1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
|
//
// Copyright 2014 Ettus Research
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "ad9361_filter_taps.h"
#include "ad9361_gain_tables.h"
#include "ad9361_synth_lut.h"
#include "ad9361_client.h"
#include "ad9361_device.h"
#define _USE_MATH_DEFINES
#include <cmath>
#include <uhd/exception.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/msg.hpp>
#include <stdint.h>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/thread/thread.hpp>
#include <boost/scoped_array.hpp>
#include <boost/format.hpp>
#include <boost/math/special_functions.hpp>
////////////////////////////////////////////////////////////
// the following macros evaluate to a compile time constant
// macros By Tom Torfs - donated to the public domain
/* turn a numeric literal into a hex constant
(avoids problems with leading zeroes)
8-bit constants max value 0x11111111, always fits in unsigned long
*/
#define HEX__(n) 0x##n##LU
/* 8-bit conversion function */
#define B8__(x) ((x&0x0000000FLU)?1:0) \
+((x&0x000000F0LU)?2:0) \
+((x&0x00000F00LU)?4:0) \
+((x&0x0000F000LU)?8:0) \
+((x&0x000F0000LU)?16:0) \
+((x&0x00F00000LU)?32:0) \
+((x&0x0F000000LU)?64:0) \
+((x&0xF0000000LU)?128:0)
/* for upto 8-bit binary constants */
#define B8(d) ((unsigned char)B8__(HEX__(d)))
////////////////////////////////////////////////////////////
namespace uhd { namespace usrp {
/* This is a simple comparison for very large double-precision floating
* point numbers. It is used to prevent re-tunes for frequencies that are
* the same but not 'exactly' because of data precision issues. */
// TODO: see if we can avoid the need for this function
int freq_is_nearly_equal(double a, double b) {
return std::max(a,b) - std::min(a,b) < 1;
}
/***********************************************************************
* Filter functions
**********************************************************************/
/* This function takes in the calculated maximum number of FIR taps, and
* returns a number of taps that makes AD9361 happy. */
int get_num_taps(int max_num_taps) {
int num_taps = 0;
int num_taps_list[] = {16, 32, 48, 64, 80, 96, 112, 128};
int i;
for(i = 1; i < 8; i++) {
if(max_num_taps >= num_taps_list[i]) {
continue;
} else {
num_taps = num_taps_list[i - 1];
break;
}
} if(num_taps == 0) { num_taps = 128; }
return num_taps;
}
const double ad9361_device_t::AD9361_MAX_GAIN = 89.75;
const double ad9361_device_t::AD9361_MIN_CLOCK_RATE = 220e3;
const double ad9361_device_t::AD9361_MAX_CLOCK_RATE = 61.44e6;
const double ad9361_device_t::AD9361_CAL_VALID_WINDOW = 100e6;
// Max bandwdith is due to filter rolloff in analog filter stage
const double ad9361_device_t::AD9361_RECOMMENDED_MAX_BANDWIDTH = 56e6;
/* Startup RF frequencies */
const double ad9361_device_t::DEFAULT_RX_FREQ = 800e6;
const double ad9361_device_t::DEFAULT_TX_FREQ = 850e6;
/* Program either the RX or TX FIR filter.
*
* The process is the same for both filters, but the function must be told
* how many taps are in the filter, and given a vector of the taps
* themselves. */
void ad9361_device_t::_program_fir_filter(direction_t direction, chain_t chain, int num_taps, uint16_t *coeffs)
{
uint16_t base;
/* RX and TX filters use largely identical sets of programming registers.
Select the appropriate bank of registers here. */
if (direction == RX) {
base = 0x0f0;
} else {
base = 0x060;
}
/* Encode number of filter taps for programming register */
uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
uint8_t reg_chain = 0;
switch (chain) {
case CHAIN_1:
reg_chain = 0x01 << 3;
break;
case CHAIN_2:
reg_chain = 0x02 << 3;
break;
default:
reg_chain = 0x03 << 3;
}
/* Turn on the filter clock. */
_io_iface->poke8(base + 5, reg_numtaps | reg_chain | 0x02);
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
/* Zero the unused taps just in case they have stale data */
int addr;
for (addr = num_taps; addr < 128; addr++) {
_io_iface->poke8(base + 0, addr);
_io_iface->poke8(base + 1, 0x0);
_io_iface->poke8(base + 2, 0x0);
_io_iface->poke8(base + 5, reg_numtaps | reg_chain | (1 << 1) | (1 << 2));
_io_iface->poke8(base + 4, 0x00);
_io_iface->poke8(base + 4, 0x00);
}
/* Iterate through indirect programming of filter coeffs using ADI recomended procedure */
for (addr = 0; addr < num_taps; addr++) {
_io_iface->poke8(base + 0, addr);
_io_iface->poke8(base + 1, (coeffs[addr]) & 0xff);
_io_iface->poke8(base + 2, (coeffs[addr] >> 8) & 0xff);
_io_iface->poke8(base + 5, reg_numtaps | reg_chain | (1 << 1) | (1 << 2));
_io_iface->poke8(base + 4, 0x00);
_io_iface->poke8(base + 4, 0x00);
}
/* UG-671 states (page 25) (paraphrased and clarified):
" After the table has been programmed, write to register BASE+5 with the write bit D2 cleared and D1 high.
