += uhd::time_spec_t(1/pfd_freq);
_iface->set_command_time(cmd_time);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_TX_ONLY, value, mask);
cmd_time += uhd::time_spec_t(1/pfd_freq);
_iface->set_command_time(cmd_time);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_RX_ONLY, value, mask);
cmd_time += uhd::time_spec_t(1/pfd_freq);
_iface->set_command_time(cmd_time);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_FULL_DUPLEX, value, mask);
// De-assert SYNC
// Head of line blocking means the command time does not need to be set.
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_IDLE, 0, mask);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_TX_ONLY, 0, mask);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_RX_ONLY, 0, mask);
_iface->set_atr_reg(unit, gpio_atr::ATR_REG_FULL_DUPLEX, 0, mask);
}
}
/***********************************************************************
* Board Control Handling
**********************************************************************/
sensor_value_t get_locked(const std::string &pll_name)
{
boost::mutex::scoped_lock lock(_mutex);
assert_has(ubx_plls, pll_name, "ubx pll name");
if(pll_name == "TXLO")
{
_txlo_locked = (get_gpio_field(TX_LO_LOCKED) != 0);
return sensor_value_t("TXLO", _txlo_locked, "locked", "unlocked");
}
else if(pll_name == "RXLO")
{
_rxlo_locked = (get_gpio_field(RX_LO_LOCKED) != 0);
return sensor_value_t("RXLO", _rxlo_locked, "locked", "unlocked");
}
return sensor_value_t("Unknown", false, "locked", "unlocked");
}
std::string set_tx_ant(const std::string &ant)
{
//validate input
assert_has(ubx_tx_antennas, ant, "ubx tx antenna name");
set_cpld_field(CAL_ENABLE, (ant == "CAL"));
write_cpld_reg();
return ant;
}
// Set RX antennas
std::string set_rx_ant(const std::string &ant)
{
boost::mutex::scoped_lock lock(_mutex);
//validate input
assert_has(ubx_rx_antennas, ant, "ubx rx antenna name");
// There can be long transients on TX, so force on the TX PA
// except when in powersave mode (to save power) or on early
// boards that had lower TX-RX isolation when the RX antenna
// is set to TX/RX (to prevent higher noise floor on RX).
// Setting the xcvr_mode to TDD will force on the PA when
// not in powersave mode regardless of the board revision.
if (ant == "TX/RX")
{
set_gpio_field(RX_ANT, 0);
// Force on TX PA for boards with high isolation or if the user sets the TDD mode
set_cpld_field(TXDRV_FORCEON, (_power_mode == POWERSAVE ? 0 : _high_isolation or _xcvr_mode == TDD ? 1 : 0));
} else {
set_gpio_field(RX_ANT, 1);
set_cpld_field(TXDRV_FORCEON, (_power_mode == POWERSAVE ? 0 : 1)); // Keep PA on
}
write_gpio();
write_cpld_reg();
return ant;
}
/***********************************************************************
* Gain Handling
**********************************************************************/
double set_tx_gain(double gain)
{
boost::mutex::scoped_lock lock(_mutex);
gain = ubx_tx_gain_range.clip(gain);
int attn_code = int(std::floor(gain * 2));
_ubx_tx_atten_val = ((attn_code & 0x3F) << 10);
set_gpio_field(TX_GAIN, attn_code);
write_gpio();
UHD_LOGGER_TRACE("UBX") << boost::format("UBX TX Gain: %f dB, Code: %d, IO Bits 0x%04x") % gain % attn_code % _ubx_tx_atten_val ;
_tx_gain = gain;
return gain;
}
double set_rx_gain(double gain)
{
boost::mutex::scoped_lock lock(_mutex);
gain = ubx_rx_gain_range.clip(gain);
int attn_code = int(std::floor(gain * 2));
_ubx_rx_atten_val = ((attn_code & 0x3F) << 10);
set_gpio_field(RX_GAIN, attn_code);
write_gpio();
UHD_LOGGER_TRACE("UBX") << boost::format("UBX RX Gain: %f dB, Code: %d, IO Bits 0x%04x") % gain % attn_code % _ubx_rx_atten_val ;
_rx_gain = gain;
return gain;
}
/***********************************************************************
* Frequency Handling
**********************************************************************/
double set_tx_freq(double freq)
{
boost::mutex::scoped_lock lock(_mutex);
double freq_lo1 = 0.0;
double freq_lo2 = 0.0;
double ref_freq = _iface->get_clock_rate(dboard_iface::UNIT_TX);
bool is_int_n = false;
/*
* If the user sets 'mode_n=integer' in the tuning args, the user wishes to
* tune in Integer-N mode, which can result in better spur
* performance on some mixers. The default is fractional tuning.
