summaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/dboard/db_cbx.cpp
blob: 78ecd979467dce48657e53603f23b40cce185e1e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
//
// Copyright 2011-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//


#include "max2870_regs.hpp"
#include "db_sbx_common.hpp"
#include <boost/algorithm/string.hpp>

using namespace uhd;
using namespace uhd::usrp;
using namespace boost::assign;

/***********************************************************************
 * Structors
 **********************************************************************/
sbx_xcvr::cbx::cbx(sbx_xcvr *_self_sbx_xcvr) {
    //register the handle to our base CBX class
    self_base = _self_sbx_xcvr;
}


sbx_xcvr::cbx::~cbx(void){
    /* NOP */
}


/***********************************************************************
 * Tuning
 **********************************************************************/
double sbx_xcvr::cbx::set_lo_freq(dboard_iface::unit_t unit, double target_freq) {
    UHD_LOGV(often) << boost::format(
        "CBX tune: target frequency %f Mhz"
    ) % (target_freq/1e6) << std::endl;

    /*
     * If the user sets 'mode_n=integer' in the tuning args, the user wishes to
     * tune in Integer-N mode, which can result in better spur
     * performance on some mixers. The default is fractional tuning.
     */
    property_tree::sptr subtree = (unit == dboard_iface::UNIT_RX) ? self_base->get_rx_subtree()
                                                                  : self_base->get_tx_subtree();
    device_addr_t tune_args = subtree->access<device_addr_t>("tune_args").get();
    bool is_int_n = boost::iequals(tune_args.get("mode_n",""), "integer");

    //clip the input
    target_freq = cbx_freq_range.clip(target_freq);

    //map mode setting to valid integer divider (N) values
    static const uhd::range_t int_n_mode_div_range(16,4095,1);
    static const uhd::range_t frac_n_mode_div_range(19,4091,1);

    //map rf divider select output dividers to enums
    static const uhd::dict<int, max2870_regs_t::rf_divider_select_t> rfdivsel_to_enum = map_list_of
        (1,   max2870_regs_t::RF_DIVIDER_SELECT_DIV1)
        (2,   max2870_regs_t::RF_DIVIDER_SELECT_DIV2)
        (4,   max2870_regs_t::RF_DIVIDER_SELECT_DIV4)
        (8,   max2870_regs_t::RF_DIVIDER_SELECT_DIV8)
        (16,  max2870_regs_t::RF_DIVIDER_SELECT_DIV16)
        (32,  max2870_regs_t::RF_DIVIDER_SELECT_DIV32)
        (64,  max2870_regs_t::RF_DIVIDER_SELECT_DIV64)
        (128, max2870_regs_t::RF_DIVIDER_SELECT_DIV128)
    ;

    double actual_freq, pfd_freq;
    double ref_freq = self_base->get_iface()->get_clock_rate(unit);
    int R=0, BS=0, N=0, FRAC=0, MOD=4095;
    int RFdiv = 1;
    max2870_regs_t::reference_divide_by_2_t T     = max2870_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
    max2870_regs_t::reference_doubler_t     D     = max2870_regs_t::REFERENCE_DOUBLER_DISABLED;

    //Reference doubler for 50% duty cycle
    // if ref_freq < 12.5MHz enable regs.reference_divide_by_2
    //NOTE: MAX2870 goes down to 10MHz ref vs. 12.5MHz on ADF4351
    if(ref_freq <= 10.0e6) D = max2870_regs_t::REFERENCE_DOUBLER_ENABLED;

    //increase RF divider until acceptable VCO frequency
    double vco_freq = target_freq;
    //NOTE: MIN freq for MAX2870 VCO is 3GHz vs. 2.2GHz on ADF4351
    while (vco_freq < 3e9) {
        vco_freq *= 2;
        RFdiv *= 2;
    }
    
    /*
     * The goal here is to loop though possible R dividers,
     * band select clock dividers, N (int) dividers, and FRAC 
     * (frac) dividers.
     *
     * Calculate the N and F dividers for each set of values.
     * The loop exits when it meets all of the constraints.
     * The resulting loop values are loaded into the registers.
     *
     * from pg.21
     *
     * f_pfd = f_ref*(1+D)/(R*(1+T))
     * f_vco = (N + (FRAC/MOD))*f_pfd
     *     N = f_vco/f_pfd - FRAC/MOD = f_vco*((R*(T+1))/(f_ref*(1+D))) - FRAC/MOD
     * f_rf  = f_vco/RFdiv
     */
    for(R = 1; R <= 1023; R+=1){
        //PFD input frequency = f_ref/R ... ignoring Reference doubler/divide-by-2 (D & T)
        pfd_freq = ref_freq*(1+D)/(R*(1+T));

        //keep the PFD frequency at or below 25MHz
        if (pfd_freq > 25e6) continue;

        //ignore fractional part of tuning
        N = int(vco_freq/pfd_freq);

        //Fractional-N calculation
        FRAC = int((vco_freq/pfd_freq - N)*MOD);

        if(is_int_n) {
            if (FRAC > (MOD / 2)) { //Round integer such that actual freq is closest to target
                N++;
            }
            FRAC = 0;
        }

