1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
|
//
// Copyright 2011 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// Common IO Pins
#define LO_LPF_EN (1 << 15)
#define ADF4350_CE (1 << 3)
#define ADF4350_PDBRF (1 << 2)
#define ADF4350_MUXOUT (1 << 1) // INPUT!!!
#define LOCKDET_MASK (1 << 0) // INPUT!!!
// TX IO Pins
#define TRSW (1 << 14) // 0 = TX, 1 = RX
#define TX_LED_TXRX (1 << 7) // LED for TX Antenna Selection TX/RX
#define TX_LED_LD (1 << 6) // LED for TX Lock Detect
#define DIS_POWER_TX (1 << 5) // on UNIT_TX, 0 powers up TX
#define TX_ENABLE (1 << 4) // on UNIT_TX, 0 disables TX Mixer
// RX IO Pins
#define LNASW (1 << 14) // 0 = TX/RX, 1 = RX2
#define RX_LED_RX1RX2 (1 << 7) // LED for RX Antenna Selection RX1/RX2
#define RX_LED_LD (1 << 6) // LED for RX Lock Detect
#define DIS_POWER_RX (1 << 5) // on UNIT_RX, 0 powers up RX
#define RX_DISABLE (1 << 4) // on UNIT_RX, 1 disables RX Mixer and Baseband
// RX Attenuator Pins
#define RX_ATTN_SHIFT 8 // lsb of RX Attenuator Control
#define RX_ATTN_MASK (63 << RX_ATTN_SHIFT) // valid bits of RX Attenuator Control
// TX Attenuator Pins
#define TX_ATTN_SHIFT 8 // lsb of RX Attenuator Control
#define TX_ATTN_MASK (63 << TX_ATTN_SHIFT) // valid bits of RX Attenuator Control
// Mixer functions
#define TX_MIXER_ENB (ADF4350_PDBRF)
#define TX_MIXER_DIS 0
#define RX_MIXER_ENB (ADF4350_PDBRF)
#define RX_MIXER_DIS 0
// Pin functions
#define TX_LED_IO (TX_LED_TXRX|TX_LED_LD) // LED gpio lines, pull down for LED
#define TXIO_MASK (LO_LPF_EN|TRSW|ADF4350_CE|ADF4350_PDBRF|TX_ATTN_MASK|DIS_POWER_TX|TX_ENABLE)
#define RX_LED_IO (RX_LED_RX1RX2|RX_LED_LD) // LED gpio lines, pull down for LED
#define RXIO_MASK (LO_LPF_EN|LNASW|ADF4350_CE|ADF4350_PDBRF|RX_ATTN_MASK|DIS_POWER_RX|RX_DISABLE)
// Power functions
#define TX_POWER_UP (ADF4350_CE|TX_ENABLE)
#define TX_POWER_DOWN (DIS_POWER_TX)
#define RX_POWER_UP (ADF4350_CE)
#define RX_POWER_DOWN (DIS_POWER_RX)
// Antenna constants
#define ANT_TX TRSW //the tx line is transmitting
#define ANT_RX 0 //the tx line is receiving
#define ANT_TXRX 0 //the rx line is on txrx
#define ANT_RX2 LNASW //the rx line in on rx2
#define ANT_XX LNASW //dont care how the antenna is set
#include "adf4350_regs.hpp"
#include <uhd/types/dict.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/utils/msg.hpp>
#include <uhd/usrp/dboard_base.hpp>
#include <uhd/usrp/dboard_manager.hpp>
#include <boost/assign/list_of.hpp>
#include <boost/format.hpp>
#include <boost/math/special_functions/round.hpp>
#include <boost/thread.hpp>
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* The SBX dboard constants
**********************************************************************/
static const freq_range_t sbx_freq_range(68.75e6, 4.4e9);
static const freq_range_t sbx_tx_lo_2dbm = list_of
(range_t(0.35e9, 0.37e9))
;
static const freq_range_t sbx_enable_tx_lo_filter = list_of
(range_t(0.4e9, 1.5e9))
;
static const freq_range_t sbx_enable_rx_lo_filter = list_of
(range_t(0.4e9, 1.5e9))
;
static const prop_names_t sbx_tx_antennas = list_of("TX/RX");
static const prop_names_t sbx_rx_antennas = list_of("TX/RX")("RX2");
static const uhd::dict<std::string, gain_range_t> sbx_tx_gain_ranges = map_list_of
("PGA0", gain_range_t(0, 31.5, double(0.5)))
;
