1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
|
//
// Copyright 2011-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "db_sbx_common.hpp"
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* ADF 4350/4351 Tuning Utility
**********************************************************************/
sbx_xcvr::sbx_versionx::adf435x_tuning_settings sbx_xcvr::sbx_versionx::_tune_adf435x_synth(
double target_freq,
double ref_freq,
const adf435x_tuning_constraints& constraints,
double& actual_freq)
{
//Default invalid value for actual_freq
actual_freq = 0;
double pfd_freq = 0;
boost::uint16_t R = 0, BS = 0, N = 0, FRAC = 0, MOD = 0;
boost::uint16_t RFdiv = static_cast<boost::uint16_t>(constraints.rf_divider_range.start());
bool D = false, T = false;
//Reference doubler for 50% duty cycle
//If ref_freq < 12.5MHz enable the reference doubler
D = (ref_freq <= constraints.ref_doubler_threshold);
static const double MIN_VCO_FREQ = 2.2e9;
static const double MAX_VCO_FREQ = 4.4e9;
//increase RF divider until acceptable VCO frequency
double vco_freq = target_freq;
while (vco_freq < MIN_VCO_FREQ && RFdiv < static_cast<boost::uint16_t>(constraints.rf_divider_range.stop())) {
vco_freq *= 2;
RFdiv *= 2;
}
/*
* The goal here is to loop though possible R dividers,
* band select clock dividers, N (int) dividers, and FRAC
* (frac) dividers.
*
* Calculate the N and F dividers for each set of values.
* The loop exits when it meets all of the constraints.
* The resulting loop values are loaded into the registers.
*
* from pg.21
*
* f_pfd = f_ref*(1+D)/(R*(1+T))
* f_vco = (N + (FRAC/MOD))*f_pfd
* N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD
* f_rf = f_vco/RFdiv)
* f_actual = f_rf/2
*/
for(R = 1; R <= 1023; R+=1){
//PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T)
pfd_freq = ref_freq*(D?2:1)/(R*(T?2:1));
//keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth)
if (pfd_freq > constraints.pfd_freq_max) continue;
//ignore fractional part of tuning
//N is computed from target_freq and not vco_freq because the feedback
//mode is set to FEEDBACK_SELECT_DIVIDED
N = boost::uint16_t(std::floor(target_freq/pfd_freq));
//keep N > minimum int divider requirement
if (N < static_cast<boost::uint16_t>(constraints.int_range.start())) continue;
for(BS=1; BS <= 255; BS+=1){
//keep the band select frequency at or below band_sel_freq_max
//constraint on band select clock
if (pfd_freq/BS > constraints.band_sel_freq_max) continue;
goto done_loop;
}
} done_loop:
//Fractional-N calculation
MOD = 4095; //max fractional accuracy
//N is computed from target_freq and not vco_freq because the feedback
//mode is set to FEEDBACK_SELECT_DIVIDED
FRAC = static_cast<boost::uint16_t>((target_freq/pfd_freq - N)*MOD);
if (constraints.force_frac0) {
if (FRAC > (MOD / 2)) { //Round integer such that actual freq is closest to target
N++;
}
FRAC = 0;
}
//Reference divide-by-2 for 50% duty cycle
// if R even, move one divide by 2 to to regs.reference_divide_by_2
if(R % 2 == 0) {
T = true;
R /= 2;
}
//Typical phase resync time documented in data sheet pg.24
static const double PHASE_RESYNC_TIME = 400e-6;
//actual frequency calculation
actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(D?2:1)/(R*(T?2:1)));
//load the settings
adf435x_tuning_settings settings;
settings.frac_12_bit = FRAC;
settings.int_16_bit = N;
settings.mod_12_bit = MOD;
settings.clock_divider_12_bit = std::max<boost::uint16_t>(1, std::ceil(PHASE_RESYNC_TIME*pfd_freq/MOD));
settings.r_counter_10_bit = R;
settings.r_divide_by_2_en = T;
settings.r_doubler_en = D;
