summaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/common/adf4001_ctrl.cpp
blob: 46171c7ce7094f5e7402e8386544288e5f8797b0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
//
// Copyright 2013 Ettus Research LLC
//
// Original ADF4001 driver written by: bistromath
//                                     Mar 1, 2013
//
// Re-used and re-licensed with permission.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include "adf4001_ctrl.hpp"

#include <uhd/utils/msg.hpp>
#include <iostream>
#include <iomanip>

using namespace uhd;
using namespace uhd::usrp;

adf4001_regs_t::adf4001_regs_t(void) {
    ref_counter = 0;
    n = 0;
    charge_pump_current_1 = 0;
    charge_pump_current_2 = 0;
    anti_backlash_width = ANTI_BACKLASH_WIDTH_2_9NS;
    lock_detect_precision = LOCK_DETECT_PRECISION_3CYC;
    charge_pump_gain = CHARGE_PUMP_GAIN_1;
    counter_reset = COUNTER_RESET_NORMAL;
    power_down = POWER_DOWN_NORMAL;
    muxout = MUXOUT_TRISTATE_OUT;
    phase_detector_polarity = PHASE_DETECTOR_POLARITY_NEGATIVE;
    charge_pump_mode = CHARGE_PUMP_TRISTATE;
    fastlock_mode = FASTLOCK_MODE_DISABLED;
    timer_counter_control = TIMEOUT_3CYC;
}


boost::uint32_t adf4001_regs_t::get_reg(boost::uint8_t addr) {
    boost::uint32_t reg = 0;
    switch (addr) {
    case 0:
        reg |= (boost::uint32_t(ref_counter)         & 0x003FFF) << 2;
        reg |= (boost::uint32_t(anti_backlash_width) & 0x000003) << 16;
        reg |= (boost::uint32_t(lock_detect_precision) & 0x000001) << 20;
        break;
    case 1:
        reg |= (boost::uint32_t(n) & 0x001FFF) << 8;
        reg |= (boost::uint32_t(charge_pump_gain) & 0x000001) << 21;
        break;
    case 2:
        reg |= (boost::uint32_t(counter_reset) & 0x000001) << 2;
        reg |= (boost::uint32_t(power_down) & 0x000001) << 3;
        reg |= (boost::uint32_t(muxout) & 0x000007) << 4;
        reg |= (boost::uint32_t(phase_detector_polarity) & 0x000001) << 7;
        reg |= (boost::uint32_t(charge_pump_mode) & 0x000001) << 8;
        reg |= (boost::uint32_t(fastlock_mode) & 0x000003) << 9;
        reg |= (boost::uint32_t(timer_counter_control) & 0x00000F) << 11;
        reg |= (boost::uint32_t(charge_pump_current_1) & 0x000007) << 15;
        reg |= (boost::uint32_t(charge_pump_current_2) & 0x000007) << 18;
        reg |= (boost::uint32_t(power_down) & 0x000002) << 21;
        break;
    case 3:
        reg |= (boost::uint32_t(counter_reset) & 0x000001) << 2;
        reg |= (boost::uint32_t(power_down) & 0x000001) << 3;
        reg |= (boost::uint32_t(muxout) & 0x000007) << 4;
        reg |= (boost::uint32_t(phase_detector_polarity) & 0x000001) << 7;
        reg |= (boost::uint32_t(charge_pump_mode) & 0x000001) << 8;
        reg |= (boost::uint32_t(fastlock_mode) & 0x000003) << 9;
        reg |= (boost::uint32_t(timer_counter_control) & 0x00000F) << 11;
        reg |= (boost::uint32_t(charge_pump_current_1) & 0x000007) << 15;
        reg |= (boost::uint32_t(charge_pump_current_2) & 0x000007) << 18;
        reg |= (boost::uint32_t(power_down) & 0x000002) << 21;
        break;
    default:
        break;
    }

    reg |= (boost::uint32_t(addr) & 0x03);

    return reg;
}


adf4001_ctrl::adf4001_ctrl(spi_core_3000::sptr _spi, int slaveno):
    spi_iface(_spi),
    slaveno(slaveno)
    {

    spi_config.mosi_edge = spi_config_t::EDGE_RISE;

    //set defaults
    adf4001_regs.ref_counter = 1;
    adf4001_regs.n = 4;
    adf4001_regs.charge_pump_current_1 = 7;
    adf4001_regs.charge_pump_current_2 = 7;
    adf4001_regs.muxout = adf4001_regs_t::MUXOUT_DLD;
    adf4001_regs.counter_reset = adf4001_regs_t::COUNTER_RESET_NORMAL;
    adf4001_regs.phase_detector_polarity = adf4001_regs_t::PHASE_DETECTOR_POLARITY_POSITIVE;
    adf4001_regs.charge_pump_mode = adf4001_regs_t::CHARGE_PUMP_TRISTATE;

    //everything else should be defaults

    program_regs();
}

void adf4001_ctrl::set_lock_to_ext_ref(bool external) {
    if(external) {
        adf4001_regs.charge_pump_mode = adf4001_regs_t::CHARGE_PUMP_NORMAL;
    } else {
        adf4001_regs.charge_pump_mode = adf4001_regs_t::CHARGE_PUMP_TRISTATE;
    }

    program_regs();
}

void adf4001_ctrl::program_regs(void) {
    //no control over CE, only LE, therefore we use the initialization latch method
    write_reg(3);
    boost::this_thread::sleep(boost::posix_time::microseconds(1));

    //write R counter latch (0)
    write_reg(0);
    boost::this_thread::sleep(boost::posix_time::microseconds(1));

    //write N counter latch (1)
    write_reg(1);
    boost::this_thread::sleep(boost::posix_time::microseconds(1));
}


void adf4001_ctrl::write_reg(boost::uint8_t addr) {
    boost::uint32_t reg = adf4001_regs.get_reg(addr); //load the reg data

        spi_iface->transact_spi(slaveno,
                                spi_config,
                                reg,
                                24,
                                false);
}