static const uhd::dict<std::string, gain_range_t> sbx_rx_gain_ranges = map_list_of
("PGA0", gain_range_t(0, 31.5, double(0.5)))
;
/***********************************************************************
* The SBX dboard
**********************************************************************/
class sbx_xcvr : public xcvr_dboard_base{
public:
sbx_xcvr(ctor_args_t args);
~sbx_xcvr(void);
void rx_get(const wax::obj &key, wax::obj &val);
void rx_set(const wax::obj &key, const wax::obj &val);
void tx_get(const wax::obj &key, wax::obj &val);
void tx_set(const wax::obj &key, const wax::obj &val);
private:
uhd::dict<std::string, double> _tx_gains, _rx_gains;
double _rx_lo_freq, _tx_lo_freq;
std::string _tx_ant, _rx_ant;
void set_rx_lo_freq(double freq);
void set_tx_lo_freq(double freq);
void set_rx_ant(const std::string &ant);
void set_tx_ant(const std::string &ant);
void set_rx_gain(double gain, const std::string &name);
void set_tx_gain(double gain, const std::string &name);
void update_atr(void);
/*!
* Set the LO frequency for the particular dboard unit.
* \param unit which unit rx or tx
* \param target_freq the desired frequency in Hz
* \return the actual frequency in Hz
*/
double set_lo_freq(dboard_iface::unit_t unit, double target_freq);
/*!
* Get the lock detect status of the LO.
* \param unit which unit rx or tx
* \return true for locked
*/
bool get_locked(dboard_iface::unit_t unit){
return (this->get_iface()->read_gpio(unit) & LOCKDET_MASK) != 0;
}
/*!
* Flash the LEDs
*/
void flash_leds(void) {
//Remove LED gpios from ATR control temporarily and set to outputs
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, TXIO_MASK);
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, RXIO_MASK);
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, (TXIO_MASK|RX_LED_IO));
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO));
/*
//flash All LEDs
for (int i = 0; i < 3; i++) {
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_IO, RX_LED_IO);
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_IO, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, 0, RX_LED_IO);
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, 0, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
}
*/
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_LD, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_TXRX|TX_LED_LD, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_LD, RX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_RX1RX2|RX_LED_LD, RX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_LD, RX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, 0, RX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_LD, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, 0, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
/*
//flash All LEDs
for (int i = 0; i < 3; i++) {
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, 0, RX_LED_IO);
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, 0, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
this->get_iface()->set_gpio_out(dboard_iface::UNIT_RX, RX_LED_IO, RX_LED_IO);
this->get_iface()->set_gpio_out(dboard_iface::UNIT_TX, TX_LED_IO, TX_LED_IO);
boost::this_thread::sleep(boost::posix_time::milliseconds(100));
}
*/
//Put LED gpios back in ATR control and update atr
