1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
|
//
// Copyright 2018, 2017 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "lmx2592_regs.hpp"
#include <uhdlib/usrp/common/lmx2592.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <chrono>
#include <iomanip>
using namespace uhd;
namespace {
constexpr double LMX2592_DOUBLER_MAX_REF_FREQ = 60e6;
constexpr double LMX2592_MAX_FREQ_PFD = 125e6;
constexpr double LMX2592_MIN_REF_FREQ = 5e6;
constexpr double LMX2592_MAX_REF_FREQ = 1400e6;
constexpr double LMX2592_MAX_OUT_FREQ = 9.8e9;
constexpr double LMX2592_MIN_OUT_FREQ = 20e6;
constexpr double LMX2592_MIN_VCO_FREQ = 3.55e9;
constexpr double LMX2592_MAX_VCO_FREQ = 7.1e9;
constexpr double LMX2592_MAX_DOUBLER_INPUT_FREQ = 200e6;
constexpr double LMX2592_MAX_MULT_OUT_FREQ = 250e6;
constexpr double LMX2592_MAX_MULT_INPUT_FREQ = 70e6;
constexpr double LMX2592_MAX_POSTR_DIV_OUT_FREQ = 125e6;
constexpr double DEFAULT_LMX2592_SPUR_DODGING_THRESHOLD = 2e6; // Hz
constexpr int MAX_N_DIVIDER = 4095;
constexpr int MAX_MASH_ORDER = 4;
constexpr std::array<int, MAX_MASH_ORDER + 1> LMX2592_MIN_N_DIV = {
9, 11, 16, 18, 30
}; // includes int-N
constexpr int NUM_DIVIDERS = 14;
constexpr std::array<int, NUM_DIVIDERS> LMX2592_CHDIV_DIVIDERS = { 1, 2, 3, 4, 6, 8, 12,
16, 24, 32, 64, 96, 128, 192 };
const std::array<double, NUM_DIVIDERS> LMX2592_CHDIV_MIN_FREQ = {
3550e6, 1775e6, 1183.33e6, 887.5e6, 591.67e6, 443.75e6, 295.83e6,
221.88e6, 147.92e6, 110.94e6, 55.47e6, 36.98e6, 27.73e6, 20e6
};
constexpr std::array<double, NUM_DIVIDERS> LMX2592_CHDIV_MAX_FREQ = {
6000e6, 3550.0e6, 2366.67e6, 1775.00e6, 1183.33, 887.50e6, 591.67e6,
443.75e6, 295.83e6, 221.88e6, 110.94e6, 73.96e6, 55.47e6, 36.98
};
constexpr int NUM_CHDIV_STAGES = 3;
constexpr std::array<std::array<int, NUM_CHDIV_STAGES>, NUM_DIVIDERS> LMX2592_CHDIV_SEGS = {
{ { 1, 1, 1 },
{ 2, 1, 1 },
{ 3, 1, 1 },
{ 2, 2, 1 },
{ 3, 2, 1 },
{ 2, 4, 1 },
{ 2, 6, 1 },
{ 2, 8, 1 },
{ 3, 8, 1 },
{ 2, 8, 2 },
{ 2, 8, 4 },
{ 2, 8, 6 },
{ 2, 8, 8 },
{ 3, 8, 8 } }
};
constexpr int SPI_ADDR_SHIFT = 16;
constexpr int SPI_ADDR_MASK = 0x7f;
constexpr int SPI_READ_FLAG = 1 << 23;
enum intermediate_frequency_t {
FVCO,
FLO,
FRF_IN,
};
const char* log_intermediate_frequency(intermediate_frequency_t inter) {
switch (inter) {
case FRF_IN: return "FRF_IN";
case FVCO: return "FVCO";
case FLO: return "FLO";
default: return "???";
}
}
// simple comparator that uses absolute value
inline bool abs_less_than_compare(const double a, const double b)
{
return std::abs(a) < std::abs(b);
}
typedef std::pair<double, intermediate_frequency_t> offset_t;
// comparator that uses absolute value on the first value of an offset_t
inline bool offset_abs_less_than_compare(
const offset_t a,
const offset_t b)
{
return std::abs(a.first) < std::abs(b.first);
}
}
class lmx2592_impl : public lmx2592_iface {
public:
explicit lmx2592_impl(write_spi_t write_fn, read_spi_t read_fn)
: _write_fn([write_fn](const uint8_t addr, const uint16_t data) {
const uint32_t spi_transaction =
0 | ((addr & SPI_ADDR_MASK) << SPI_ADDR_SHIFT) | data;
write_fn(spi_transaction);
}),
_read_fn([read_fn](const uint8_t addr) {
const uint32_t spi_transaction =
SPI_READ_FLAG | ((addr & SPI_ADDR_MASK) << SPI_ADDR_SHIFT);
return read_fn(spi_transaction);
}),
_regs(),
_rewrite_regs(true) {
UHD_LOG_TRACE("LMX2592", "Initializing Synthesizer");
// Soft Reset
_regs.reset = 1;
UHD_LOG_TRACE("LMX2592", "Resetting LMX");
_write_fn(_regs.ADDR_R0, _regs.get_reg(_regs.ADDR_R0));
// The bit is cleared on the synth during the reset
_regs.reset = 0;
// Set register values where driver defaults differ from the datasheet values
_regs.acal_enable = 0;
_regs.fcal_enable = 0;
_regs.cal_clk_div = 0;
_regs.vco_idac_ovr = 1;
_regs.cp_idn = 12;
_regs.cp_iup = 12;
_regs.vco_idac = 350;
_regs.mash_ditherer = 1;
_regs.outa_mux = lmx2592_regs_t::outa_mux_t::OUTA_MUX_VCO;
_regs.fcal_fast = 1;
// Write default register values, ensures register copy is synchronized
_rewrite_regs = true;
commit();
_regs.fcal_enable = 1;
commit();
}
~lmx2592_impl() override { UHD_SAFE_CALL(_regs.powerdown = 1; commit();) }
double set_frequency(
const double target_freq,
const bool spur_dodging = false,
const double spur_dodging_threshold = DEFAULT_LMX2592_SPUR_DODGING_THRESHOLD)
override
{
// Enforce LMX frequency limits
if (target_freq < LMX2592_MIN_OUT_FREQ or target_freq > LMX2592_MAX_OUT_FREQ) {
throw runtime_error("Requested frequency is out of the supported range");
}
// Find the largest possible divider
auto output_divider_index = 0;
for (auto limit : LMX2592_CHDIV_MIN_FREQ) {
// The second harmonic level is very bad when using the div-by-3
// Skip and let the div-by-4 cover the range
if (LMX2592_CHDIV_DIVIDERS[output_divider_index] == 3) {
output_divider_index++;
continue;
}
if (target_freq < limit) {
output_divider_index++;
} else {
break;
}
}
const auto output_divider = LMX2592_CHDIV_DIVIDERS[output_divider_index];
_set_chdiv_values(output_divider_index);
// Setup input signal path and PLL loop
const int vco_multiplier = target_freq > LMX2592_MAX_VCO_FREQ ? 2 : 1;
const auto target_vco_freq = target_freq * output_divider;
const auto core_vco_freq = target_vco_freq / vco_multiplier;
double input_freq = _ref_freq;
// Input Doubler stage
if (input_freq <= LMX2592_MAX_DOUBLER_INPUT_FREQ) {
_regs.osc_doubler = 1;
input_freq *= 2;
} else {
_regs.osc_doubler = 0;
}
// Pre-R divider
_regs.pll_r_pre =
narrow_cast<uint16_t>(std::ceil(input_freq / LMX2592_MAX_MULT_INPUT_FREQ));
input_freq /= _regs.pll_r_pre;
// Multiplier
_regs.mult = narrow_cast<uint8_t>(std::floor(LMX2592_MAX_MULT_OUT_FREQ / input_freq));
input_freq *= _regs.mult;
// Post R divider