*/
property_tree::sptr subtree = this->get_tx_subtree();
device_addr_t tune_args = subtree->access<device_addr_t>("tune_args").get();
is_int_n = boost::iequals(tune_args.get("mode_n",""), "integer");
UHD_LOGGER_TRACE("UBX") << boost::format("UBX TX: the requested frequency is %f MHz") % (freq/1e6) ;
double target_pfd_freq = _tx_target_pfd_freq;
if (is_int_n and tune_args.has_key("int_n_step"))
{
target_pfd_freq = tune_args.cast<double>("int_n_step", _tx_target_pfd_freq);
if (target_pfd_freq > _tx_target_pfd_freq)
{
UHD_LOGGER_WARNING("UBX")
<< boost::format("Requested int_n_step of %f MHz too large, clipping to %f MHz")
% (target_pfd_freq/1e6)
% (_tx_target_pfd_freq/1e6)
;
target_pfd_freq = _tx_target_pfd_freq;
}
}
// Clip the frequency to the valid range
freq = ubx_freq_range.clip(freq);
// Power up/down LOs
if (_txlo1->is_shutdown())
_txlo1->power_up();
if (_txlo2->is_shutdown() and (_power_mode == PERFORMANCE or freq < (500*fMHz)))
_txlo2->power_up();
else if (freq >= 500*fMHz and _power_mode == POWERSAVE)
_txlo2->shutdown();
// Set up LOs for phase sync if command time is set
uhd::time_spec_t cmd_time = _iface->get_command_time();
if (cmd_time != uhd::time_spec_t(0.0))
{
_txlo1->config_for_sync(true);
if (not _txlo2->is_shutdown())
_txlo2->config_for_sync(true);
}
else
{
_txlo1->config_for_sync(false);
if (not _txlo2->is_shutdown())
_txlo2->config_for_sync(false);
}
// Set up registers for the requested frequency
if (freq < (500*fMHz))
{
set_cpld_field(TXLO1_FSEL3, 0);
set_cpld_field(TXLO1_FSEL2, 1);
set_cpld_field(TXLO1_FSEL1, 0);
set_cpld_field(TXLB_SEL, 1);
set_cpld_field(TXHB_SEL, 0);
// Set LO1 to IF of 2100 MHz (offset from RX IF to reduce leakage)
freq_lo1 = _txlo1->set_frequency(2100*fMHz, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
// Set LO2 to IF minus desired frequency
freq_lo2 = _txlo2->set_frequency(freq_lo1 - freq, ref_freq, target_pfd_freq, is_int_n);
_txlo2->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
}
else if ((freq >= (500*fMHz)) && (freq <= (800*fMHz)))
{
set_cpld_field(TXLO1_FSEL3, 0);
set_cpld_field(TXLO1_FSEL2, 0);
set_cpld_field(TXLO1_FSEL1, 1);
set_cpld_field(TXLB_SEL, 0);
set_cpld_field(TXHB_SEL, 1);
freq_lo1 = _txlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
}
else if ((freq > (800*fMHz)) && (freq <= (1000*fMHz)))
{
set_cpld_field(TXLO1_FSEL3, 0);
set_cpld_field(TXLO1_FSEL2, 0);
set_cpld_field(TXLO1_FSEL1, 1);
set_cpld_field(TXLB_SEL, 0);
set_cpld_field(TXHB_SEL, 1);
freq_lo1 = _txlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
}
else if ((freq > (1000*fMHz)) && (freq <= (2200*fMHz)))
{
set_cpld_field(TXLO1_FSEL3, 0);
set_cpld_field(TXLO1_FSEL2, 1);
set_cpld_field(TXLO1_FSEL1, 0);
set_cpld_field(TXLB_SEL, 0);
set_cpld_field(TXHB_SEL, 1);
freq_lo1 = _txlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
}
else if ((freq > (2200*fMHz)) && (freq <= (2500*fMHz)))
{
set_cpld_field(TXLO1_FSEL3, 0);
set_cpld_field(TXLO1_FSEL2, 1);
set_cpld_field(TXLO1_FSEL1, 0);