settings.band_select_clock_div = BS;
settings.rf_divider = RFdiv;
settings.feedback_after_divider = true;
UHD_LOGV(often)
<< boost::format("ADF 435X Frequencies (MHz): REQUESTED=%0.9f, ACTUAL=%0.9f"
) % (target_freq/1e6) % (actual_freq/1e6) << std::endl
<< boost::format("ADF 435X Intermediates (MHz): VCO=%0.2f, PFD=%0.2f, BAND=%0.2f, REF=%0.2f"
) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) % (ref_freq/1e6) << std::endl
<< boost::format("ADF 435X Settings: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d"
) % R % BS % N % FRAC % MOD % T % D % RFdiv << std::endl;
UHD_ASSERT_THROW((settings.frac_12_bit & ((boost::uint16_t)~0xFFF)) == 0);
UHD_ASSERT_THROW((settings.mod_12_bit & ((boost::uint16_t)~0xFFF)) == 0);
UHD_ASSERT_THROW((settings.clock_divider_12_bit & ((boost::uint16_t)~0xFFF)) == 0);
UHD_ASSERT_THROW((settings.r_counter_10_bit & ((boost::uint16_t)~0x3FF)) == 0);
UHD_ASSERT_THROW(vco_freq >= MIN_VCO_FREQ and vco_freq <= MAX_VCO_FREQ);
UHD_ASSERT_THROW(settings.rf_divider >= static_cast<boost::uint16_t>(constraints.rf_divider_range.start()));
UHD_ASSERT_THROW(settings.rf_divider <= static_cast<boost::uint16_t>(constraints.rf_divider_range.stop()));
UHD_ASSERT_THROW(settings.int_16_bit >= static_cast<boost::uint16_t>(constraints.int_range.start()));
UHD_ASSERT_THROW(settings.int_16_bit <= static_cast<boost::uint16_t>(constraints.int_range.stop()));
return settings;
}
/***********************************************************************
* Register the SBX dboard (min freq, max freq, rx div2, tx div2)
**********************************************************************/
static dboard_base::sptr make_sbx(dboard_base::ctor_args_t args){
return dboard_base::sptr(new sbx_xcvr(args));
}
UHD_STATIC_BLOCK(reg_sbx_dboards){
dboard_manager::register_dboard(0x0054, 0x0055, &make_sbx, "SBX");
dboard_manager::register_dboard(0x0065, 0x0064, &make_sbx, "SBX v4");
dboard_manager::register_dboard(0x0067, 0x0066, &make_sbx, "CBX");
}
/***********************************************************************
* Gain Handling
**********************************************************************/
static int rx_pga0_gain_to_iobits(double &gain){
//clip the input
gain = sbx_rx_gain_ranges["PGA0"].clip(gain);
//convert to attenuation and update iobits for atr
double attn = sbx_rx_gain_ranges["PGA0"].stop() - gain;
//calculate the RX attenuation
int attn_code = int(floor(attn*2));
int iobits = ((~attn_code) << RX_ATTN_SHIFT) & RX_ATTN_MASK;
UHD_LOGV(often) << boost::format(
"SBX TX Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x"
) % attn % attn_code % (iobits & RX_ATTN_MASK) % RX_ATTN_MASK << std::endl;
//the actual gain setting
gain = sbx_rx_gain_ranges["PGA0"].stop() - double(attn_code)/2;
return iobits;
}
static int tx_pga0_gain_to_iobits(double &gain){
//clip the input
gain = sbx_tx_gain_ranges["PGA0"].clip(gain);
//convert to attenuation and update iobits for atr
double attn = sbx_tx_gain_ranges["PGA0"].stop() - gain;
//calculate the TX attenuation
int attn_code = int(floor(attn*2));
int iobits = ((~attn_code) << TX_ATTN_SHIFT) & TX_ATTN_MASK;
UHD_LOGV(often) << boost::format(
"SBX TX Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x"
) % attn % attn_code % (iobits & TX_ATTN_MASK) % TX_ATTN_MASK << std::endl;
//the actual gain setting
gain = sbx_tx_gain_ranges["PGA0"].stop() - double(attn_code)/2;
return iobits;
}
double sbx_xcvr::set_tx_gain(double gain, const std::string &name){
assert_has(sbx_tx_gain_ranges.keys(), name, "sbx tx gain name");
if(name == "PGA0"){
tx_pga0_gain_to_iobits(gain);
