1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
//
// Copyright 2015 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhdlib/usrp/common/ad936x_manager.hpp>
#include <uhd/utils/log.hpp>
#include <boost/functional/hash.hpp>
#include <boost/thread/thread.hpp>
using namespace uhd;
using namespace uhd::usrp;
/****************************************************************************
* Default values
***************************************************************************/
const double ad936x_manager::DEFAULT_GAIN = 0;
const double ad936x_manager::DEFAULT_BANDWIDTH = 56e6;
const double ad936x_manager::DEFAULT_TICK_RATE = 16e6;
const double ad936x_manager::DEFAULT_FREQ = 100e6; // Hz
const uint32_t ad936x_manager::DEFAULT_DECIM = 128;
const uint32_t ad936x_manager::DEFAULT_INTERP = 128;
const bool ad936x_manager::DEFAULT_AUTO_DC_OFFSET = true;
const bool ad936x_manager::DEFAULT_AUTO_IQ_BALANCE = true;
const bool ad936x_manager::DEFAULT_AGC_ENABLE = false;
class ad936x_manager_impl : public ad936x_manager
{
public:
/************************************************************************
* Structor
***********************************************************************/
ad936x_manager_impl(
const ad9361_ctrl::sptr &codec_ctrl,
const size_t n_frontends
) : _codec_ctrl(codec_ctrl),
_n_frontends(n_frontends)
{
if (_n_frontends < 1 or _n_frontends > 2) {
throw uhd::runtime_error(str(
boost::format("AD936x device can only have either 1 or 2 frontends, not %d.")
% _n_frontends
));
}
for (size_t i = 1; i <= _n_frontends; i++) {
_rx_frontends.push_back(str(boost::format("RX%d") % i));
_tx_frontends.push_back(str(boost::format("TX%d") % i));
}
}
/************************************************************************
* API Calls
***********************************************************************/
void init_codec()
{
for(const std::string &rx_fe: _rx_frontends) {
_codec_ctrl->set_gain(rx_fe, DEFAULT_GAIN);
_codec_ctrl->set_bw_filter(rx_fe, DEFAULT_BANDWIDTH);
_codec_ctrl->tune(rx_fe, DEFAULT_FREQ);
_codec_ctrl->set_dc_offset_auto(rx_fe, DEFAULT_AUTO_DC_OFFSET);
_codec_ctrl->set_iq_balance_auto(rx_fe, DEFAULT_AUTO_IQ_BALANCE);
_codec_ctrl->set_agc(rx_fe, DEFAULT_AGC_ENABLE);
}
for(const std::string &tx_fe: _tx_frontends) {
_codec_ctrl->set_gain(tx_fe, DEFAULT_GAIN);
_codec_ctrl->set_bw_filter(tx_fe, DEFAULT_BANDWIDTH);
_codec_ctrl->tune(tx_fe, DEFAULT_FREQ);
}
}
//
// loopback_self_test checks the integrity of the FPGA->AD936x->FPGA sample interface.
// The AD936x is put in loopback mode that sends the TX data unchanged to the RX side.
// A test value is written to the codec_idle register in the TX side of the radio.
// The readback register is then used to capture the values on the TX and RX sides
// simultaneously for comparison. It is a reasonably effective test for AC timing
// since I/Q Ch0/Ch1 alternate over the same wires. Note, however, that it uses
// whatever timing is configured at the time the test is called rather than select
// worst case conditions to stress the interface.
//
void loopback_self_test(
boost::function<void(uint32_t)> poker_functor,
boost::function<uint64_t()> peeker_functor
) {
// Put AD936x in loopback mode
_codec_ctrl->data_port_loopback(true);
UHD_LOGGER_INFO("AD936X") << "Performing CODEC loopback test... ";
size_t hash = size_t(time(NULL));
// Allow some time for AD936x to enter loopback mode.
// There is no clear statement in the documentation of how long it takes,
// but UG-570 does say to "allow six ADC_CLK/64 clock cycles of flush time"
// when leaving the TX or RX states. That works out to ~75us at the
// minimum clock rate of 5 MHz, which lines up with test results.
// Sleeping 1ms is far more than enough.