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO));
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO));
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO));
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO));
}
};
/***********************************************************************
* Register the SBX dboard (min freq, max freq, rx div2, tx div2)
**********************************************************************/
static dboard_base::sptr make_sbx(dboard_base::ctor_args_t args){
return dboard_base::sptr(new sbx_xcvr(args));
}
UHD_STATIC_BLOCK(reg_sbx_dboards){
dboard_manager::register_dboard(0x0054, 0x0055, &make_sbx, "SBX");
}
/***********************************************************************
* Structors
**********************************************************************/
sbx_xcvr::sbx_xcvr(ctor_args_t args) : xcvr_dboard_base(args){
//enable the clocks that we need
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_TX, true);
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true);
//set the gpio directions and atr controls (identically)
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO));
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO));
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_TX, (TXIO_MASK|TX_LED_IO));
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, (RXIO_MASK|RX_LED_IO));
//flash LEDs
flash_leds();
UHD_LOGV(often) << boost::format(
"SBX GPIO Direction: RX: 0x%08x, TX: 0x%08x"
) % RXIO_MASK % TXIO_MASK << std::endl;
//set some default values
set_rx_lo_freq((sbx_freq_range.start() + sbx_freq_range.stop())/2.0);
set_tx_lo_freq((sbx_freq_range.start() + sbx_freq_range.stop())/2.0);
set_rx_ant("RX2");
BOOST_FOREACH(const std::string &name, sbx_tx_gain_ranges.keys()){
set_tx_gain(sbx_tx_gain_ranges[name].start(), name);
}
BOOST_FOREACH(const std::string &name, sbx_rx_gain_ranges.keys()){
set_rx_gain(sbx_rx_gain_ranges[name].start(), name);
}
}
sbx_xcvr::~sbx_xcvr(void){
/* NOP */
}
/***********************************************************************
* Gain Handling
**********************************************************************/
static int rx_pga0_gain_to_iobits(double &gain){
//clip the input
gain = sbx_rx_gain_ranges["PGA0"].clip(gain);
//convert to attenuation and update iobits for atr
double attn = sbx_rx_gain_ranges["PGA0"].stop() - gain;
//calculate the RX attenuation
int attn_code = int(floor(attn*2));
int iobits = ((~attn_code) << RX_ATTN_SHIFT) & RX_ATTN_MASK;
UHD_LOGV(often) << boost::format(
"SBX TX Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x"
) % attn % attn_code % (iobits & RX_ATTN_MASK) % RX_ATTN_MASK << std::endl;
//the actual gain setting
gain = sbx_rx_gain_ranges["PGA0"].stop() - double(attn_code)/2;
return iobits;
}
static int tx_pga0_gain_to_iobits(double &gain){
//clip the input
gain = sbx_tx_gain_ranges["PGA0"].clip(gain);
//convert to attenuation and update iobits for atr
double attn = sbx_tx_gain_ranges["PGA0"].stop() - gain;
//calculate the TX attenuation
int attn_code = int(floor(attn*2));
int iobits = ((~attn_code) << TX_ATTN_SHIFT) & TX_ATTN_MASK;
UHD_LOGV(often) << boost::format(
"SBX TX Attenuation: %f dB, Code: %d, IO Bits %x, Mask: %x"
) % attn % attn_code % (iobits & TX_ATTN_MASK) % TX_ATTN_MASK << std::endl;