_tx_gains[name] = gain;
//write the new gain to atr regs
update_atr();
}
else UHD_THROW_INVALID_CODE_PATH();
return _tx_gains[name];
}
double sbx_xcvr::set_rx_gain(double gain, const std::string &name){
assert_has(sbx_rx_gain_ranges.keys(), name, "sbx rx gain name");
if(name == "PGA0"){
rx_pga0_gain_to_iobits(gain);
_rx_gains[name] = gain;
//write the new gain to atr regs
update_atr();
}
else UHD_THROW_INVALID_CODE_PATH();
return _rx_gains[name];
}
/***********************************************************************
* Structors
**********************************************************************/
sbx_xcvr::sbx_xcvr(ctor_args_t args) : xcvr_dboard_base(args){
switch(get_rx_id().to_uint16()) {
case 0x054:
db_actual = sbx_versionx_sptr(new sbx_version3(this));
freq_range = sbx_freq_range;
break;
case 0x065:
db_actual = sbx_versionx_sptr(new sbx_version4(this));
freq_range = sbx_freq_range;
break;
case 0x067:
db_actual = sbx_versionx_sptr(new cbx(this));
freq_range = cbx_freq_range;
break;
default:
/* We didn't recognize the version of the board... */
UHD_THROW_INVALID_CODE_PATH();
}
////////////////////////////////////////////////////////////////////
// Register RX properties
////////////////////////////////////////////////////////////////////
if(get_rx_id() == 0x054) this->get_rx_subtree()->create<std::string>("name").set("SBXv3 RX");
else if(get_rx_id() == 0x065) this->get_rx_subtree()->create<std::string>("name").set("SBXv4 RX");
else if(get_rx_id() == 0x067) this->get_rx_subtree()->create<std::string>("name").set("CBX RX");
else this->get_rx_subtree()->create<std::string>("name").set("SBX/CBX RX");
this->get_rx_subtree()->create<sensor_value_t>("sensors/lo_locked")
.publish(boost::bind(&sbx_xcvr::get_locked, this, dboard_iface::UNIT_RX));
BOOST_FOREACH(const std::string &name, sbx_rx_gain_ranges.keys()){
this->get_rx_subtree()->create<double>("gains/"+name+"/value")
.coerce(boost::bind(&sbx_xcvr::set_rx_gain, this, _1, name))
.set(sbx_rx_gain_ranges[name].start());
this->get_rx_subtree()->create<meta_range_t>("gains/"+name+"/range")
.set(sbx_rx_gain_ranges[name]);
}
this->get_rx_subtree()->create<double>("freq/value")
.coerce(boost::bind(&sbx_xcvr::set_lo_freq, this, dboard_iface::UNIT_RX, _1))
.set((freq_range.start() + freq_range.stop())/2.0);
this->get_rx_subtree()->create<meta_range_t>("freq/range").set(freq_range);
this->get_rx_subtree()->create<std::string>("antenna/value")
.subscribe(boost::bind(&sbx_xcvr::set_rx_ant, this, _1))
.set("RX2");
this->get_rx_subtree()->create<std::vector<std::string> >("antenna/options")
.set(sbx_rx_antennas);
this->get_rx_subtree()->create<std::string>("connection").set("IQ");
this->get_rx_subtree()->create<bool>("enabled").set(true); //always enabled
this->get_rx_subtree()->create<bool>("use_lo_offset").set(false);
this->get_rx_subtree()->create<double>("bandwidth/value").set(2*20.0e6); //20MHz low-pass, we want complex double-sided
this->get_rx_subtree()->create<meta_range_t>("bandwidth/range")
.set(freq_range_t(2*20.0e6, 2*20.0e6));
////////////////////////////////////////////////////////////////////
// Register TX properties
////////////////////////////////////////////////////////////////////
if(get_tx_id() == 0x055) this->get_tx_subtree()->create<std::string>("name").set("SBXv3 TX");
else if(get_tx_id() == 0x064) this->get_tx_subtree()->create<std::string>("name").set("SBXv4 TX");
else if(get_tx_id() == 0x066) this->get_tx_subtree()->create<std::string>("name").set("CBX TX");
else this->get_tx_subtree()->create<std::string>("name").set("SBX/CBX TX");
