1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
|
//
// Copyright 2010-2012 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// No RX IO Pins Used
#include "max2112_regs.hpp"
#include <uhd/utils/log.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/algorithm.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/types/sensors.hpp>
#include <uhd/types/dict.hpp>
#include <uhd/usrp/dboard_base.hpp>
#include <uhd/usrp/dboard_manager.hpp>
#include <boost/assign/list_of.hpp>
#include <boost/format.hpp>
#include <boost/thread.hpp>
#include <boost/math/special_functions/round.hpp>
#include <utility>
using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;
/***********************************************************************
* The DBSRX2 constants
**********************************************************************/
static const freq_range_t dbsrx2_freq_range(0.8e9, 2.3e9);
//Multiplied by 2.0 for conversion to complex bandpass from lowpass
static const freq_range_t dbsrx2_bandwidth_range(2.0*4.0e6, 2.0*40.0e6);
static const int dbsrx2_ref_divider = 4; // Hitachi HMC426 divider (U7)
static const std::vector<std::string> dbsrx2_antennas = list_of("J3");
static const uhd::dict<std::string, gain_range_t> dbsrx2_gain_ranges = map_list_of
("GC1", gain_range_t(0, 73, 0.05))
("BBG", gain_range_t(0, 15, 1))
;
/***********************************************************************
* The DBSRX2 dboard class
**********************************************************************/
class dbsrx2 : public rx_dboard_base{
public:
dbsrx2(ctor_args_t args);
~dbsrx2(void);
private:
double _lo_freq;
double _bandwidth;
uhd::dict<std::string, double> _gains;
max2112_write_regs_t _max2112_write_regs;
max2112_read_regs_t _max2112_read_regs;
boost::uint8_t _max2112_addr(){ //0x60 or 0x61 depending on which side
return (this->get_iface()->get_special_props().mangle_i2c_addrs)? 0x60 : 0x61;
}
double set_lo_freq(double target_freq);
double set_gain(double gain, const std::string &name);
double set_bandwidth(double bandwidth);
void send_reg(boost::uint8_t start_reg, boost::uint8_t stop_reg){
start_reg = boost::uint8_t(uhd::clip(int(start_reg), 0x0, 0xB));
stop_reg = boost::uint8_t(uhd::clip(int(stop_reg), 0x0, 0xB));
for(boost::uint8_t start_addr=start_reg; start_addr <= stop_reg; start_addr += sizeof(boost::uint32_t) - 1){
int num_bytes = int(stop_reg - start_addr + 1) > int(sizeof(boost::uint32_t)) - 1 ? sizeof(boost::uint32_t) - 1 : stop_reg - start_addr + 1;
//create buffer for register data (+1 for start address)
byte_vector_t regs_vector(num_bytes + 1);
//first byte is the address of first register
regs_vector[0] = start_addr;
//get the register data
for(int i=0; i<num_bytes; i++){
regs_vector[1+i] = _max2112_write_regs.get_reg(start_addr+i);
UHD_LOGV(often) << boost::format(
"DBSRX2: send reg 0x%02x, value 0x%04x, start_addr = 0x%04x, num_bytes %d"
) % int(start_addr+i) % int(regs_vector[1+i]) % int(start_addr) % num_bytes << std::endl;
}
//send the data
this->get_iface()->write_i2c(
_max2112_addr(), regs_vector
);
}
}
void read_reg(boost::uint8_t start_reg, boost::uint8_t stop_reg){
static const boost::uint8_t status_addr = 0xC;
start_reg = boost::uint8_t(uhd::clip(int(start_reg), 0x0, 0xD));
stop_reg = boost::uint8_t(uhd::clip(int(stop_reg), 0x0, 0xD));
for(boost::uint8_t start_addr=start_reg; start_addr <= stop_reg; start_addr += sizeof(boost::uint32_t)){
int num_bytes = int(stop_reg - start_addr + 1) > int(sizeof(boost::uint32_t)) ? sizeof(boost::uint32_t) : stop_reg - start_addr + 1;
//create address to start reading register data
byte_vector_t address_vector(1);
address_vector[0] = start_addr;
//send the address
this->get_iface()->write_i2c(
_max2112_addr(), address_vector
);
//create buffer for register data
byte_vector_t regs_vector(num_bytes);
//read from i2c
regs_vector = this->get_iface()->read_i2c(
_max2112_addr(), num_bytes
);
for(boost::uint8_t i=0; i < num_bytes; i++){
if (i + start_addr >= status_addr){
_max2112_read_regs.set_reg(i + start_addr, regs_vector[i]);
/*
UHD_LOGV(always) << boost::format(
"DBSRX2: set reg 0x%02x, value 0x%04x"
) % int(i + start_addr) % int(_max2112_read_regs.get_reg(i + start_addr)) << std::endl;
*/
}
UHD_LOGV(often) << boost::format(
"DBSRX2: read reg 0x%02x, value 0x%04x, start_addr = 0x%04x, num_bytes %d"
) % int(start_addr+i) % int(regs_vector[i]) % int(start_addr) % num_bytes << std::endl;
}
}
}
/*!