_regs.pll_r = narrow_cast<uint8_t>(std::ceil(input_freq / LMX2592_MAX_POSTR_DIV_OUT_FREQ));
// Default to divide by 2, will be increased later if N exceeds its limit
int prescaler = 2;
_regs.pll_n_pre = lmx2592_regs_t::pll_n_pre_t::PLL_N_PRE_DIVIDE_BY_2;
const int min_n_divider = LMX2592_MIN_N_DIV[_regs.mash_order];
double pfd_freq = input_freq / _regs.pll_r;
while (pfd_freq * (prescaler * min_n_divider) / vco_multiplier > core_vco_freq) {
_regs.pll_r++;
pfd_freq = input_freq / _regs.pll_r;
}
// Calculate N and frac
const auto N_dot_F = target_vco_freq / (pfd_freq * prescaler);
auto N = static_cast<uint16_t>(std::floor(N_dot_F));
if (N > MAX_N_DIVIDER) {
_regs.pll_n_pre = lmx2592_regs_t::pll_n_pre_t::PLL_N_PRE_DIVIDE_BY_4;
N /= 2;
}
const auto frac = N_dot_F - N;
// Increase VCO step size to threshold to avoid primary fractional spurs
const double min_vco_step_size = spur_dodging ? spur_dodging_threshold : 1;
// Calculate Fden
const auto initial_fden = static_cast<uint32_t>(std::floor(pfd_freq * prescaler / min_vco_step_size));
const auto fden = (spur_dodging) ? _find_fden(initial_fden) : initial_fden;
// Calculate Fnum
const auto initial_fnum = static_cast<uint32_t>(std::round(frac * fden));
const auto fnum = (spur_dodging) ? _find_fnum(N, initial_fnum, fden, prescaler, pfd_freq, output_divider, spur_dodging_threshold) : initial_fnum;
// Calculate mash_seed
// if spur_dodging is true, mash_seed is the first odd value less than fden
// else mash_seed is int(fden / 2);
const uint32_t mash_seed = (spur_dodging) ?
_find_mash_seed(fden) :
static_cast<uint32_t>(fden / 2);
// Calculate actual Fcore_vco, Fvco, F_lo frequencies
const auto actual_fvco = pfd_freq * prescaler * (N + double(fnum) / double(fden));
const auto actual_fcore_vco = actual_fvco / vco_multiplier;
const auto actual_f_lo = actual_fcore_vco * vco_multiplier / output_divider;
// Write to registers
_regs.pll_n = N;
_regs.pll_num_lsb = narrow_cast<uint16_t>(fnum);
_regs.pll_num_msb = narrow_cast<uint16_t>(fnum >> 16);
_regs.pll_den_lsb = narrow_cast<uint16_t>(fden);
_regs.pll_den_msb = narrow_cast<uint16_t>(fden >> 16);
_regs.mash_seed_lsb = narrow_cast<uint16_t>(mash_seed);
_regs.mash_seed_msb = narrow_cast<uint16_t>(mash_seed >> 16);
UHD_LOGGER_TRACE("LMX2592") << "Tuned to " << actual_f_lo;
// Toggle fcal field to start calibration
_regs.fcal_enable = 0;
commit();
_regs.fcal_enable = 1;
commit();
UHD_LOGGER_TRACE("LMX2592")
<< "PLL lock status: " << (get_lock_status() ? "Locked" : "Unlocked");
return actual_f_lo;
}
void set_mash_order(const mash_order_t mash_order) override {
if (mash_order == mash_order_t::INT_N) {
_regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_INT_MODE;
} else if (mash_order == mash_order_t::FIRST) {
_regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_FIRST;
} else if (mash_order == mash_order_t::SECOND) {
_regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_SECOND;