Then, write to register BASE+5 again with D1 clear, thus ensuring that the write bit resets internally
before the clock stops. Wait 4 sample clock periods after setting D2 high while that data writes into the table"
*/
_io_iface->poke8(base + 5, reg_numtaps | reg_chain | (1 << 1));
if (direction == RX) {
_io_iface->poke8(base + 5, reg_numtaps | reg_chain );
/* Rx Gain, set to prevent digital overflow/saturation in filters
0:+6dB, 1:0dB, 2:-6dB, 3:-12dB
page 35 of UG-671 */
_io_iface->poke8(base + 6, 0x02); /* Also turn on -6dB Rx gain here, to stop filter overfow.*/
} else {
/* Tx Gain. bit[0]. set to prevent digital overflow/saturation in filters
0: 0dB, 1:-6dB
page 25 of UG-671 */
_io_iface->poke8(base + 5, reg_numtaps | reg_chain );
}
}
/* Program the RX FIR Filter. */
void ad9361_device_t::_setup_rx_fir(size_t num_taps, int32_t decimation)
{
if (not (decimation == 1 or decimation == 2 or decimation == 4)) {
throw uhd::runtime_error("[ad9361_device_t] Invalid Rx FIR decimation.");
}
boost::scoped_array<uint16_t> coeffs(new uint16_t[num_taps]);
for (size_t i = 0; i < num_taps; i++) {
switch (num_taps) {
case 128:
coeffs[i] = uint16_t((decimation==4) ? fir_128_x4_coeffs[i] : hb127_coeffs[i]);
break;
case 96:
coeffs[i] = uint16_t((decimation==4) ? fir_96_x4_coeffs[i] : hb95_coeffs[i]);
break;
case 64:
coeffs[i] = uint16_t((decimation==4) ? fir_64_x4_coeffs[i] : hb63_coeffs[i]);
break;
case 48:
coeffs[i] = uint16_t((decimation==4) ? fir_48_x4_coeffs[i] : hb47_coeffs[i]);
break;
default:
throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Rx FIR taps.");
}
}
_program_fir_filter(RX, CHAIN_BOTH, num_taps, coeffs.get());
}
/* Program the TX FIR Filter. */
void ad9361_device_t::_setup_tx_fir(size_t num_taps, int32_t interpolation)
{
if (not (interpolation == 1 or interpolation == 2 or interpolation == 4)) {
throw uhd::runtime_error("[ad9361_device_t] Invalid Tx FIR interpolation.");
}
if (interpolation == 1 and num_taps > 64) {
throw uhd::runtime_error("[ad9361_device_t] Too many Tx FIR taps for interpolation value.");
}
boost::scoped_array<uint16_t> coeffs(new uint16_t[num_taps]);
for (size_t i = 0; i < num_taps; i++) {
switch (num_taps) {
case 128:
coeffs[i] = uint16_t((interpolation==4) ? fir_128_x4_coeffs[i] : hb127_coeffs[i]);
break;
case 96:
coeffs[i] = uint16_t((interpolation==4) ? fir_96_x4_coeffs[i] : hb95_coeffs[i]);
break;
case 64:
coeffs[i] = uint16_t((interpolation==4) ? fir_64_x4_coeffs[i] : hb63_coeffs[i]);
break;
case 48:
coeffs[i] = uint16_t((interpolation==4) ? fir_48_x4_coeffs[i] : hb47_coeffs[i]);
break;
default:
throw uhd::runtime_error("[ad9361_device_t] Unsupported number of Tx FIR taps.");
}
}
_program_fir_filter(TX, CHAIN_BOTH, num_taps, coeffs.get());
}
/***********************************************************************
* Calibration functions
***********************************************************************/
/* Calibrate and lock the BBPLL.
*
* This function should be called anytime the BBPLL is tuned. */
void ad9361_device_t::_calibrate_lock_bbpll()
{
_io_iface->poke8(0x03F, 0x05); // Start the BBPLL calibration
_io_iface->poke8(0x03F, 0x01); // Clear the 'start' bit
/* Increase BBPLL KV and phase margin. */
_io_iface->poke8(0x04c, 0x86);
_io_iface->poke8(0x04d, 0x01);
_io_iface->poke8(0x04d, 0x05);
/* Wait for BBPLL lock. */
size_t count = 0;
while (!(_io_iface->peek8(0x05e) & 0x80)) {
if (count > 1000) {
throw uhd::runtime_error("[ad9361_device_t] BBPLL not locked");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(2));
}
}
/* Calibrate the synthesizer charge pumps.
*
* Technically, this calibration only needs to be done once, at device
* initialization. */
void ad9361_device_t::_calibrate_synth_charge_pumps()
{
/* If this function ever gets called, and the ENSM isn't already in the
* ALERT state, then something has gone horribly wrong. */
if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
throw uhd::runtime_error("[ad9361_device_t] AD9361 not in ALERT during cal");
}
/* Calibrate the RX synthesizer charge pump. */
size_t count = 0;
_io_iface->poke8(0x23d, 0x04);
while (!(_io_iface->peek8(0x244) & 0x80)) {
if (count > 5) {
throw uhd::runtime_error("[ad9361_device_t] RX charge pump cal failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
}
_io_iface->poke8(0x23d, 0x00);
/* Calibrate the TX synthesizer charge pump. */
count = 0;
_io_iface->poke8(0x27d, 0x04);
while (!(_io_iface->peek8(0x284) & 0x80)) {
if (count > 5) {
throw uhd::runtime_error("[ad9361_device_t] TX charge pump cal failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
}
_io_iface->poke8(0x27d, 0x00);
}
/* Calibrate the analog BB RX filter.
*
* Note that the filter calibration depends heavily on the baseband
* bandwidth, so this must be re-done after any change to the RX sample
* rate.
* UG570 Page 33 states that this filter should be calibrated to 1.4 * bbbw*/
double ad9361_device_t::_calibrate_baseband_rx_analog_filter(double req_rfbw)
{
double bbbw = req_rfbw / 2.0;
if(bbbw > _baseband_bw / 2.0)
{
UHD_LOG << "baseband bandwidth too large for current sample rate. Setting bandwidth to: "<<_baseband_bw;
bbbw = _baseband_bw / 2.0;
}
/* Baseband BW must be between 28e6 and 0.143e6.