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
for (size_t i = 0; i < 100; i++)
{
// Create test word
boost::hash_combine(hash, i);
const uint32_t word32 = uint32_t(hash) & 0xfff0fff0;
// Write test word to codec_idle idle register (on TX side)
poker_functor(word32);
// Read back values - TX is lower 32-bits and RX is upper 32-bits
const uint64_t rb_word64 = peeker_functor();
const uint32_t rb_tx = uint32_t(rb_word64 >> 32);
const uint32_t rb_rx = uint32_t(rb_word64 & 0xffffffff);
// Compare TX and RX values to test word
bool test_fail = word32 != rb_tx or word32 != rb_rx;
if(test_fail)
{
UHD_LOGGER_INFO("AD936X") << "CODEC loopback test failed";
throw uhd::runtime_error("CODEC loopback test failed.");
}
}
UHD_LOGGER_INFO("AD936X") << "CODEC loopback test passed";
// Zero out the idle data.
poker_functor(0);
// Take AD936x out of loopback mode
_codec_ctrl->data_port_loopback(false);
}
double get_auto_tick_rate(
const double lcm_rate,
size_t num_chans
) {
UHD_ASSERT_THROW(num_chans >= 1 and num_chans <= _n_frontends);
const uhd::meta_range_t rate_range = _codec_ctrl->get_clock_rate_range();
const double min_tick_rate = rate_range.start();
const double max_tick_rate = rate_range.stop() / num_chans;
// Check if the requested rate is within available limits:
if (uhd::math::fp_compare::fp_compare_delta<double>(lcm_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) >
uhd::math::fp_compare::fp_compare_delta<double>(max_tick_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ)) {
throw uhd::value_error(str(
boost::format("[ad936x_manager] Cannot get determine a tick rate if sampling rate exceeds maximum tick rate (%f > %f)")
% lcm_rate % max_tick_rate
));
}
// **** Choose the new rate ****
// Rules for choosing the tick rate:
// Choose a rate that is a power of 2 larger than the sampling rate,
// but at least 4. Cannot exceed the max tick rate, of course, but must
// be larger than the minimum tick rate.
// An equation that does all that is:
//
// f_auto = r * 2^floor(log2(f_max/r))
// = lcm_rate * multiplier
//
// where r is the base rate and f_max is the maximum tick rate. The case
// where floor() yields 1 must be caught.
// We use shifts here instead of 2^x because exp2() is not available in all compilers,
// also this guarantees no rounding issues. The type cast to int32_t serves as floor():
int32_t multiplier = (1 << int32_t(uhd::math::log2(max_tick_rate / lcm_rate)));
if (multiplier == 2 and lcm_rate >= min_tick_rate) {
// Don't bother (see above)
multiplier = 1;
}
const double new_rate = lcm_rate * multiplier;
UHD_ASSERT_THROW(
uhd::math::fp_compare::fp_compare_delta<double>(new_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) >=
uhd::math::fp_compare::fp_compare_delta<double>(min_tick_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ)
);
UHD_ASSERT_THROW(
uhd::math::fp_compare::fp_compare_delta<double>(new_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ) <=
uhd::math::fp_compare::fp_compare_delta<double>(max_tick_rate, uhd::math::FREQ_COMPARISON_DELTA_HZ)
);
return new_rate;
}
bool check_bandwidth(double rate, const std::string dir)
{
if (rate > _codec_ctrl->get_bw_filter_range(dir).stop()) {
UHD_LOGGER_WARNING("AD936X")
<< "Selected " << dir << " bandwidth (" << (rate/1e6) << " MHz) exceeds\n"
<< "analog frontend filter bandwidth (" << (_codec_ctrl->get_bw_filter_range(dir).stop()/1e6) << " MHz)."