} else if (mash_order == mash_order_t::THIRD) {
_regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_THIRD;
} else if (mash_order == mash_order_t::FOURTH) {
_regs.mash_order = lmx2592_regs_t::mash_order_t::MASH_ORDER_FOURTH;
}
}
void set_reference_frequency(const double ref_freq) override {
if (ref_freq < LMX2592_MIN_REF_FREQ or ref_freq > LMX2592_MAX_REF_FREQ) {
throw std::runtime_error("Reference frequency is out of bounds for the LMX2592");
}
_ref_freq = ref_freq;
}
void set_output_power(const output_t output, const unsigned int power) override {
UHD_LOGGER_TRACE("LMX2592")
<< "Set output: " << (output == RF_OUTPUT_A ? "A" : "B") << " to power " << power;
const auto MAX_POWER = 63;
if (power > MAX_POWER) {
UHD_LOGGER_ERROR("LMX2592")
<< "Requested power level of " << power << " exceeds maximum of " << MAX_POWER;
return;
}
if (output == RF_OUTPUT_A) {
_regs.outa_power = power;
} else {
_regs.outb_power = power;
}
commit();
}
void set_output_enable(const output_t output, const bool enable) override {
UHD_LOGGER_TRACE("LMX2592") << "Set output " << (output == RF_OUTPUT_A ? "A" : "B")
<< " to " << (enable ? "On" : "Off");
if (enable) {
_regs.chdiv_dist_pd = 0;
if (output == RF_OUTPUT_A) {
_regs.outa_pd = 0;
} else {
_regs.outb_pd = 0;
}
} else {
if (output == RF_OUTPUT_A) {
_regs.outa_pd = 1;
_regs.vco_dista_pd = 1;
_regs.chdiv_dista_en = 0;
} else {
_regs.outb_pd = 1;
_regs.vco_distb_pd = 1;
_regs.chdiv_distb_en = 0;
}
}
// If both channels are disabled
if (_regs.outa_pd == 1 and _regs.outb_pd == 1) {
_regs.chdiv_dist_pd = 1;
}
commit();
}
bool get_lock_status() override {
// SPI MISO is being driven by lock detect
// If the PLL is locked we expect to read 0xFFFF from any read, else 0x0000
const auto value_read = _read_fn(_regs.ADDR_R0);
const auto lock_status = (value_read == 0xFFFF);
UHD_LOG_TRACE(
"LMX2592",
str(boost::format("Read Lock status: 0x%04X") % static_cast<unsigned int>(value_read)));
return lock_status;
}
void commit() override {
UHD_LOGGER_DEBUG("LMX2592")
<< "Storing register cache " << (_rewrite_regs ? "completely" : "selectively")
<< " to LMX via SPI...";
const auto changed_addrs =
_rewrite_regs ? _regs.get_all_addrs() : _regs.get_changed_addrs<size_t>();
for (const auto addr : changed_addrs) {
_write_fn(addr, _regs.get_reg(addr));
UHD_LOGGER_TRACE("LMX2592")
<< "Register " << std::setw(2) << static_cast<unsigned int>(addr) << ": 0x"
<< std::hex << std::uppercase << std::setw(4) << std::setfill('0')
<< static_cast<unsigned int>(_regs.get_reg(addr));
}
_regs.save_state();
UHD_LOG_DEBUG("LMX2592",
"Writing registers complete: "
"Updated "
<< changed_addrs.size()
<< " registers.");
_rewrite_regs = false;
}
private: // Members
//! Write functor: Take address / data pair, craft SPI transaction
using write_fn_t = std::function<void(uint8_t, uint16_t)>;