//the actual gain setting
gain = sbx_tx_gain_ranges["PGA0"].stop() - double(attn_code)/2;
return iobits;
}
void sbx_xcvr::set_tx_gain(double gain, const std::string &name){
assert_has(sbx_tx_gain_ranges.keys(), name, "sbx tx gain name");
if(name == "PGA0"){
tx_pga0_gain_to_iobits(gain);
_tx_gains[name] = gain;
//write the new gain to atr regs
update_atr();
}
else UHD_THROW_INVALID_CODE_PATH();
}
void sbx_xcvr::set_rx_gain(double gain, const std::string &name){
assert_has(sbx_rx_gain_ranges.keys(), name, "sbx rx gain name");
if(name == "PGA0"){
rx_pga0_gain_to_iobits(gain);
_rx_gains[name] = gain;
//write the new gain to atr regs
update_atr();
}
else UHD_THROW_INVALID_CODE_PATH();
}
/***********************************************************************
* Antenna Handling
**********************************************************************/
void sbx_xcvr::update_atr(void){
//calculate atr pins
int rx_pga0_iobits = rx_pga0_gain_to_iobits(_rx_gains["PGA0"]);
int tx_pga0_iobits = tx_pga0_gain_to_iobits(_tx_gains["PGA0"]);
int rx_lo_lpf_en = (_rx_lo_freq == sbx_enable_rx_lo_filter.clip(_rx_lo_freq)) ? LO_LPF_EN : 0;
int tx_lo_lpf_en = (_tx_lo_freq == sbx_enable_tx_lo_filter.clip(_tx_lo_freq)) ? LO_LPF_EN : 0;
int rx_ld_led = get_locked(dboard_iface::UNIT_RX) ? 0 : RX_LED_LD;
int tx_ld_led = get_locked(dboard_iface::UNIT_TX) ? 0 : TX_LED_LD;
int rx_ant_led = _rx_ant == "TX/RX" ? RX_LED_RX1RX2 : 0;
int tx_ant_led = _rx_ant == "TX/RX" ? 0 : TX_LED_TXRX;
//setup the tx atr (this does not change with antenna)
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_IDLE,
tx_pga0_iobits | tx_lo_lpf_en | tx_ld_led | tx_ant_led | TX_POWER_UP | ANT_XX | TX_MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_TX_ONLY,
tx_pga0_iobits | tx_lo_lpf_en | tx_ld_led | tx_ant_led | TX_POWER_UP | ANT_TX | TX_MIXER_ENB);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_FULL_DUPLEX,
tx_pga0_iobits | tx_lo_lpf_en | tx_ld_led | tx_ant_led | TX_POWER_UP | ANT_TX | TX_MIXER_ENB);
//setup the rx atr (this does not change with antenna)
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_IDLE,
rx_pga0_iobits | rx_lo_lpf_en | rx_ld_led | rx_ant_led | RX_POWER_UP | ANT_XX | RX_MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_TX_ONLY,
rx_pga0_iobits | rx_lo_lpf_en | rx_ld_led | rx_ant_led | RX_POWER_UP | ANT_RX2 | RX_MIXER_DIS);
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_FULL_DUPLEX,
rx_pga0_iobits | rx_lo_lpf_en | rx_ld_led | rx_ant_led | RX_POWER_UP | ANT_RX2 | RX_MIXER_ENB);
//set the atr regs that change with antenna setting
this->get_iface()->set_atr_reg(dboard_iface::UNIT_TX, dboard_iface::ATR_REG_RX_ONLY,
tx_pga0_iobits | tx_lo_lpf_en | tx_ld_led | tx_ant_led | TX_POWER_UP | TX_MIXER_DIS |
((_rx_ant == "TX/RX")? ANT_RX : ANT_TX));
this->get_iface()->set_atr_reg(dboard_iface::UNIT_RX, dboard_iface::ATR_REG_RX_ONLY,
rx_pga0_iobits | rx_lo_lpf_en | rx_ld_led | rx_ant_led | RX_POWER_UP | RX_MIXER_ENB |
((_rx_ant == "TX/RX")? ANT_TXRX : ANT_RX2));
UHD_LOGV(often) << boost::format(
"SBX RXONLY ATR REG: 0x%08x"
) % (rx_pga0_iobits | RX_POWER_UP | RX_MIXER_ENB | ((_rx_ant == "TX/RX")? ANT_TXRX : ANT_RX2)) << std::endl;
}
void sbx_xcvr::set_rx_ant(const std::string &ant){
//validate input