set_cpld_field(TXLB_SEL, 0);
set_cpld_field(TXHB_SEL, 1);
freq_lo1 = _txlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
}
else if ((freq > (2500*fMHz)) && (freq <= (6000*fMHz)))
{
set_cpld_field(TXLO1_FSEL3, 1);
set_cpld_field(TXLO1_FSEL2, 0);
set_cpld_field(TXLO1_FSEL1, 0);
set_cpld_field(TXLB_SEL, 0);
set_cpld_field(TXHB_SEL, 1);
freq_lo1 = _txlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_txlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
}
// To reduce the number of commands issued to the device, write to the
// SPI destination already addressed first. This avoids the writes to
// the GPIO registers to route the SPI to the same destination.
switch (get_gpio_field(SPI_ADDR))
{
case TXLO1:
_txlo1->commit();
if (freq < (500*fMHz)) _txlo2->commit();
write_cpld_reg();
break;
case TXLO2:
if (freq < (500*fMHz)) _txlo2->commit();
_txlo1->commit();
write_cpld_reg();
break;
default:
write_cpld_reg();
_txlo1->commit();
if (freq < (500*fMHz)) _txlo2->commit();
break;
}
if (cmd_time != uhd::time_spec_t(0.0) and _txlo1->can_sync())
{
sync_phase(cmd_time, TX_DIRECTION);
}
_tx_freq = freq_lo1 - freq_lo2;
_txlo1_freq = freq_lo1;
_txlo2_freq = freq_lo2;
UHD_LOGGER_TRACE("UBX") << boost::format("UBX TX: the actual frequency is %f MHz") % (_tx_freq/1e6) ;
return _tx_freq;
}
double set_rx_freq(double freq)
{
boost::mutex::scoped_lock lock(_mutex);
double freq_lo1 = 0.0;
double freq_lo2 = 0.0;
double ref_freq = _iface->get_clock_rate(dboard_iface::UNIT_RX);
bool is_int_n = false;
UHD_LOGGER_TRACE("UBX") << boost::format("UBX RX: the requested frequency is %f MHz") % (freq/1e6) ;
property_tree::sptr subtree = this->get_rx_subtree();
device_addr_t tune_args = subtree->access<device_addr_t>("tune_args").get();
is_int_n = boost::iequals(tune_args.get("mode_n",""), "integer");
double target_pfd_freq = _rx_target_pfd_freq;
if (is_int_n and tune_args.has_key("int_n_step"))
{
target_pfd_freq = tune_args.cast<double>("int_n_step", _rx_target_pfd_freq);
if (target_pfd_freq > _rx_target_pfd_freq)
{
UHD_LOGGER_WARNING("UBX")
<< boost::format("Requested int_n_step of %f Mhz too large, clipping to %f MHz")
% (target_pfd_freq/1e6)
% (_rx_target_pfd_freq/1e6)
;
target_pfd_freq = _rx_target_pfd_freq;
}
}
// Clip the frequency to the valid range
freq = ubx_freq_range.clip(freq);
// Power up/down LOs
if (_rxlo1->is_shutdown())
_rxlo1->power_up();
if (_rxlo2->is_shutdown() and (_power_mode == PERFORMANCE or freq < 500*fMHz))
_rxlo2->power_up();
else if (freq >= 500*fMHz and _power_mode == POWERSAVE)
_rxlo2->shutdown();
// Set up LOs for phase sync if command time is set
uhd::time_spec_t cmd_time = _iface->get_command_time();
if (cmd_time != uhd::time_spec_t(0.0))
{
_rxlo1->config_for_sync(true);
if (not _rxlo2->is_shutdown())
_rxlo2->config_for_sync(true);
}
else
{
_rxlo1->config_for_sync(false);
if (not _rxlo2->is_shutdown())
_rxlo2->config_for_sync(false);
}
// Work with frequencies
if (freq < 100*fMHz)
{