//! Read functor: Return value given address
using read_fn_t = std::function<uint16_t(uint8_t)>;
write_fn_t _write_fn;
read_fn_t _read_fn;
lmx2592_regs_t _regs;
bool _rewrite_regs;
double _ref_freq;
void _set_chdiv_values(const int output_divider_index) {
// Configure divide segments and mux
const auto seg1 = LMX2592_CHDIV_SEGS[output_divider_index][0];
const auto seg2 = LMX2592_CHDIV_SEGS[output_divider_index][1];
const auto seg3 = LMX2592_CHDIV_SEGS[output_divider_index][2];
_regs.chdiv_seg_sel = lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_POWERDOWN;
if (seg1 > 1) {
_regs.chdiv_seg_sel = lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_DIV_SEG_1;
_regs.chdiv_seg1_en = 1;
_regs.outa_mux = lmx2592_regs_t::outa_mux_t::OUTA_MUX_DIVIDER;
_regs.outb_mux = lmx2592_regs_t::outb_mux_t::OUTB_MUX_DIVIDER;
_regs.vco_dista_pd = 1;
_regs.vco_distb_pd = 1;
_regs.chdiv_dist_pd = 0;
if (_regs.outa_pd == 0) {
_regs.chdiv_dista_en = 1;
}
if (_regs.outb_pd == 0) {
_regs.chdiv_distb_en = 1;
}
} else {
_regs.chdiv_seg1_en = 0;
_regs.outa_mux = lmx2592_regs_t::outa_mux_t::OUTA_MUX_VCO;
_regs.outb_mux = lmx2592_regs_t::outb_mux_t::OUTB_MUX_VCO;
_regs.chdiv_dist_pd = 1;
if (_regs.outa_pd == 0) {
_regs.vco_dista_pd = 0;
}
if (_regs.outb_pd == 0) {
_regs.vco_distb_pd = 0;
}
}
if (seg1 == 2) {
_regs.chdiv_seg1 = lmx2592_regs_t::chdiv_seg1_t::CHDIV_SEG1_DIVIDE_BY_2;
} else if (seg1 == 3) {
_regs.chdiv_seg1 = lmx2592_regs_t::chdiv_seg1_t::CHDIV_SEG1_DIVIDE_BY_3;
}
if (seg2 > 1) {
_regs.chdiv_seg2_en = 1;
_regs.chdiv_seg_sel = lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_DIV_SEG_1_AND_2;
} else {
_regs.chdiv_seg2_en = 0;
}
if (seg2 == 1) {
_regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_POWERDOWN;
} else if (seg2 == 2) {
_regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_2;
} else if (seg2 == 4) {
_regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_4;
} else if (seg2 == 6) {
_regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_6;
} else if (seg2 == 8) {
_regs.chdiv_seg2 = lmx2592_regs_t::chdiv_seg2_t::CHDIV_SEG2_DIVIDE_BY_8;
}
if (seg3 > 1) {
_regs.chdiv_seg3_en = 1;
_regs.chdiv_seg_sel = lmx2592_regs_t::chdiv_seg_sel_t::CHDIV_SEG_SEL_DIV_SEG_1_2_AND_3;
} else {
_regs.chdiv_seg3_en = 0;
}
if (seg3 == 1) {
_regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_POWERDOWN;
} else if (seg3 == 2) {
_regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_2;
} else if (seg3 == 4) {
_regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_4;
} else if (seg3 == 6) {
_regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_6;
} else if (seg3 == 8) {
_regs.chdiv_seg3 = lmx2592_regs_t::chdiv_seg3_t::CHDIV_SEG3_DIVIDE_BY_8;
}
}
// "k" is a derived value that indicates where sub-fractional spurs will be present
// at a given Fden value. A "k" value of 1 indicates there will be no spurs.