;
return false;
}
return true;
}
void populate_frontend_subtree(uhd::property_tree::sptr subtree, const std::string &key, uhd::direction_t dir)
{
subtree->create<std::string>("name").set("FE-"+key);
// Sensors
subtree->create<sensor_value_t>("sensors/temp")
.set_publisher(boost::bind(&ad9361_ctrl::get_temperature, _codec_ctrl))
;
if (dir == RX_DIRECTION) {
subtree->create<sensor_value_t>("sensors/rssi")
.set_publisher(boost::bind(&ad9361_ctrl::get_rssi, _codec_ctrl, key))
;
}
// Gains
for(const std::string &name: ad9361_ctrl::get_gain_names(key))
{
subtree->create<meta_range_t>(uhd::fs_path("gains") / name / "range")
.set(ad9361_ctrl::get_gain_range(key));
subtree->create<double>(uhd::fs_path("gains") / name / "value")
.set(ad936x_manager::DEFAULT_GAIN)
.set_coercer(boost::bind(&ad9361_ctrl::set_gain, _codec_ctrl, key, _1))
;
}
// FE Settings
subtree->create<std::string>("connection").set("IQ");
subtree->create<bool>("enabled").set(true);
subtree->create<bool>("use_lo_offset").set(false);
// Analog Bandwidths
subtree->create<double>("bandwidth/value")
.set(ad936x_manager::DEFAULT_BANDWIDTH)
.set_coercer(boost::bind(&ad9361_ctrl::set_bw_filter, _codec_ctrl, key, _1))
;
subtree->create<meta_range_t>("bandwidth/range")
.set_publisher(boost::bind(&ad9361_ctrl::get_bw_filter_range, key))
;
// LO Tuning
subtree->create<meta_range_t>("freq/range")
.set_publisher(boost::bind(&ad9361_ctrl::get_rf_freq_range))
;
subtree->create<double>("freq/value")
.set_publisher(boost::bind(&ad9361_ctrl::get_freq, _codec_ctrl, key))
.set_coercer(boost::bind(&ad9361_ctrl::tune, _codec_ctrl, key, _1))
;
// Frontend corrections
if(dir == RX_DIRECTION)
{
subtree->create<bool>("dc_offset/enable" )
.set(ad936x_manager::DEFAULT_AUTO_DC_OFFSET)
.add_coerced_subscriber(boost::bind(&ad9361_ctrl::set_dc_offset_auto, _codec_ctrl, key, _1))
;
subtree->create<bool>("iq_balance/enable" )
.set(ad936x_manager::DEFAULT_AUTO_IQ_BALANCE)
.add_coerced_subscriber(boost::bind(&ad9361_ctrl::set_iq_balance_auto, _codec_ctrl, key, _1))
;
// AGC setup
const std::list<std::string> mode_strings = boost::assign::list_of("slow")("fast");
subtree->create<bool>("gain/agc/enable")
.set(DEFAULT_AGC_ENABLE)
.add_coerced_subscriber(boost::bind((&ad9361_ctrl::set_agc), _codec_ctrl, key, _1))
;
subtree->create<std::string>("gain/agc/mode/value")
.add_coerced_subscriber(boost::bind((&ad9361_ctrl::set_agc_mode), _codec_ctrl, key, _1)).set(mode_strings.front())
;
subtree->create< std::list<std::string> >("gain/agc/mode/options")
.set(mode_strings)
;
}
// Frontend filters
for(const std::string &filter_name: _codec_ctrl->get_filter_names(key)) {
subtree->create<filter_info_base::sptr>(uhd::fs_path("filters") / filter_name / "value" )
.set_publisher(boost::bind(&ad9361_ctrl::get_filter, _codec_ctrl, key, filter_name))
.add_coerced_subscriber(boost::bind(&ad9361_ctrl::set_filter, _codec_ctrl, key, filter_name, _1));
}
}
private:
//! Store a pointer to an actual AD936x control object
ad9361_ctrl::sptr _codec_ctrl;
//! Do we have 1 or 2 frontends?
const size_t _n_frontends;
//! List of valid RX frontend names (RX1, RX2)
std::vector<std::string> _rx_frontends;
//! List of valid TX frontend names (TX1, TX2)
std::vector<std::string> _tx_frontends;
}; /* class ad936x_manager_impl */
ad936x_manager::sptr ad936x_manager::make(
const ad9361_ctrl::sptr &codec_ctrl,
const size_t n_frontends
) {
return sptr(
new ad936x_manager_impl(codec_ctrl, n_frontends)
);
}
|