* Max filter BW is 39.2 MHz. 39.2 / 1.4 = 28
* Min filter BW is 200kHz. 200 / 1.4 = 143 */
if (bbbw > 28e6) {
bbbw = 28e6;
} else if (bbbw < 0.143e6) {
bbbw = 0.143e6;
}
double rxtune_clk = ((1.4 * bbbw * 2 * M_PI) / M_LN2);
_rx_bbf_tunediv = std::min<uint16_t>(511, uint16_t(std::ceil(_bbpll_freq / rxtune_clk)));
_regs.bbftune_config = (_regs.bbftune_config & 0xFE)
| ((_rx_bbf_tunediv >> 8) & 0x0001);
double bbbw_mhz = bbbw / 1e6;
double temp = ((bbbw_mhz - std::floor(bbbw_mhz)) * 1000) / 7.8125;
uint8_t bbbw_khz = std::min<uint8_t>(127, uint8_t(std::floor(temp + 0.5)));
/* Set corner frequencies and dividers. */
_io_iface->poke8(0x1fb, (uint8_t) (bbbw_mhz));
_io_iface->poke8(0x1fc, bbbw_khz);
_io_iface->poke8(0x1f8, (_rx_bbf_tunediv & 0x00FF));
_io_iface->poke8(0x1f9, _regs.bbftune_config);
/* RX Mix Voltage settings - only change with apps engineer help. */
_io_iface->poke8(0x1d5, 0x3f);
_io_iface->poke8(0x1c0, 0x03);
/* Enable RX1 & RX2 filter tuners. */
_io_iface->poke8(0x1e2, 0x02);
_io_iface->poke8(0x1e3, 0x02);
/* Run the calibration! */
size_t count = 0;
_io_iface->poke8(0x016, 0x80);
while (_io_iface->peek8(0x016) & 0x80) {
if (count > 100) {
throw uhd::runtime_error("[ad9361_device_t] RX baseband filter cal FAILURE");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
}
/* Disable RX1 & RX2 filter tuners. */
_io_iface->poke8(0x1e2, 0x03);
_io_iface->poke8(0x1e3, 0x03);
return bbbw;
}
/* Calibrate the analog BB TX filter.
*
* Note that the filter calibration depends heavily on the baseband
* bandwidth, so this must be re-done after any change to the TX sample
* rate.
* UG570 Page 32 states that this filter should be calibrated to 1.6 * bbbw*/
double ad9361_device_t::_calibrate_baseband_tx_analog_filter(double req_rfbw)
{
double bbbw = req_rfbw / 2.0;
if(bbbw > _baseband_bw / 2.0)
{
UHD_LOG << "baseband bandwidth too large for current sample rate. Setting bandwidth to: "<<_baseband_bw;
bbbw = _baseband_bw / 2.0;
}
/* Baseband BW must be between 20e6 and 0.391e6.
* Max filter BW is 32 MHz. 32 / 1.6 = 20
* Min filter BW is 625 kHz. 625 / 1.6 = 391 */
if (bbbw > 20e6) {
bbbw = 20e6;
} else if (bbbw < 0.391e6) {
bbbw = 0.391e6;
}
double txtune_clk = ((1.6 * bbbw * 2 * M_PI) / M_LN2);
uint16_t txbbfdiv = std::min<uint16_t>(511, uint16_t(std::ceil(_bbpll_freq / txtune_clk)));
_regs.bbftune_mode = (_regs.bbftune_mode & 0xFE)
| ((txbbfdiv >> 8) & 0x0001);
/* Program the divider values. */
_io_iface->poke8(0x0d6, (txbbfdiv & 0x00FF));
_io_iface->poke8(0x0d7, _regs.bbftune_mode);
/* Enable the filter tuner. */
_io_iface->poke8(0x0ca, 0x22);
/* Calibrate! */
size_t count = 0;
_io_iface->poke8(0x016, 0x40);
while (_io_iface->peek8(0x016) & 0x40) {
if (count > 100) {
throw uhd::runtime_error("[ad9361_device_t] TX baseband filter cal FAILURE");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
}
/* Disable the filter tuner. */
_io_iface->poke8(0x0ca, 0x26);
return bbbw;
}
/* Calibrate the secondary TX filter.
*
* This filter also depends on the TX sample rate, so if a rate change is
* made, the previous calibration will no longer be valid.
* UG570 Page 32 states that this filter should be calibrated to 5 * bbbw*/
double ad9361_device_t::_calibrate_secondary_tx_filter(double req_rfbw)
{
double bbbw = req_rfbw / 2.0;
if(bbbw > _baseband_bw / 2.0)
{
UHD_LOG << "baseband bandwidth too large for current sample rate. Setting bandwidth to: "<<_baseband_bw;
bbbw = _baseband_bw / 2.0;
}
/* Baseband BW must be between 20e6 and 0.54e6.
* Max filter BW is 100 MHz. 100 / 5 = 20
* Min filter BW is 2.7 MHz. 2.7 / 5 = 0.54 */
if (bbbw > 20e6) {
bbbw = 20e6;
} else if (bbbw < 0.54e6) {
bbbw = 0.54e6;
}
double bbbw_mhz = bbbw / 1e6;
/* Start with a resistor value of 100 Ohms. */
int res = 100;
/* Calculate target corner frequency. */
double corner_freq = 5 * bbbw_mhz * 2 * M_PI;
/* Iterate through RC values to determine correct combination. */
int cap = 0;
int i;
for (i = 0; i <= 3; i++) {
cap = static_cast<int>(std::floor(0.5 + ((1 / ((corner_freq * res) * 1e6)) * 1e12)))
- 12;
if (cap <= 63) {
break;
}
res = res * 2;
}
if (cap > 63) {
cap = 63;
}
uint8_t reg0d0, reg0d1, reg0d2;
/* Translate baseband bandwidths to register settings. */
if ((bbbw_mhz * 2) <= 9) {
reg0d0 = 0x59;
} else if (((bbbw_mhz * 2) > 9) && ((bbbw_mhz * 2) <= 24)) {
reg0d0 = 0x56;
} else if ((bbbw_mhz * 2) > 24) {
reg0d0 = 0x57;
} else {
throw uhd::runtime_error("[ad9361_device_t] Cal2ndTxFil: INVALID_CODE_PATH bad bbbw_mhz");
reg0d0 = 0x00;
}
/* Translate resistor values to register settings. */
if (res == 100) {
reg0d1 = 0x0c;
} else if (res == 200) {
reg0d1 = 0x04;
} else if (res == 400) {
reg0d1 = 0x03;
} else if (res == 800) {
reg0d1 = 0x01;
} else {
reg0d1 = 0x0c;
}
reg0d2 = cap;
/* Program the above-calculated values. Sweet. */
_io_iface->poke8(0x0d2, reg0d2);
_io_iface->poke8(0x0d1, reg0d1);
_io_iface->poke8(0x0d0, reg0d0);
return bbbw;
}
/* Calibrate the RX TIAs.