set_cpld_field(SEL_LNA1, 0);
set_cpld_field(SEL_LNA2, 1);
set_cpld_field(RXLO1_FSEL3, 1);
set_cpld_field(RXLO1_FSEL2, 0);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 1);
set_cpld_field(RXHB_SEL, 0);
// Set LO1 to IF of 2380 MHz (2440 MHz filter center minus 60 MHz offset to minimize LO leakage)
freq_lo1 = _rxlo1->set_frequency(2380*fMHz, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
// Set LO2 to IF minus desired frequency
freq_lo2 = _rxlo2->set_frequency(freq_lo1 - freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo2->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
}
else if ((freq >= 100*fMHz) && (freq < 500*fMHz))
{
set_cpld_field(SEL_LNA1, 0);
set_cpld_field(SEL_LNA2, 1);
set_cpld_field(RXLO1_FSEL3, 1);
set_cpld_field(RXLO1_FSEL2, 0);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 1);
set_cpld_field(RXHB_SEL, 0);
// Set LO1 to IF of 2440 (center of filter)
freq_lo1 = _rxlo1->set_frequency(2440*fMHz, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
// Set LO2 to IF minus desired frequency
freq_lo2 = _rxlo2->set_frequency(freq_lo1 - freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
}
else if ((freq >= 500*fMHz) && (freq < 800*fMHz))
{
set_cpld_field(SEL_LNA1, 0);
set_cpld_field(SEL_LNA2, 1);
set_cpld_field(RXLO1_FSEL3, 0);
set_cpld_field(RXLO1_FSEL2, 0);
set_cpld_field(RXLO1_FSEL1, 1);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
}
else if ((freq >= 800*fMHz) && (freq < 1000*fMHz))
{
set_cpld_field(SEL_LNA1, 0);
set_cpld_field(SEL_LNA2, 1);
set_cpld_field(RXLO1_FSEL3, 0);
set_cpld_field(RXLO1_FSEL2, 0);
set_cpld_field(RXLO1_FSEL1, 1);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
}
else if ((freq >= 1000*fMHz) && (freq < 1500*fMHz))
{
set_cpld_field(SEL_LNA1, 0);
set_cpld_field(SEL_LNA2, 1);
set_cpld_field(RXLO1_FSEL3, 0);
set_cpld_field(RXLO1_FSEL2, 1);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
}
else if ((freq >= 1500*fMHz) && (freq < 2200*fMHz))
{
set_cpld_field(SEL_LNA1, 1);
set_cpld_field(SEL_LNA2, 0);
set_cpld_field(RXLO1_FSEL3, 0);
set_cpld_field(RXLO1_FSEL2, 1);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
}
else if ((freq >= 2200*fMHz) && (freq < 2500*fMHz))
{
set_cpld_field(SEL_LNA1, 1);
set_cpld_field(SEL_LNA2, 0);
set_cpld_field(RXLO1_FSEL3, 0);
set_cpld_field(RXLO1_FSEL2, 1);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_2DBM);
}
else if ((freq >= 2500*fMHz) && (freq <= 6000*fMHz))
{
set_cpld_field(SEL_LNA1, 1);
set_cpld_field(SEL_LNA2, 0);
set_cpld_field(RXLO1_FSEL3, 1);
set_cpld_field(RXLO1_FSEL2, 0);
set_cpld_field(RXLO1_FSEL1, 0);
set_cpld_field(RXLB_SEL, 0);
set_cpld_field(RXHB_SEL, 1);
freq_lo1 = _rxlo1->set_frequency(freq, ref_freq, target_pfd_freq, is_int_n);
_rxlo1->set_output_power(max287x_iface::OUTPUT_POWER_5DBM);
}
// To reduce the number of commands issued to the device, write to the
// SPI destination already addressed first. This avoids the writes to
// the GPIO registers to route the SPI to the same destination.