// See the LMX2592 datasheet for more information
// Table 48 on pg. 30, Revision F (or search for "sub-fractional spurs")
int _get_k(const uint32_t fden) const
{
const auto mash = _regs.mash_order;
if (mash == lmx2592_regs_t::mash_order_t::MASH_ORDER_INT_MODE or
mash == lmx2592_regs_t::mash_order_t::MASH_ORDER_FIRST)
{
return 1;
}
else if (mash == lmx2592_regs_t::mash_order_t::MASH_ORDER_SECOND)
{
if (fden % 2 != 0)
{
return 1;
}
else {
return 2;
}
}
else if (mash == lmx2592_regs_t::mash_order_t::MASH_ORDER_THIRD)
{
if (fden % 2 != 0 and fden % 3 != 0)
{
return 1;
}
else if (fden % 2 == 0 and fden % 3 != 0)
{
return 2;
}
else if (fden % 2 != 0 and fden % 3 == 0)
{
return 3;
}
else
{
return 6;
}
}
else if (mash == lmx2592_regs_t::mash_order_t::MASH_ORDER_FOURTH)
{
if (fden % 2 != 0 and fden % 3 != 0)
{
return 1;
}
else if (fden % 2 == 0 and fden % 3 != 0)
{
return 3;
}
else if (fden % 2 != 0 and fden % 3 == 0)
{
return 4;
}
else
{
return 12;
}
}
UHD_THROW_INVALID_CODE_PATH();
}
// Find a value of fden such that "k" is 1 to avoid subfractional spurs
// See the _get_k function for more details on how k is calculated
uint32_t _find_fden(const uint32_t initial_fden) const
{
auto fden = initial_fden;
// mathematically, this loop should run a maximum of 4 times
// i.e. initial_fden = 6N + 4 and mash_order is third or fourth order
for (int i = 0; i < 4; ++i)
{
if (_get_k(fden) == 1)
{
UHD_LOGGER_TRACE("LMX2592") <<
"_find_fden(" << initial_fden << ") returned " << fden;
return fden;
}
// decrement rather than increment, as incrementing fden would decrease
// the step size and violate any minimum step size that has been set
--fden;
}
UHD_LOGGER_WARNING("LMX2592") <<
"Unable to find suitable fractional value denominator for spur dodging on LMX2592";
UHD_LOGGER_ERROR("LMX2592") <<
"Spur dodging failed";
return initial_fden;
}
// returns the offset of the closest multiple of
// spur_frequency_base to target_frequency
// A negative offset indicates the closest multiple is at a lower frequency
double _get_closest_spur_offset(
double target_frequency,
double spur_frequency_base)
{
// find closest multiples of spur_frequency_base to target_frequency
const auto first_harmonic_number =
std::floor(target_frequency / spur_frequency_base);
const auto second_harmonic_number =
first_harmonic_number + 1;
// calculate offsets
const auto first_spur_offset =
(first_harmonic_number * spur_frequency_base) - target_frequency;
const auto second_spur_offset =
(second_harmonic_number * spur_frequency_base) - target_frequency;
// select offset with smallest absolute value
return std::min({
first_spur_offset,
second_spur_offset },
abs_less_than_compare);
}
// returns the closest spur offset among 4 different spurs
// as well as which signal the spur is close to
// 1. PFD to Frf_in spur (Integer boundary)
// 2. PFD to Fvco spur
// 3. Reference to Fvco spur
// 4. Reference to Flo spur
// A negative offset indicates the closest spur is at a lower frequency
offset_t _get_min_offset_frequency(
const uint16_t N,
const uint32_t fnum,
const uint32_t fden,
const int prescaler,
const double pfd_freq,
const int output_divider)
{
// Calculate intermediate values
const auto fref = _ref_freq;
const auto frf_in = pfd_freq * (N + double(fnum) / double(fden));
const auto fvco = frf_in * prescaler;
const auto flo = fvco / output_divider;
// the minimum offset is the smallest absolute value of these 4 values
// as calculated by the _get_closest_spur_offset function
// However, we also need to know which IF the spur is closest to
// in order to calculate the necessary frequency shift
// Integer Boundary:
const offset_t ib_spur = { _get_closest_spur_offset(frf_in, pfd_freq), FRF_IN };
// PFD Offset Spur:
const offset_t pfd_offset_spur = { _get_closest_spur_offset(fvco, pfd_freq), FVCO };
// Reference to Fvco Spur:
const offset_t fvco_spur = { _get_closest_spur_offset(fvco, fref), FVCO };
// Reference to F_lo Spur:
const offset_t flo_spur = { _get_closest_spur_offset(flo, fref), FLO };
// use min with special comparator for minimal absolute value
return std::min({
ib_spur,
pfd_offset_spur,
fvco_spur,
flo_spur},
offset_abs_less_than_compare);
}
// Find a suitable fnum such that _get_min_offset_frequency reports
// the closest spur is at least spur_dodging_threshold away.