*
* Note that the values in the TIA register, after calibration, vary with
* the RX gain settings.
* We do not really program the BW here. Most settings are taken form the BB LPF registers
* UG570 page 33 states that this filter should be calibrated to 2.5 * bbbw */
double ad9361_device_t::_calibrate_rx_TIAs(double req_rfbw)
{
uint8_t reg1eb = _io_iface->peek8(0x1eb) & 0x3F;
uint8_t reg1ec = _io_iface->peek8(0x1ec) & 0x7F;
uint8_t reg1e6 = _io_iface->peek8(0x1e6) & 0x07;
uint8_t reg1db = 0x00;
uint8_t reg1dc = 0x00;
uint8_t reg1dd = 0x00;
uint8_t reg1de = 0x00;
uint8_t reg1df = 0x00;
double bbbw = req_rfbw / 2.0;
if(bbbw > _baseband_bw / 2.0)
{
UHD_LOG << "baseband bandwidth too large for current sample rate. Setting bandwidth to: "<<_baseband_bw;
bbbw = _baseband_bw / 2.0;
}
/* Baseband BW must be between 28e6 and 0.4e6.
* Max filter BW is 70 MHz. 70 / 2.5 = 28
* Min filter BW is 1 MHz. 1 / 2.5 = 0.4*/
if (bbbw > 28e6) {
bbbw = 28e6;
} else if (bbbw < 0.40e6) {
bbbw = 0.40e6;
}
double ceil_bbbw_mhz = std::ceil(bbbw / 1e6);
/* Do some crazy resistor and capacitor math. */
int Cbbf = (reg1eb * 160) + (reg1ec * 10) + 140;
int R2346 = 18300 * (reg1e6 & 0x07);
double CTIA_fF = (Cbbf * R2346 * 0.56) / 3500;
/* Translate baseband BW to register settings. */
if (ceil_bbbw_mhz <= 3) {
reg1db = 0xe0;
} else if ((ceil_bbbw_mhz > 3) && (ceil_bbbw_mhz <= 10)) {
reg1db = 0x60;
} else if (ceil_bbbw_mhz > 10) {
reg1db = 0x20;
} else {
throw uhd::runtime_error("[ad9361_device_t] CalRxTias: INVALID_CODE_PATH bad bbbw_mhz");
}
if (CTIA_fF > 2920) {
reg1dc = 0x40;
reg1de = 0x40;
uint8_t temp = (uint8_t) std::min<uint8_t>(127,
uint8_t(std::floor(0.5 + ((CTIA_fF - 400.0) / 320.0))));
reg1dd = temp;
reg1df = temp;
} else {
uint8_t temp = uint8_t(std::floor(0.5 + ((CTIA_fF - 400.0) / 40.0)) + 0x40);
reg1dc = temp;
reg1de = temp;
reg1dd = 0;
reg1df = 0;
}
/* w00t. Settings calculated. Program them and roll out. */
_io_iface->poke8(0x1db, reg1db);
_io_iface->poke8(0x1dd, reg1dd);
_io_iface->poke8(0x1df, reg1df);
_io_iface->poke8(0x1dc, reg1dc);
_io_iface->poke8(0x1de, reg1de);
return bbbw;
}
/* Setup the AD9361 ADC.
*
* There are 40 registers that control the ADC's operation, most of the
* values of which must be derived mathematically, dependent on the current
* setting of the BBPLL. Note that the order of calculation is critical, as
* some of the 40 registers depend on the values in others. */
void ad9361_device_t::_setup_adc()
{
double bbbw_mhz = (((_bbpll_freq / 1e6) / _rx_bbf_tunediv) * M_LN2) \
/ (1.4 * 2 * M_PI);
/* For calibration, baseband BW is half the complex BW, and must be
* between 28e6 and 0.2e6. */
if(bbbw_mhz > 28) {
bbbw_mhz = 28;
} else if (bbbw_mhz < 0.20) {
bbbw_mhz = 0.20;
}
uint8_t rxbbf_c3_msb = _io_iface->peek8(0x1eb) & 0x3F;
uint8_t rxbbf_c3_lsb = _io_iface->peek8(0x1ec) & 0x7F;
uint8_t rxbbf_r2346 = _io_iface->peek8(0x1e6) & 0x07;
double fsadc = _adcclock_freq / 1e6;
/* Sort out the RC time constant for our baseband bandwidth... */
double rc_timeconst = 0.0;
if(bbbw_mhz < 18) {
rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
* (18300 * rxbbf_r2346)
* ((160e-15 * rxbbf_c3_msb)
+ (10e-15 * rxbbf_c3_lsb) + 140e-15)
* (bbbw_mhz * 1e6)));
} else {
rc_timeconst = (1 / ((1.4 * 2 * M_PI) \
* (18300 * rxbbf_r2346)
* ((160e-15 * rxbbf_c3_msb)
+ (10e-15 * rxbbf_c3_lsb) + 140e-15)
* (bbbw_mhz * 1e6) * (1 + (0.01 * (bbbw_mhz - 18)))));
}
double scale_res = sqrt(1 / rc_timeconst);
double scale_cap = sqrt(1 / rc_timeconst);
double scale_snr = (_adcclock_freq < 80e6) ? 1.0 : 1.584893192;
double maxsnr = 640 / 160;
/* Calculate the values for all 40 settings registers.