switch (get_gpio_field(SPI_ADDR))
{
case RXLO1:
_rxlo1->commit();
if (freq < (500*fMHz)) _rxlo2->commit();
write_cpld_reg();
break;
case RXLO2:
if (freq < (500*fMHz)) _rxlo2->commit();
_rxlo1->commit();
write_cpld_reg();
break;
default:
write_cpld_reg();
_rxlo1->commit();
if (freq < (500*fMHz)) _rxlo2->commit();
break;
}
if (cmd_time != uhd::time_spec_t(0.0) and _rxlo1->can_sync())
{
sync_phase(cmd_time, RX_DIRECTION);
}
_rx_freq = freq_lo1 - freq_lo2;
_rxlo1_freq = freq_lo1;
_rxlo2_freq = freq_lo2;
UHD_LOGGER_TRACE("UBX") << boost::format("UBX RX: the actual frequency is %f MHz") % (_rx_freq/1e6) ;
return _rx_freq;
}
/***********************************************************************
* Setting Modes
**********************************************************************/
void set_power_mode(std::string mode)
{
boost::mutex::scoped_lock lock(_mutex);
if (mode == "performance")
{
// performance mode attempts to reduce tuning and settling time
// as much as possible without adding noise.
// RXLNA2 has a ~100ms warm up time, so the LNAs are forced on
// here to reduce the settling time as much as possible. The
// force on signals are gated by the LNA selection so the LNAs
// are turned on/off during tuning. Unfortunately, that means
// there is still a long settling time when tuning from the high
// band (>1.5 GHz) to the low band (<1.5 GHz).
set_cpld_field(RXLNA1_FORCEON, 1);
set_cpld_field(RXLNA2_FORCEON, 1);
// Placeholders in case some components need to be forced on to
// reduce settling time. Note that some FORCEON lines are still gated
// by other bits in the CPLD register and are asserted during
// frequency tuning.
set_cpld_field(RXAMP_FORCEON, 1);
set_cpld_field(RXDEMOD_FORCEON, 1);
set_cpld_field(RXDRV_FORCEON, 1);
set_cpld_field(RXMIXER_FORCEON, 0);
set_cpld_field(RXLO1_FORCEON, 1);
set_cpld_field(RXLO2_FORCEON, 1);
/*
//set_cpld_field(TXDRV_FORCEON, 1); // controlled by RX antenna selection
set_cpld_field(TXMOD_FORCEON, 0);
set_cpld_field(TXMIXER_FORCEON, 0);
set_cpld_field(TXLO1_FORCEON, 0);
set_cpld_field(TXLO2_FORCEON, 0);
*/
write_cpld_reg();
_power_mode = PERFORMANCE;
}
else if (mode == "powersave")
{
// powersave mode attempts to use the least amount of power possible
// by powering on components only when needed. Longer tuning and
// settling times are expected.
// Clear the LNA force on bits.
set_cpld_field(RXLNA1_FORCEON, 0);
set_cpld_field(RXLNA2_FORCEON, 0);
/*
// Placeholders in case other force on bits need to be set or cleared.
set_cpld_field(RXAMP_FORCEON, 0);
set_cpld_field(RXDEMOD_FORCEON, 0);
set_cpld_field(RXDRV_FORCEON, 0);
set_cpld_field(RXMIXER_FORCEON, 0);
set_cpld_field(RXLO1_FORCEON, 0);
set_cpld_field(RXLO2_FORCEON, 0);
//set_cpld_field(TXDRV_FORCEON, 1); // controlled by RX antenna selection
set_cpld_field(TXMOD_FORCEON, 0);
set_cpld_field(TXMIXER_FORCEON, 0);
set_cpld_field(TXLO1_FORCEON, 0);
set_cpld_field(TXLO2_FORCEON, 0);
*/
write_cpld_reg();
_power_mode = POWERSAVE;
}
}
void set_xcvr_mode(std::string mode)
{
// TO DO: Add implementation
// The intent is to add behavior based on whether
// the board is in TX, RX, or full duplex mode
// to reduce power consumption and RF noise.