this->get_tx_subtree()->create<sensor_value_t>("sensors/lo_locked")
.publish(boost::bind(&sbx_xcvr::get_locked, this, dboard_iface::UNIT_TX));
BOOST_FOREACH(const std::string &name, sbx_tx_gain_ranges.keys()){
this->get_tx_subtree()->create<double>("gains/"+name+"/value")
.coerce(boost::bind(&sbx_xcvr::set_tx_gain, this, _1, name))
.set(sbx_tx_gain_ranges[name].start());
this->get_tx_subtree()->create<meta_range_t>("gains/"+name+"/range")
.set(sbx_tx_gain_ranges[name]);
}
this->get_tx_subtree()->create<double>("freq/value")
.coerce(boost::bind(&sbx_xcvr::set_lo_freq, this, dboard_iface::UNIT_TX, _1))
.set((freq_range.start() + freq_range.stop())/2.0);
this->get_tx_subtree()->create<meta_range_t>("freq/range").set(freq_range);
this->get_tx_subtree()->create<std::string>("antenna/value")
.subscribe(boost::bind(&sbx_xcvr::set_tx_ant, this, _1))
.set(sbx_tx_antennas.at(0));
this->get_tx_subtree()->create<std::vector<std::string> >("antenna/options")
.set(sbx_tx_antennas);
this->get_tx_subtree()->create<std::string>("connection").set("QI");
this->get_tx_subtree()->create<bool>("enabled").set(true); //always enabled
this->get_tx_subtree()->create<bool>("use_lo_offset").set(false);
this->get_tx_subtree()->create<double>("bandwidth/value").set(2*20.0e6); //20MHz low-pass, we want complex double-sided
this->get_tx_subtree()->create<meta_range_t>("bandwidth/range")
.set(freq_range_t(2*20.0e6, 2*20.0e6));
//enable the clocks that we need
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true);
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true);
//set the gpio directions and atr controls (identically)
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO));
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO));
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO));
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO));
//flash LEDs
flash_leds();
UHD_LOGV(often) << boost::format(
"SBX GPIO Direction: RX: 0x%08x, TX: 0x%08x"
) % RXIO_MASK % TXIO_MASK << std::endl;
}
sbx_xcvr::~sbx_xcvr(void){
/* NOP */
}
/***********************************************************************
* Antenna Handling
**********************************************************************/
void sbx_xcvr::update_atr(void){
//calculate atr pins
int rx_pga0_iobits = rx_pga0_gain_to_iobits(_rx_gains["PGA0"]);
int tx_pga0_iobits = tx_pga0_gain_to_iobits(_tx_gains["PGA0"]);
int rx_lo_lpf_en = (_rx_lo_freq == sbx_enable_rx_lo_filter.clip(_rx_lo_freq)) ? LO_LPF_EN : 0;
int tx_lo_lpf_en = (_tx_lo_freq == sbx_enable_tx_lo_filter.clip(_tx_lo_freq)) ? LO_LPF_EN : 0;
int rx_ld_led = _rx_lo_lock_cache ? 0 : RX_LED_LD;
int tx_ld_led = _tx_lo_lock_cache ? 0 : TX_LED_LD;
int rx_ant_led = _rx_ant == "TX/RX" ? RX_LED_RX1RX2 : 0;
int tx_ant_led = _tx_ant == "TX/RX" ? 0 : TX_LED_TXRX;
//setup the tx atr (this does not change with antenna)
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \
dboard_iface::ATR_REG_IDLE, 0 | tx_lo_lpf_en \
| tx_ld_led | tx_ant_led | TX_POWER_UP | ANT_XX | TX_MIXER_DIS);
//setup the rx atr (this does not change with antenna)
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \
dboard_iface::ATR_REG_IDLE, rx_pga0_iobits | rx_lo_lpf_en \
| rx_ld_led | rx_ant_led | RX_POWER_UP | ANT_XX | RX_MIXER_DIS);
//set the RX atr regs that change with antenna setting
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \
dboard_iface::ATR_REG_RX_ONLY, rx_pga0_iobits | rx_lo_lpf_en \
| rx_ld_led | rx_ant_led | RX_POWER_UP | RX_MIXER_ENB \
| ((_rx_ant != "RX2")? ANT_TXRX : ANT_RX2));
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \
dboard_iface::ATR_REG_TX_ONLY, rx_pga0_iobits | rx_lo_lpf_en \
| rx_ld_led | rx_ant_led | RX_POWER_UP | RX_MIXER_DIS \
| ((_rx_ant == "CAL")? ANT_TXRX : ANT_RX2));
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, \
dboard_iface::ATR_REG_FULL_DUPLEX, rx_pga0_iobits | rx_lo_lpf_en \
| rx_ld_led | rx_ant_led | RX_POWER_UP | RX_MIXER_ENB \
| ((_rx_ant == "CAL")? ANT_TXRX : ANT_RX2));
//set the TX atr regs that change with antenna setting
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \
dboard_iface::ATR_REG_RX_ONLY, 0 | tx_lo_lpf_en \
| tx_ld_led | tx_ant_led | TX_POWER_UP | TX_MIXER_DIS \
| ((_rx_ant != "RX2")? ANT_RX : ANT_TX));
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \
dboard_iface::ATR_REG_TX_ONLY, tx_pga0_iobits | tx_lo_lpf_en \
| tx_ld_led | tx_ant_led | TX_POWER_UP | TX_MIXER_ENB \
| ((_tx_ant == "CAL")? ANT_RX : ANT_TX));
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, \
dboard_iface::ATR_REG_FULL_DUPLEX, tx_pga0_iobits | tx_lo_lpf_en \
| tx_ld_led | tx_ant_led | TX_POWER_UP | TX_MIXER_ENB \
| ((_tx_ant == "CAL")? ANT_RX : ANT_TX));
}
void sbx_xcvr::set_rx_ant(const std::string &ant){
//validate input
assert_has(sbx_rx_antennas, ant, "sbx rx antenna name");
//shadow the setting
_rx_ant = ant;
//write the new antenna setting to atr regs
update_atr();
}
void sbx_xcvr::set_tx_ant(const std::string &ant){
assert_has(sbx_tx_antennas, ant, "sbx tx antenna name");
//shadow the setting
_tx_ant = ant;
//write the new antenna setting to atr regs
update_atr();
}
/***********************************************************************
* Tuning
**********************************************************************/
double sbx_xcvr::set_lo_freq(dboard_iface::unit_t unit, double target_freq) {
const double actual = db_actual->set_lo_freq(unit, target_freq);
if (unit == dboard_iface::UNIT_RX){
_rx_lo_lock_cache = false;
_rx_lo_freq = actual;
}
if (unit == dboard_iface::UNIT_TX){
_tx_lo_lock_cache = false;
_tx_lo_freq = actual;
}
update_atr();
return actual;
}
sensor_value_t sbx_xcvr::get_locked(dboard_iface::unit_t unit) {
const bool locked = (this->get_iface()->read_gpio(unit) & LOCKDET_MASK) != 0;
if (unit == dboard_iface::UNIT_RX) _rx_lo_lock_cache = locked;
if (unit == dboard_iface::UNIT_TX) _tx_lo_lock_cache = locked;
//write the new lock cache setting to atr regs
update_atr();
return sensor_value_t("LO", locked, "locked", "unlocked");
}
void sbx_xcvr::flash_leds(void) {
//Remove LED gpios from ATR control temporarily and set to outputs
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, TXIO_MASK);
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, RXIO_MASK);
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, (TXIO_MASK|RX_LED_IO));
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_LD, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, \
TX_LED_TXRX|TX_LED_LD, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_LD, RX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, \
RX_LED_RX1RX2|RX_LED_LD, RX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_LD, RX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, 0, RX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_LD, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, 0, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
//Put LED gpios back in ATR control and update atr
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO));
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO));
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO));
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO));
}
|