* Get the lock detect status of the LO.
* \return sensor for locked
*/
sensor_value_t get_locked(void){
read_reg(0xC, 0xD);
//mask and return lock detect
bool locked = (_max2112_read_regs.ld & _max2112_read_regs.vasa & _max2112_read_regs.vase) != 0;
UHD_LOGV(often) << boost::format(
"DBSRX2 locked: %d"
) % locked << std::endl;
return sensor_value_t("LO", locked, "locked", "unlocked");
}
};
/***********************************************************************
* Register the DBSRX2 dboard
**********************************************************************/
// FIXME 0x67 is the default i2c address on USRP2
// need to handle which side for USRP1 with different address
static dboard_base::sptr make_dbsrx2(dboard_base::ctor_args_t args){
return dboard_base::sptr(new dbsrx2(args));
}
UHD_STATIC_BLOCK(reg_dbsrx2_dboard){
//register the factory function for the rx dbid
dboard_manager::register_dboard(0x0012, &make_dbsrx2, "DBSRX2");
}
/***********************************************************************
* Structors
**********************************************************************/
dbsrx2::dbsrx2(ctor_args_t args) : rx_dboard_base(args){
//send initial register settings
send_reg(0x0, 0xB);
//for (boost::uint8_t addr=0; addr<=12; addr++) this->send_reg(addr, addr);
////////////////////////////////////////////////////////////////////
// Register properties
////////////////////////////////////////////////////////////////////
this->get_rx_subtree()->create<std::string>("name")
.set("DBSRX2");
this->get_rx_subtree()->create<sensor_value_t>("sensors/lo_locked")
.set_publisher(boost::bind(&dbsrx2::get_locked, this));
BOOST_FOREACH(const std::string &name, dbsrx2_gain_ranges.keys()){
this->get_rx_subtree()->create<double>("gains/"+name+"/value")
.set_coercer(boost::bind(&dbsrx2::set_gain, this, _1, name))
.set(dbsrx2_gain_ranges[name].start());
this->get_rx_subtree()->create<meta_range_t>("gains/"+name+"/range")
.set(dbsrx2_gain_ranges[name]);
}
this->get_rx_subtree()->create<double>("freq/value")
.set_coercer(boost::bind(&dbsrx2::set_lo_freq, this, _1))
.set(dbsrx2_freq_range.start());
this->get_rx_subtree()->create<meta_range_t>("freq/range")
.set(dbsrx2_freq_range);
this->get_rx_subtree()->create<std::string>("antenna/value")
.set(dbsrx2_antennas.at(0));
this->get_rx_subtree()->create<std::vector<std::string> >("antenna/options")
.set(dbsrx2_antennas);
this->get_rx_subtree()->create<std::string>("connection")
.set("QI");
this->get_rx_subtree()->create<bool>("enabled")
.set(true); //always enabled
this->get_rx_subtree()->create<bool>("use_lo_offset")
.set(false);
double codec_rate = this->get_iface()->get_codec_rate(dboard_iface::UNIT_RX);
this->get_rx_subtree()->create<double>("bandwidth/value")
.set_coercer(boost::bind(&dbsrx2::set_bandwidth, this, _1))
.set(2.0*(0.8*codec_rate/2.0)); //bandwidth in lowpass, convert to complex bandpass
//default to anti-alias at different codec_rate
this->get_rx_subtree()->create<meta_range_t>("bandwidth/range")
.set(dbsrx2_bandwidth_range);
//enable only the clocks we need
this->get_iface()->set_clock_enabled(dboard_iface::UNIT_RX, true);
//set the gpio directions and atr controls (identically)
this->get_iface()->set_pin_ctrl(dboard_iface::UNIT_RX, 0x0); // All unused in atr
this->get_iface()->set_gpio_ddr(dboard_iface::UNIT_RX, 0x0); // All Inputs
get_locked();
}
dbsrx2::~dbsrx2(void){
}
/***********************************************************************
* Tuning
**********************************************************************/
double dbsrx2::set_lo_freq(double target_freq){
//target_freq = dbsrx2_freq_range.clip(target_freq);
//variables used in the calculation below
int scaler = target_freq >= 1125e6 ? 2 : 4;
double ref_freq = this->get_iface()->get_clock_rate(dboard_iface::UNIT_RX);
int R, intdiv, fracdiv, ext_div;
double N;
//compute tuning variables
ext_div = dbsrx2_ref_divider; // 12MHz < ref_freq/ext_divider < 30MHz