*
* DO NOT TOUCH THIS UNLESS YOU KNOW EXACTLY WHAT YOU ARE DOING. kthx.*/
uint8_t data[40];
data[0] = 0; data[1] = 0; data[2] = 0; data[3] = 0x24;
data[4] = 0x24; data[5] = 0; data[6] = 0;
data[7] = std::min<uint8_t>(124, uint8_t(std::floor(-0.5
+ (80.0 * scale_snr * scale_res
* std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0))))));
double data007 = data[7];
data[8] = std::min<uint8_t>(255, uint8_t(std::floor(0.5
+ ((20.0 * (640.0 / fsadc) * ((data007 / 80.0))
/ (scale_res * scale_cap))))));
data[10] = std::min<uint8_t>(127, uint8_t(std::floor(-0.5 + (77.0 * scale_res
* std::min<double>(1.0, sqrt(maxsnr * fsadc / 640.0))))));
double data010 = data[10];
data[9] = std::min<uint8_t>(127, uint8_t(std::floor(0.8 * data010)));
data[11] = std::min<uint8_t>(255, uint8_t(std::floor(0.5
+ (20.0 * (640.0 / fsadc) * ((data010 / 77.0)
/ (scale_res * scale_cap))))));
data[12] = std::min<uint8_t>(127, uint8_t(std::floor(-0.5
+ (80.0 * scale_res * std::min<double>(1.0,
sqrt(maxsnr * fsadc / 640.0))))));
double data012 = data[12];
data[13] = std::min<uint8_t>(255, uint8_t(std::floor(-1.5
+ (20.0 * (640.0 / fsadc) * ((data012 / 80.0)
/ (scale_res * scale_cap))))));
data[14] = 21 * uint8_t(std::floor(0.1 * 640.0 / fsadc));
data[15] = std::min<uint8_t>(127, uint8_t(1.025 * data007));
double data015 = data[15];
data[16] = std::min<uint8_t>(127, uint8_t(std::floor((data015
* (0.98 + (0.02 * std::max<double>(1.0,
(640.0 / fsadc) / maxsnr)))))));
data[17] = data[15];
data[18] = std::min<uint8_t>(127, uint8_t(0.975 * (data010)));
double data018 = data[18];
data[19] = std::min<uint8_t>(127, uint8_t(std::floor((data018
* (0.98 + (0.02 * std::max<double>(1.0,
(640.0 / fsadc) / maxsnr)))))));
data[20] = data[18];
data[21] = std::min<uint8_t>(127, uint8_t(0.975 * data012));
double data021 = data[21];
data[22] = std::min<uint8_t>(127, uint8_t(std::floor((data021
* (0.98 + (0.02 * std::max<double>(1.0,
(640.0 / fsadc) / maxsnr)))))));
data[23] = data[21];
data[24] = 0x2e;
data[25] = uint8_t(std::floor(128.0 + std::min<double>(63.0,
63.0 * (fsadc / 640.0))));
data[26] = uint8_t(std::floor(std::min<double>(63.0, 63.0 * (fsadc / 640.0)
* (0.92 + (0.08 * (640.0 / fsadc))))));
data[27] = uint8_t(std::floor(std::min<double>(63.0,
32.0 * sqrt(fsadc / 640.0))));
data[28] = uint8_t(std::floor(128.0 + std::min<double>(63.0,
63.0 * (fsadc / 640.0))));
data[29] = uint8_t(std::floor(std::min<double>(63.0,
63.0 * (fsadc / 640.0)
* (0.92 + (0.08 * (640.0 / fsadc))))));
data[30] = uint8_t(std::floor(std::min<double>(63.0,
32.0 * sqrt(fsadc / 640.0))));
data[31] = uint8_t(std::floor(128.0 + std::min<double>(63.0,
63.0 * (fsadc / 640.0))));
data[32] = uint8_t(std::floor(std::min<double>(63.0,
63.0 * (fsadc / 640.0) * (0.92
+ (0.08 * (640.0 / fsadc))))));
data[33] = uint8_t(std::floor(std::min<double>(63.0,
63.0 * sqrt(fsadc / 640.0))));
data[34] = std::min<uint8_t>(127, uint8_t(std::floor(64.0
* sqrt(fsadc / 640.0))));
data[35] = 0x40;
data[36] = 0x40;
data[37] = 0x2c;
data[38] = 0x00;
data[39] = 0x00;
/* Program the registers! */
for(size_t i = 0; i < 40; i++) {
_io_iface->poke8(0x200+i, data[i]);
}
}
/* Calibrate the baseband DC offset.
* Disables tracking
*/
void ad9361_device_t::_calibrate_baseband_dc_offset()
{
_io_iface->poke8(0x18b, 0x83); //Reset RF DC tracking flag
_io_iface->poke8(0x193, 0x3f); // Calibration settings
_io_iface->poke8(0x190, 0x0f); // Set tracking coefficient
//write_ad9361_reg(device, 0x190, /*0x0f*//*0xDF*/0x80*1 | 0x40*1 | (16+8/*+4*/)); // Set tracking coefficient: don't *4 counter, do decim /4, increased gain shift
_io_iface->poke8(0x194, 0x01); // More calibration settings
/* Start that calibration, baby. */
size_t count = 0;
_io_iface->poke8(0x016, 0x01);
while (_io_iface->peek8(0x016) & 0x01) {
if (count > 100) {
throw uhd::runtime_error("[ad9361_device_t] Baseband DC Offset Calibration Failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(5));
}
}
/* Calibrate the RF DC offset.
* Disables tracking
*/
void ad9361_device_t::_calibrate_rf_dc_offset()
{
/* Some settings are frequency-dependent. */
if (_rx_freq < 4e9) {
_io_iface->poke8(0x186, 0x32); // RF DC Offset count
_io_iface->poke8(0x187, 0x24);
_io_iface->poke8(0x188, 0x05);
} else {
_io_iface->poke8(0x186, 0x28); // RF DC Offset count
_io_iface->poke8(0x187, 0x34);
_io_iface->poke8(0x188, 0x06);
}
_io_iface->poke8(0x185, 0x20); // RF DC Offset wait count
_io_iface->poke8(0x18b, 0x83); // Disable tracking
_io_iface->poke8(0x189, 0x30);
/* Run the calibration! */
size_t count = 0;
_io_iface->poke8(0x016, 0x02);
while (_io_iface->peek8(0x016) & 0x02) {
if (count > 200) {
throw uhd::runtime_error("[ad9361_device_t] RF DC Offset Calibration Failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(50));
}
_io_iface->poke8(0x18b, 0x8d); // Enable RF DC tracking
}
void ad9361_device_t::_configure_bb_dc_tracking()
{
if (_use_dc_offset_tracking)
_io_iface->poke8(0x18b, 0xad); // Enable BB tracking
else
_io_iface->poke8(0x18b, 0x8d); // Disable BB tracking
}
void ad9361_device_t::_configure_rx_iq_tracking()
{
if (_use_iq_balance_tracking)
_io_iface->poke8(0x169, 0xcf); // Enable Rx IQ tracking
else
_io_iface->poke8(0x169, 0xc0); // Disable Rx IQ tracking
}
/* Single shot Rx quadrature calibration
*
* Procedure documented in "AD9361 Calibration Guide". Prior to calibration,
* state should be set to ALERT, FDD, and Dual Synth Mode. Rx quadrature
* tracking will be disabled, so run before or instead of enabling Rx
* quadrature tracking.