boost::to_upper(mode);
if (mode == "FDX")
{
_xcvr_mode = FDX;
}
else if (mode == "TDD")
{
_xcvr_mode = TDD;
set_cpld_field(TXDRV_FORCEON, 1);
write_cpld_reg();
}
else if (mode == "TX")
{
_xcvr_mode = TX;
}
else if (mode == "RX")
{
_xcvr_mode = RX;
}
else
{
throw uhd::value_error("invalid xcvr_mode");
}
}
void set_sync_delay(bool is_tx, int64_t value)
{
if (is_tx)
_tx_sync_delay = value;
else
_rx_sync_delay = value;
}
/***********************************************************************
* Variables
**********************************************************************/
dboard_iface::sptr _iface;
boost::mutex _spi_mutex;
boost::mutex _mutex;
ubx_cpld_reg_t _cpld_reg;
uint32_t _prev_cpld_value;
std::map<ubx_gpio_field_id_t,ubx_gpio_field_info_t> _gpio_map;
boost::shared_ptr<max287x_iface> _txlo1;
boost::shared_ptr<max287x_iface> _txlo2;
boost::shared_ptr<max287x_iface> _rxlo1;
boost::shared_ptr<max287x_iface> _rxlo2;
double _tx_target_pfd_freq;
double _rx_target_pfd_freq;
double _tx_gain;
double _rx_gain;
double _tx_freq;
double _txlo1_freq;
double _txlo2_freq;
double _rx_freq;
double _rxlo1_freq;
double _rxlo2_freq;
bool _rxlo_locked;
bool _txlo_locked;
std::string _rx_ant;
int _ubx_tx_atten_val;
int _ubx_rx_atten_val;
power_mode_t _power_mode;
xcvr_mode_t _xcvr_mode;
size_t _rev;
ubx_gpio_reg_t _tx_gpio_reg;
ubx_gpio_reg_t _rx_gpio_reg;
int64_t _tx_sync_delay;
int64_t _rx_sync_delay;
bool _high_isolation;
};
/***********************************************************************
* Register the UBX dboard (min freq, max freq, rx div2, tx div2)
**********************************************************************/
static dboard_base::sptr make_ubx(dboard_base::ctor_args_t args)
{
return dboard_base::sptr(new ubx_xcvr(args));
}
UHD_STATIC_BLOCK(reg_ubx_dboards)
{
dboard_manager::register_dboard(UBX_PROTO_V3_RX_ID, UBX_PROTO_V3_TX_ID, &make_ubx, "UBX v0.3");
dboard_manager::register_dboard(UBX_PROTO_V4_RX_ID, UBX_PROTO_V4_TX_ID, &make_ubx, "UBX v0.4");
dboard_manager::register_dboard(UBX_V1_40MHZ_RX_ID, UBX_V1_40MHZ_TX_ID, &make_ubx, "UBX-40 v1");
dboard_manager::register_dboard(UBX_V1_160MHZ_RX_ID, UBX_V1_160MHZ_TX_ID, &make_ubx, "UBX-160 v1");
dboard_manager::register_dboard(UBX_V2_40MHZ_RX_ID, UBX_V2_40MHZ_TX_ID, &make_ubx, "UBX-40 v2");
dboard_manager::register_dboard(UBX_V2_160MHZ_RX_ID, UBX_V2_160MHZ_TX_ID, &make_ubx, "UBX-160 v2");
dboard_manager::register_dboard(UBX_LP_160MHZ_RX_ID, UBX_LP_160MHZ_TX_ID, &make_ubx, "UBX-160-LP");
dboard_manager::register_dboard(UBX_TDD_160MHZ_RX_ID, UBX_TDD_160MHZ_TX_ID, &make_ubx, "UBX-TDD");
}
|