R = 1; //Divide by 1 is the only tested value
N = (target_freq*R*ext_div)/(ref_freq); //actual spec range is (19, 251)
intdiv = int(std::floor(N)); // if (intdiv < 19 or intdiv > 251) continue;
fracdiv = boost::math::iround((N - intdiv)*double(1 << 20));
//calculate the actual freq from the values above
N = double(intdiv) + double(fracdiv)/double(1 << 20);
_lo_freq = (N*ref_freq)/(R*ext_div);
//load new counters into registers
_max2112_write_regs.set_n_divider(intdiv);
_max2112_write_regs.set_f_divider(fracdiv);
_max2112_write_regs.r_divider = R;
_max2112_write_regs.d24 = scaler == 4 ? max2112_write_regs_t::D24_DIV4 : max2112_write_regs_t::D24_DIV2;
//debug output of calculated variables
UHD_LOGV(often)
<< boost::format("DBSRX2 tune:\n")
<< boost::format(" R=%d, N=%f, scaler=%d, ext_div=%d\n") % R % N % scaler % ext_div
<< boost::format(" int=%d, frac=%d, d24=%d\n") % intdiv % fracdiv % int(_max2112_write_regs.d24)
<< boost::format(" Ref Freq=%fMHz\n") % (ref_freq/1e6)
<< boost::format(" Target Freq=%fMHz\n") % (target_freq/1e6)
<< boost::format(" Actual Freq=%fMHz\n") % (_lo_freq/1e6)
<< std::endl;
//send the registers 0x0 through 0x7
//writing register 0x4 (F divider LSB) starts the VCO auto seletion so it must be written last
send_reg(0x5, 0x7);
send_reg(0x0, 0x4);
//FIXME: probably unnecessary to call get_locked here
//get_locked();
return _lo_freq;
}
/***********************************************************************
* Gain Handling
**********************************************************************/
/*!
* Convert a requested gain for the BBG vga into the integer register value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return 4 bit the register value
*/
static int gain_to_bbg_vga_reg(double &gain){
int reg = boost::math::iround(dbsrx2_gain_ranges["BBG"].clip(gain));
gain = double(reg);
UHD_LOGV(often)
<< boost::format("DBSRX2 BBG Gain:\n")
<< boost::format(" %f dB, bbg: %d") % gain % reg
<< std::endl;
return reg;
}
/*!
* Convert a requested gain for the GC1 rf vga into the dac_volts value.
* The gain passed into the function will be set to the actual value.
* \param gain the requested gain in dB
* \return dac voltage value
*/
static double gain_to_gc1_rfvga_dac(double &gain){
//clip the input
gain = dbsrx2_gain_ranges["GC1"].clip(gain);
//voltage level constants
static const double max_volts = 0.5, min_volts = 2.7;
static const double slope = (max_volts-min_volts)/dbsrx2_gain_ranges["GC1"].stop();
//calculate the voltage for the aux dac
double dac_volts = gain*slope + min_volts;
UHD_LOGV(often)
<< boost::format("DBSRX2 GC1 Gain:\n")
<< boost::format(" %f dB, dac_volts: %f V") % gain % dac_volts
<< std::endl;
//the actual gain setting
gain = (dac_volts - min_volts)/slope;
return dac_volts;
}
double dbsrx2::set_gain(double gain, const std::string &name){
assert_has(dbsrx2_gain_ranges.keys(), name, "dbsrx2 gain name");
if (name == "BBG"){
_max2112_write_regs.bbg = gain_to_bbg_vga_reg(gain);
send_reg(0x9, 0x9);
}
else if(name == "GC1"){
//write the new voltage to the aux dac
this->get_iface()->write_aux_dac(dboard_iface::UNIT_RX, dboard_iface::AUX_DAC_A, gain_to_gc1_rfvga_dac(gain));
}
else UHD_THROW_INVALID_CODE_PATH();
_gains[name] = gain;
return gain;
}
/***********************************************************************
* Bandwidth Handling
**********************************************************************/
double dbsrx2::set_bandwidth(double bandwidth){
//clip the input
bandwidth = dbsrx2_bandwidth_range.clip(bandwidth);
//convert complex bandpass to lowpass bandwidth
bandwidth = bandwidth/2.0;
_max2112_write_regs.lp = int((bandwidth/1e6 - 4)/0.29 + 12);
_bandwidth = double(4 + (_max2112_write_regs.lp - 12) * 0.29)*1e6;
UHD_LOGV(often)
<< boost::format("DBSRX2 Bandwidth:\n")
<< boost::format(" %f MHz, lp: %f V") % (_bandwidth/1e6) % int(_max2112_write_regs.lp)
<< std::endl;
this->send_reg(0x8, 0x8);
//convert lowpass back to complex bandpass bandwidth
return 2.0*_bandwidth;
}
|