*/
void ad9361_device_t::_calibrate_rx_quadrature()
{
/* Configure RX Quadrature calibration settings. */
_io_iface->poke8(0x168, 0x03); // Set tone level for cal
_io_iface->poke8(0x16e, 0x25); // RX Gain index to use for cal
_io_iface->poke8(0x16a, 0x75); // Set Kexp phase
_io_iface->poke8(0x16b, 0x95); // Set Kexp amplitude
_io_iface->poke8(0x057, 0x33); // Power down Tx mixer
_io_iface->poke8(0x169, 0xc0); // Disable tracking and free run mode
/* Place Tx LO within passband of Rx spectrum */
double current_tx_freq = _tx_freq;
_tune_helper(TX, _rx_freq + _rx_bb_lp_bw / 2.0);
size_t count = 0;
_io_iface->poke8(0x016, 0x20);
while (_io_iface->peek8(0x016) & 0x20) {
if (count > 1000) {
throw uhd::runtime_error("[ad9361_device_t] Rx Quadrature Calibration Failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(5));
}
_io_iface->poke8(0x057, 0x30); // Re-enable Tx mixers
_tune_helper(TX, current_tx_freq);
}
/* TX quadrature calibration routine.
*
* The TX quadrature needs to be done twice, once for each TX chain, with
* only one register change in between. Thus, this function enacts the
* calibrations, and it is called from calibrate_tx_quadrature. */
void ad9361_device_t::_tx_quadrature_cal_routine() {
/* This is a weird process, but here is how it works:
* 1) Read the calibrated NCO frequency bits out of 0A3.
* 2) Write the two bits to the RX NCO freq part of 0A0.
* 3) Re-read 0A3 to get bits [5:0] because maybe they changed?
* 4) Update only the TX NCO freq bits in 0A3.
* 5) Profit (I hope). */
uint8_t reg0a3 = _io_iface->peek8(0x0a3);
uint8_t nco_freq = (reg0a3 & 0xC0);
_io_iface->poke8(0x0a0, 0x15 | (nco_freq >> 1));
reg0a3 = _io_iface->peek8(0x0a3);
_io_iface->poke8(0x0a3, (reg0a3 & 0x3F) | nco_freq);
/* It is possible to reach a configuration that won't operate correctly,
* where the two test tones used for quadrature calibration are outside
* of the RX BBF, and therefore don't make it to the ADC. We will check
* for that scenario here. */
double max_cal_freq = (((_baseband_bw * _tfir_factor)
* ((nco_freq >> 6) + 1)) / 32) * 2;
double bbbw = _baseband_bw / 2.0; // bbbw represents the one-sided BW
if (bbbw > 28e6) {
bbbw = 28e6;
} else if (bbbw < 0.20e6) {
bbbw = 0.20e6;
}
if (max_cal_freq > bbbw)
throw uhd::runtime_error("[ad9361_device_t] max_cal_freq > bbbw");
_io_iface->poke8(0x0a1, 0x7B); // Set tracking coefficient
_io_iface->poke8(0x0a9, 0xff); // Cal count
_io_iface->poke8(0x0a2, 0x7f); // Cal Kexp
_io_iface->poke8(0x0a5, 0x01); // Cal magnitude threshold VVVV
_io_iface->poke8(0x0a6, 0x01);
/* The gain table index used for calibration must be adjusted for the
* mid-table to get a TIA index = 1 and LPF index = 0. */
if (_rx_freq < 1300e6) {
_io_iface->poke8(0x0aa, 0x22); // Cal gain table index
} else {
_io_iface->poke8(0x0aa, 0x25); // Cal gain table index
}
_io_iface->poke8(0x0a4, 0xf0); // Cal setting conut
_io_iface->poke8(0x0ae, 0x00); // Cal LPF gain index (split mode)
/* Now, calibrate the TX quadrature! */
size_t count = 0;
_io_iface->poke8(0x016, 0x10);
while (_io_iface->peek8(0x016) & 0x10) {
if (count > 100) {
throw uhd::runtime_error("[ad9361_device_t] TX Quadrature Calibration Failure");
break;
}
count++;
boost::this_thread::sleep(boost::posix_time::milliseconds(10));
}
}
/* Run the TX quadrature calibration.
*/
void ad9361_device_t::_calibrate_tx_quadrature()
{
/* Make sure we are, in fact, in the ALERT state. If not, something is
* terribly wrong in the driver execution flow. */
if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
throw uhd::runtime_error("[ad9361_device_t] TX Quad Cal started, but not in ALERT");
}
/* Turn off free-running and continuous calibrations. Note that this
* will get turned back on at the end of the RX calibration routine. */
_io_iface->poke8(0x169, 0xc0);
/* This calibration must be done in a certain order, and for both TX_A
* and TX_B, separately. Store the original setting so that we can
* restore it later. */
uint8_t orig_reg_inputsel = _regs.inputsel;
/***********************************************************************
* TX1/2-A Calibration
**********************************************************************/
_regs.inputsel = _regs.inputsel & 0xBF;
_io_iface->poke8(0x004, _regs.inputsel);
_tx_quadrature_cal_routine();
/***********************************************************************
* TX1/2-B Calibration
**********************************************************************/
_regs.inputsel = _regs.inputsel | 0x40;
_io_iface->poke8(0x004, _regs.inputsel);
_tx_quadrature_cal_routine();
/***********************************************************************
* fin
**********************************************************************/
_regs.inputsel = orig_reg_inputsel;
_io_iface->poke8(0x004, orig_reg_inputsel);
}
/***********************************************************************
* Other Misc Setup Functions
***********************************************************************/
/* Program the mixer gain table.