assert_has(sbx_rx_antennas, ant, "sbx rx antenna name");
//shadow the setting
_rx_ant = ant;
//write the new antenna setting to atr regs
update_atr();
}
void sbx_xcvr::set_tx_ant(const std::string &ant){
assert_has(sbx_tx_antennas, ant, "sbx tx antenna name");
//only one antenna option, do nothing
}
/***********************************************************************
* Tuning
**********************************************************************/
void sbx_xcvr::set_rx_lo_freq(double freq){
_rx_lo_freq = set_lo_freq(dboard_iface::UNIT_RX, freq);
}
void sbx_xcvr::set_tx_lo_freq(double freq){
_tx_lo_freq = set_lo_freq(dboard_iface::UNIT_TX, freq);
}
double sbx_xcvr::set_lo_freq(
dboard_iface::unit_t unit,
double target_freq
){
UHD_LOGV(often) << boost::format(
"SBX tune: target frequency %f Mhz"
) % (target_freq/1e6) << std::endl;
//clip the input
target_freq = sbx_freq_range.clip(target_freq);
//map prescaler setting to mininmum integer divider (N) values (pg.18 prescaler)
static const uhd::dict<int, int> prescaler_to_min_int_div = map_list_of
(0,23) //adf4350_regs_t::PRESCALER_4_5
(1,75) //adf4350_regs_t::PRESCALER_8_9
;
//map rf divider select output dividers to enums
static const uhd::dict<int, adf4350_regs_t::rf_divider_select_t> rfdivsel_to_enum = map_list_of
(1, adf4350_regs_t::RF_DIVIDER_SELECT_DIV1)
(2, adf4350_regs_t::RF_DIVIDER_SELECT_DIV2)
(4, adf4350_regs_t::RF_DIVIDER_SELECT_DIV4)
(8, adf4350_regs_t::RF_DIVIDER_SELECT_DIV8)
(16, adf4350_regs_t::RF_DIVIDER_SELECT_DIV16)
;
double actual_freq, pfd_freq;
double ref_freq = this->get_iface()->get_clock_rate(unit);
int R=0, BS=0, N=0, FRAC=0, MOD=0;
int RFdiv = 1;
adf4350_regs_t::reference_divide_by_2_t T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
adf4350_regs_t::reference_doubler_t D = adf4350_regs_t::REFERENCE_DOUBLER_DISABLED;
//Reference doubler for 50% duty cycle
// if ref_freq < 12.5MHz enable regs.reference_divide_by_2
if(ref_freq <= 12.5e6) D = adf4350_regs_t::REFERENCE_DOUBLER_ENABLED;
//increase RF divider until acceptable VCO frequency
//start with target_freq*2 because mixer has divide by 2
double vco_freq = target_freq;
while (vco_freq < 2.2e9) {
vco_freq *= 2;
RFdiv *= 2;
}
//use 8/9 prescaler for vco_freq > 3 GHz (pg.18 prescaler)
adf4350_regs_t::prescaler_t prescaler = vco_freq > 3e9 ? adf4350_regs_t::PRESCALER_8_9 : adf4350_regs_t::PRESCALER_4_5;
/*
* The goal here is to loop though possible R dividers,
* band select clock dividers, N (int) dividers, and FRAC
* (frac) dividers.
*
* Calculate the N and F dividers for each set of values.
* The loop exists when it meets all of the constraints.
* The resulting loop values are loaded into the registers.
*
* from pg.21
*
* f_pfd = f_ref*(1+D)/(R*(1+T))
* f_vco = (N + (FRAC/MOD))*f_pfd
* N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD
* f_rf = f_vco/RFdiv)
* f_actual = f_rf/2
*/
for(R = 1; R <= 1023; R+=1){
//PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T)
pfd_freq = ref_freq*(1+D)/(R*(1+T));
//keep the PFD frequency at or below 25MHz (Loop Filter Bandwidth)
if (pfd_freq > 25e6) continue;
//ignore fractional part of tuning
N = int(std::floor(vco_freq/pfd_freq));
//keep N > minimum int divider requirement
if (N < prescaler_to_min_int_div[prescaler]) continue;
for(BS=1; BS <= 255; BS+=1){