// To see what spurs are considered, see _get_min_offset_frequency.
// This function uses a naive iterative approach, which could potentially
// fail for certain configurations. For example, it is assumed that the
// PFD frequency will be at least 10x larger than the step size of
// (fnum / fden). This function only considers at least 50% potential
// values of fnum, and does not consider changes to N.
uint32_t _find_fnum(
const uint16_t N,
const uint32_t initial_fnum,
const uint32_t fden,
const int prescaler,
const double pfd_freq,
const int output_divider,
const double spur_dodging_threshold)
{
auto fnum = initial_fnum;
auto min_offset = _get_min_offset_frequency(
N,
fnum,
fden,
prescaler,
pfd_freq,
output_divider);
UHD_LOGGER_TRACE("LMX2592") <<
"closest spur is at " << min_offset.first <<
" to " << log_intermediate_frequency(min_offset.second);
// shift away from the closest integer boundary i.e. towards 0.5
const double delta_fnum_sign = ((((double)fnum) / ((double)fden)) < 0.5) ? 1 : -1;
while (std::abs(min_offset.first) < spur_dodging_threshold)
{
double shift = spur_dodging_threshold;
// if the spur is in the same direction as the desired shift direction...
if (std::signbit(min_offset.first) == std::signbit(delta_fnum_sign))
{
shift += std::abs(min_offset.first);
}
else {
shift -= std::abs(min_offset.first);
}
// convert shift of IF value to shift of Frf_in
if (min_offset.second == FVCO)
{
shift /= prescaler;
}
else if (min_offset.second == FLO)
{
shift /= prescaler;
shift *= output_divider;
}
double delta_fnum_value = std::ceil((shift / pfd_freq) * fden);
fnum += narrow_cast<int32_t>(delta_fnum_value * delta_fnum_sign);
UHD_LOGGER_TRACE("LMX2592") <<
"adjusting fnum by " << (delta_fnum_value * delta_fnum_sign);
// fnum is unsigned, so this also checks for underflow
if (fnum >= fden)
{
UHD_LOGGER_WARNING("LMX2592") <<
"Unable to find suitable fractional value numerator for spur dodging on LMX2592";
UHD_LOGGER_ERROR("LMX2592") <<
"Spur dodging failed";
return initial_fnum;
}
min_offset = _get_min_offset_frequency(
N,
fnum,
fden,
prescaler,
pfd_freq,
output_divider);
UHD_LOGGER_TRACE("LMX2592") <<
"closest spur is at " << min_offset.first <<
" to " << log_intermediate_frequency(min_offset.second);
}
UHD_LOGGER_TRACE("LMX2592") <<
"_find_fnum(" << initial_fnum << ") returned " << fnum;
return fnum;
}
// if spur_dodging is true, mash_seed is the first odd value less than fden
static uint32_t _find_mash_seed(const uint32_t fden)
{
if (fden < 2) {
return 1;
}
else {
return (fden - 2) | 0x1;
}
};
};
lmx2592_impl::sptr lmx2592_iface::make(write_spi_t write, read_spi_t read) {
return std::make_shared<lmx2592_impl>(write, read);
}
|