*
* Note that this table is fixed for all frequency settings. */
void ad9361_device_t::_program_mixer_gm_subtable()
{
uint8_t gain[] = { 0x78, 0x74, 0x70, 0x6C, 0x68, 0x64, 0x60, 0x5C, 0x58,
0x54, 0x50, 0x4C, 0x48, 0x30, 0x18, 0x00 };
uint8_t gm[] = { 0x00, 0x0D, 0x15, 0x1B, 0x21, 0x25, 0x29, 0x2C, 0x2F, 0x31,
0x33, 0x34, 0x35, 0x3A, 0x3D, 0x3E };
/* Start the clock. */
_io_iface->poke8(0x13f, 0x02);
/* Program the GM Sub-table. */
int i;
for (i = 15; i >= 0; i--) {
_io_iface->poke8(0x138, i);
_io_iface->poke8(0x139, gain[(15 - i)]);
_io_iface->poke8(0x13A, 0x00);
_io_iface->poke8(0x13B, gm[(15 - i)]);
_io_iface->poke8(0x13F, 0x06);
_io_iface->poke8(0x13C, 0x00);
_io_iface->poke8(0x13C, 0x00);
}
/* Clear write bit and stop clock. */
_io_iface->poke8(0x13f, 0x02);
_io_iface->poke8(0x13C, 0x00);
_io_iface->poke8(0x13C, 0x00);
_io_iface->poke8(0x13f, 0x00);
}
/* Program the gain table.
*
* There are three different gain tables for different frequency ranges! */
void ad9361_device_t::_program_gain_table() {
/* Figure out which gain table we should be using for our current
* frequency band. */
uint8_t (*gain_table)[3] = NULL;
uint8_t new_gain_table;
if (_rx_freq < 1300e6) {
gain_table = gain_table_sub_1300mhz;
new_gain_table = 1;
} else if (_rx_freq < 4e9) {
gain_table = gain_table_1300mhz_to_4000mhz;
new_gain_table = 2;
} else if (_rx_freq <= 6e9) {
gain_table = gain_table_4000mhz_to_6000mhz;
new_gain_table = 3;
} else {
throw uhd::runtime_error("[ad9361_device_t] Wrong _rx_freq value");
new_gain_table = 1;
}
/* Only re-program the gain table if there has been a band change. */
if (_curr_gain_table == new_gain_table) {
return;
} else {
_curr_gain_table = new_gain_table;
}
/* Okay, we have to program a new gain table. Sucks, brah. Start the
* gain table clock. */
_io_iface->poke8(0x137, 0x1A);
/* IT'S PROGRAMMING TIME. */
uint8_t index = 0;
for (; index < 77; index++) {
_io_iface->poke8(0x130, index);
_io_iface->poke8(0x131, gain_table[index][0]);
_io_iface->poke8(0x132, gain_table[index][1]);
_io_iface->poke8(0x133, gain_table[index][2]);
_io_iface->poke8(0x137, 0x1E);
_io_iface->poke8(0x134, 0x00);
_io_iface->poke8(0x134, 0x00);
}
/* Everything above the 77th index is zero. */
for (; index < 91; index++) {
_io_iface->poke8(0x130, index);
_io_iface->poke8(0x131, 0x00);
_io_iface->poke8(0x132, 0x00);
_io_iface->poke8(0x133, 0x00);
_io_iface->poke8(0x137, 0x1E);
_io_iface->poke8(0x134, 0x00);
_io_iface->poke8(0x134, 0x00);
}
/* Clear the write bit and stop the gain clock. */
_io_iface->poke8(0x137, 0x1A);
_io_iface->poke8(0x134, 0x00);
_io_iface->poke8(0x134, 0x00);
_io_iface->poke8(0x137, 0x00);
}
/* Setup gain control registers.
*
* This really only needs to be done once, at initialization.
* If AGC is used the mode select bits (Reg 0x0FA) must be written manually */
void ad9361_device_t::_setup_gain_control(bool agc)
{
/* The AGC mode configuration should be good for all cases.
* However, non AGC configuration still used for backward compatibility. */
if (agc) {
/*mode select bits must be written before hand!*/
_io_iface->poke8(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
_io_iface->poke8(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
_io_iface->poke8(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
_io_iface->poke8(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
_io_iface->poke8(0x100, 0x6F); // Max Digital Gain
_io_iface->poke8(0x101, 0x0A); // Max Digital Gain
_io_iface->poke8(0x103, 0x08); // Max Digital Gain
_io_iface->poke8(0x104, 0x2F); // ADC Small Overload Threshold
_io_iface->poke8(0x105, 0x3A); // ADC Large Overload Threshold
_io_iface->poke8(0x106, 0x22); // Max Digital Gain
_io_iface->poke8(0x107, 0x2B); // Large LMT Overload Threshold
_io_iface->poke8(0x108, 0x31);
_io_iface->poke8(0x111, 0x0A);
_io_iface->poke8(0x11A, 0x1C);
_io_iface->poke8(0x120, 0x0C);
_io_iface->poke8(0x121, 0x44);
_io_iface->poke8(0x122, 0x44);
_io_iface->poke8(0x123, 0x11);
_io_iface->poke8(0x124, 0xF5);
_io_iface->poke8(0x125, 0x3B);
_io_iface->poke8(0x128, 0x03);
_io_iface->poke8(0x129, 0x56);
_io_iface->poke8(0x12A, 0x22);
} else {
_io_iface->poke8(0x0FA, 0xE0); // Gain Control Mode Select
_io_iface->poke8(0x0FB, 0x08); // Table, Digital Gain, Man Gain Ctrl
_io_iface->poke8(0x0FC, 0x23); // Incr Step Size, ADC Overrange Size
_io_iface->poke8(0x0FD, 0x4C); // Max Full/LMT Gain Table Index
_io_iface->poke8(0x0FE, 0x44); // Decr Step Size, Peak Overload Time
_io_iface->poke8(0x100, 0x6F); // Max Digital Gain
_io_iface->poke8(0x104, 0x2F); // ADC Small Overload Threshold
_io_iface->poke8(0x105, 0x3A); // ADC Large Overload Threshold
_io_iface->poke8(0x107, 0x31); // Large LMT Overload Threshold
_io_iface->poke8(0x108, 0x39); // Small LMT Overload Threshold
_io_iface->poke8(0x109, 0x23); // Rx1 Full/LMT Gain Index
_io_iface->poke8(0x10A, 0x58); // Rx1 LPF Gain Index
_io_iface->poke8(0x10B, 0x00); // Rx1 Digital Gain Index
_io_iface->poke8(0x10C, 0x23); // Rx2 Full/LMT Gain Index
_io_iface->poke8(0x10D, 0x18); // Rx2 LPF Gain Index
_io_iface->poke8(0x10E, 0x00); // Rx2 Digital Gain Index
_io_iface->poke8(0x114, 0x30); // Low Power Threshold
_io_iface->poke8(0x11A, 0x27); // Initial LMT Gain Limit
_io_iface->poke8(0x081, 0x00); // Tx Symbol Gain Control
}
}
/* Setup the RX or TX synthesizers.