//keep the band select frequency at or below 100KHz
//constraint on band select clock
if (pfd_freq/BS > 100e3) continue;
goto done_loop;
}
} done_loop:
//Fractional-N calculation
MOD = 4095; //max fractional accuracy
FRAC = int((vco_freq/pfd_freq - N)*MOD);
//Reference divide-by-2 for 50% duty cycle
// if R even, move one divide by 2 to to regs.reference_divide_by_2
if(R % 2 == 0){
T = adf4350_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED;
R /= 2;
}
//actual frequency calculation
actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T)))/RFdiv);
UHD_LOGV(often)
<< boost::format("SBX Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f") % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl
<< boost::format("SBX tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d, LD=%d"
) % R % BS % N % FRAC % MOD % T % D % RFdiv % get_locked(unit)<< std::endl
<< boost::format("SBX Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f"
) % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl;
//load the register values
adf4350_regs_t regs;
if ((unit == dboard_iface::UNIT_TX) and (actual_freq == sbx_tx_lo_2dbm.clip(actual_freq)))
regs.output_power = adf4350_regs_t::OUTPUT_POWER_2DBM;
else
regs.output_power = adf4350_regs_t::OUTPUT_POWER_5DBM;
regs.frac_12_bit = FRAC;
regs.int_16_bit = N;
regs.mod_12_bit = MOD;
regs.prescaler = prescaler;
regs.r_counter_10_bit = R;
regs.reference_divide_by_2 = T;
regs.reference_doubler = D;
regs.band_select_clock_div = BS;
UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv));
regs.rf_divider_select = rfdivsel_to_enum[RFdiv];
//write the registers
//correct power-up sequence to write registers (5, 4, 3, 2, 1, 0)
int addr;
for(addr=5; addr>=0; addr--){
UHD_LOGV(often) << boost::format(
"SBX SPI Reg (0x%02x): 0x%08x"
) % addr % regs.get_reg(addr) << std::endl;
this->get_iface()->write_spi(
unit, spi_config_t::EDGE_RISE,
regs.get_reg(addr), 32
);
}
//return the actual frequency
UHD_LOGV(often) << boost::format(
"SBX tune: actual frequency %f Mhz"
) % (actual_freq/1e6) << std::endl;
return actual_freq;
}
/***********************************************************************
* RX Get and Set
**********************************************************************/
void sbx_xcvr::rx_get(const wax::obj &key_, wax::obj &val){
named_prop_t key = named_prop_t::extract(key_);
//handle the get request conditioned on the key
switch(key.as<subdev_prop_t>()){
case SUBDEV_PROP_NAME:
val = get_rx_id().to_pp_string();
return;
case SUBDEV_PROP_OTHERS:
val = prop_names_t(); //empty
return;
case SUBDEV_PROP_GAIN:
assert_has(_rx_gains.keys(), key.name, "sbx rx gain name");
val = _rx_gains[key.name];
return;
case SUBDEV_PROP_GAIN_RANGE:
assert_has(sbx_rx_gain_ranges.keys(), key.name, "sbx rx gain name");
val = sbx_rx_gain_ranges[key.name];
return;
case SUBDEV_PROP_GAIN_NAMES:
val = prop_names_t(sbx_rx_gain_ranges.keys());
return;
case SUBDEV_PROP_FREQ:
val = _rx_lo_freq;
return;
case SUBDEV_PROP_FREQ_RANGE:
val = sbx_freq_range;
return;
case SUBDEV_PROP_ANTENNA:
val = _rx_ant;
return;
case SUBDEV_PROP_ANTENNA_NAMES:
val = sbx_rx_antennas;
return;
case SUBDEV_PROP_CONNECTION:
val = SUBDEV_CONN_COMPLEX_IQ;
return;
case SUBDEV_PROP_USE_LO_OFFSET:
val = false;
return;
case SUBDEV_PROP_ENABLED:
val = true; //always enabled
return;
case SUBDEV_PROP_SENSOR:
UHD_ASSERT_THROW(key.name == "lo_locked");
val = sensor_value_t("LO", this->get_locked(dboard_iface::UNIT_RX), "locked", "unlocked");
return;
case SUBDEV_PROP_SENSOR_NAMES:
val = prop_names_t(1, "lo_locked");
return;
case SUBDEV_PROP_BANDWIDTH:
val = 2*20.0e6; //20MHz low-pass, we want complex double-sided
return;
default: UHD_THROW_PROP_GET_ERROR();
}
}
void sbx_xcvr::rx_set(const wax::obj &key_, const wax::obj &val){
named_prop_t key = named_prop_t::extract(key_);
//handle the get request conditioned on the key
switch(key.as<subdev_prop_t>()){
case SUBDEV_PROP_FREQ:
this->set_rx_lo_freq(val.as<double>());
return;
case SUBDEV_PROP_GAIN:
this->set_rx_gain(val.as<double>(), key.name);
return;
case SUBDEV_PROP_ANTENNA:
this->set_rx_ant(val.as<std::string>());
return;
case SUBDEV_PROP_ENABLED:
return; //always enabled
case SUBDEV_PROP_BANDWIDTH:
UHD_MSG(warning) << "SBX: No tunable bandwidth, fixed filtered to 40MHz";
return;
default: UHD_THROW_PROP_SET_ERROR();
}
}
/***********************************************************************
* TX Get and Set
**********************************************************************/
void sbx_xcvr::tx_get(const wax::obj &key_, wax::obj &val){
named_prop_t key = named_prop_t::extract(key_);
//handle the get request conditioned on the key
switch(key.as<subdev_prop_t>()){
case SUBDEV_PROP_NAME:
val = get_tx_id().to_pp_string();
return;
case SUBDEV_PROP_OTHERS:
val = prop_names_t(); //empty
return;
case SUBDEV_PROP_GAIN:
assert_has(_tx_gains.keys(), key.name, "sbx tx gain name");
val = _tx_gains[key.name];
return;
case SUBDEV_PROP_GAIN_RANGE:
assert_has(sbx_tx_gain_ranges.keys(), key.name, "sbx tx gain name");
val = sbx_tx_gain_ranges[key.name];
return;
case SUBDEV_PROP_GAIN_NAMES:
val = prop_names_t(sbx_tx_gain_ranges.keys());
return;
case SUBDEV_PROP_FREQ:
val = _tx_lo_freq;
return;
case SUBDEV_PROP_FREQ_RANGE:
val = sbx_freq_range;
return;
case SUBDEV_PROP_ANTENNA:
val = std::string("TX/RX");
return;
case SUBDEV_PROP_ANTENNA_NAMES:
val = sbx_tx_antennas;
return;
case SUBDEV_PROP_CONNECTION:
val = SUBDEV_CONN_COMPLEX_QI;
return;
case SUBDEV_PROP_USE_LO_OFFSET:
val = false;
return;
case SUBDEV_PROP_ENABLED:
val = true; //always enabled
return;
case SUBDEV_PROP_SENSOR:
UHD_ASSERT_THROW(key.name == "lo_locked");
val = sensor_value_t("LO", this->get_locked(dboard_iface::UNIT_TX), "locked", "unlocked");
return;
case SUBDEV_PROP_SENSOR_NAMES:
val = prop_names_t(1, "lo_locked");
return;
case SUBDEV_PROP_BANDWIDTH:
val = 2*20.0e6; //20MHz low-pass, we want complex double-sided
return;
default: UHD_THROW_PROP_GET_ERROR();
}
}
void sbx_xcvr::tx_set(const wax::obj &key_, const wax::obj &val){
named_prop_t key = named_prop_t::extract(key_);
//handle the get request conditioned on the key
switch(key.as<subdev_prop_t>()){
case SUBDEV_PROP_FREQ:
this->set_tx_lo_freq(val.as<double>());
return;
case SUBDEV_PROP_GAIN:
this->set_tx_gain(val.as<double>(), key.name);
return;
case SUBDEV_PROP_ANTENNA:
this->set_tx_ant(val.as<std::string>());
return;
case SUBDEV_PROP_ENABLED:
return; //always enabled
case SUBDEV_PROP_BANDWIDTH:
UHD_MSG(warning) << "SBX: No tunable bandwidth, fixed filtered to 40MHz";
return;
default: UHD_THROW_PROP_SET_ERROR();
}
}
|