        //keep N within int divider requirements
        if(is_int_n) {
            if(N < int_n_mode_div_range.start()) continue;
            if(N > int_n_mode_div_range.stop()) continue;
        } else {
            if(N < frac_n_mode_div_range.start()) continue;
            if(N > frac_n_mode_div_range.stop()) continue;
        }

        //keep pfd freq low enough to achieve 50kHz BS clock
        BS = std::ceil(pfd_freq / 50e3);
        if(BS <= 1023) break;
    }

    UHD_ASSERT_THROW(R <= 1023);

    //Reference divide-by-2 for 50% duty cycle
    // if R even, move one divide by 2 to to regs.reference_divide_by_2
    if(R % 2 == 0){
        T = max2870_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED;
        R /= 2;
    }

    //actual frequency calculation
    actual_freq = double((N + (double(FRAC)/double(MOD)))*ref_freq*(1+int(D))/(R*(1+int(T)))/RFdiv);

    boost::uint16_t rx_id = self_base->get_rx_id().to_uint16();
    std::string board_name = (rx_id == 0x0085) ? "CBX-120" : "CBX";
    UHD_LOGV(often)
        << boost::format("%s Intermediates: ref=%0.2f, outdiv=%f, fbdiv=%f"
            ) % board_name.c_str() % (ref_freq*(1+int(D))/(R*(1+int(T)))) % double(RFdiv*2) % double(N + double(FRAC)/double(MOD)) << std::endl
        << boost::format("%s tune: R=%d, BS=%d, N=%d, FRAC=%d, MOD=%d, T=%d, D=%d, RFdiv=%d, type=%s"
            ) % board_name.c_str() % R % BS % N % FRAC % MOD % T % D % RFdiv % ((is_int_n) ? "Integer-N" : "Fractional") << std::endl
        << boost::format("%s Frequencies (MHz): REQ=%0.2f, ACT=%0.2f, VCO=%0.2f, PFD=%0.2f, BAND=%0.2f"
            ) % board_name.c_str() % (target_freq/1e6) % (actual_freq/1e6) % (vco_freq/1e6) % (pfd_freq/1e6) % (pfd_freq/BS/1e6) << std::endl;

    //load the register values
    max2870_regs_t regs;

    if ((unit == dboard_iface::UNIT_TX) and (actual_freq == sbx_tx_lo_2dbm.clip(actual_freq)))
        regs.output_power = max2870_regs_t::OUTPUT_POWER_2DBM;
    else
        regs.output_power = max2870_regs_t::OUTPUT_POWER_5DBM;

    //set frac/int CPL mode
    max2870_regs_t::cpl_t cpl;
    max2870_regs_t::ldf_t ldf;
    max2870_regs_t::cpoc_t cpoc;
    if(is_int_n) {
        cpl = max2870_regs_t::CPL_DISABLED;
        cpoc = max2870_regs_t::CPOC_ENABLED;
        ldf = max2870_regs_t::LDF_INT_N;
    } else {
        cpl = max2870_regs_t::CPL_ENABLED;
        ldf = max2870_regs_t::LDF_FRAC_N;
        cpoc = max2870_regs_t::CPOC_DISABLED;
    }

    regs.frac_12_bit = FRAC;
    regs.int_16_bit = N;
    regs.mod_12_bit = MOD;
    regs.clock_divider_12_bit = std::max(1, int(std::ceil(400e-6*pfd_freq/MOD)));
    regs.feedback_select = (target_freq >= 3.0e9) ? max2870_regs_t::FEEDBACK_SELECT_DIVIDED : max2870_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
    regs.r_counter_10_bit = R;
    regs.reference_divide_by_2 = T;
    regs.reference_doubler = D;
    regs.band_select_clock_div = BS;
    UHD_ASSERT_THROW(rfdivsel_to_enum.has_key(RFdiv));
    regs.rf_divider_select = rfdivsel_to_enum[RFdiv];
    regs.int_n_mode = (is_int_n) ? max2870_regs_t::INT_N_MODE_INT_N : max2870_regs_t::INT_N_MODE_FRAC_N;
    regs.cpl = cpl;
    regs.ldf = ldf;
    regs.cpoc = cpoc;

    //write the registers
    //correct power-up sequence to write registers (5, 4, 3, 2, 1, 0)
    int addr;

    for(addr=5; addr>=0; addr--){
        UHD_LOGV(often) << boost::format(
            "%s SPI Reg (0x%02x): 0x%08x"
        ) % board_name.c_str() % addr % regs.get_reg(addr) << std::endl;
        self_base->get_iface()->write_spi(
            unit, spi_config_t::EDGE_RISE,
            regs.get_reg(addr), 32
        );
    }

    //return the actual frequency
    UHD_LOGV(often) << boost::format(
        "%s tune: actual frequency %f Mhz"
    ) % board_name.c_str() % (actual_freq/1e6) << std::endl;
    return actual_freq;
}