*
* This setup depends on a fixed look-up table, which is stored in an
* included header file. The table is indexed based on the passed VCO rate.
*/
void ad9361_device_t::_setup_synth(direction_t direction, double vcorate)
{
/* The vcorates in the vco_index array represent lower boundaries for
* rates. Once we find a match, we use that index to look-up the rest of
* the register values in the LUT. */
int vcoindex = 0;
for (size_t i = 0; i < 53; i++) {
vcoindex = i;
if (vcorate > vco_index[i]) {
break;
}
}
if (vcoindex > 53)
throw uhd::runtime_error("[ad9361_device_t] vcoindex > 53");
/* Parse the values out of the LUT based on our calculated index... */
uint8_t vco_output_level = synth_cal_lut[vcoindex][0];
uint8_t vco_varactor = synth_cal_lut[vcoindex][1];
uint8_t vco_bias_ref = synth_cal_lut[vcoindex][2];
uint8_t vco_bias_tcf = synth_cal_lut[vcoindex][3];
uint8_t vco_cal_offset = synth_cal_lut[vcoindex][4];
uint8_t vco_varactor_ref = synth_cal_lut[vcoindex][5];
uint8_t charge_pump_curr = synth_cal_lut[vcoindex][6];
uint8_t loop_filter_c2 = synth_cal_lut[vcoindex][7];
uint8_t loop_filter_c1 = synth_cal_lut[vcoindex][8];
uint8_t loop_filter_r1 = synth_cal_lut[vcoindex][9];
uint8_t loop_filter_c3 = synth_cal_lut[vcoindex][10];
uint8_t loop_filter_r3 = synth_cal_lut[vcoindex][11];
/* ... annnd program! */
if (direction == RX) {
_io_iface->poke8(0x23a, 0x40 | vco_output_level);
_io_iface->poke8(0x239, 0xC0 | vco_varactor);
_io_iface->poke8(0x242, vco_bias_ref | (vco_bias_tcf << 3));
_io_iface->poke8(0x238, (vco_cal_offset << 3));
_io_iface->poke8(0x245, 0x00);
_io_iface->poke8(0x251, vco_varactor_ref);
_io_iface->poke8(0x250, 0x70);
_io_iface->poke8(0x23b, 0x80 | charge_pump_curr);
_io_iface->poke8(0x23e, loop_filter_c1 | (loop_filter_c2 << 4));
_io_iface->poke8(0x23f, loop_filter_c3 | (loop_filter_r1 << 4));
_io_iface->poke8(0x240, loop_filter_r3);
} else if (direction == TX) {
_io_iface->poke8(0x27a, 0x40 | vco_output_level);
_io_iface->poke8(0x279, 0xC0 | vco_varactor);
_io_iface->poke8(0x282, vco_bias_ref | (vco_bias_tcf << 3));
_io_iface->poke8(0x278, (vco_cal_offset << 3));
_io_iface->poke8(0x285, 0x00);
_io_iface->poke8(0x291, vco_varactor_ref);
_io_iface->poke8(0x290, 0x70);
_io_iface->poke8(0x27b, 0x80 | charge_pump_curr);
_io_iface->poke8(0x27e, loop_filter_c1 | (loop_filter_c2 << 4));
_io_iface->poke8(0x27f, loop_filter_c3 | (loop_filter_r1 << 4));
_io_iface->poke8(0x280, loop_filter_r3);
} else {
throw uhd::runtime_error("[ad9361_device_t] [_setup_synth] INVALID_CODE_PATH");
}
}
/* Tune the baseband VCO.
*
* This clock signal is what gets fed to the ADCs and DACs. This function is
* not exported outside of this file, and is invoked based on the rate
* fed to the public set_clock_rate function. */
double ad9361_device_t::_tune_bbvco(const double rate)
{
UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] rate=%.10f\n") % rate;
/* Let's not re-tune to the same frequency over and over... */
if (freq_is_nearly_equal(rate, _req_coreclk)) {
return _adcclock_freq;
}
_req_coreclk = rate;
const double fref = 40e6;
const int modulus = 2088960;
const double vcomax = 1430e6;
const double vcomin = 672e6;
double vcorate;
int vcodiv;
/* Iterate over VCO dividers until appropriate divider is found. */
int i = 1;
for (; i <= 6; i++) {
vcodiv = 1 << i;
vcorate = rate * vcodiv;
if (vcorate >= vcomin && vcorate <= vcomax)
break;
}
if (i == 7)
throw uhd::runtime_error("[ad9361_device_t] _tune_bbvco: wrong vcorate");
UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] vcodiv=%d vcorate=%.10f\n") % vcodiv % vcorate;
/* Fo = Fref * (Nint + Nfrac / mod) */
int nint = static_cast<int>(vcorate / fref);
UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nint)=%.10f\n") % (vcorate / fref);
int nfrac = static_cast<int>(boost::math::round(((vcorate / fref) - (double) nint) * (double) modulus));
UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] (nfrac)=%.10f\n") % (((vcorate / fref) - (double) nint) * (double) modulus);
UHD_LOG << boost::format("[ad9361_device_t::_tune_bbvco] nint=%d nfrac=%d\n") % nint % nfrac;
double actual_vcorate = fref
* ((double) nint + ((double) nfrac / (double) modulus));
/* Scale CP current according to VCO rate */
const double icp_baseline = 150e-6;
const double freq_baseline = 1280e6;
double icp = icp_baseline * (actual_vcorate / freq_baseline);
int icp_reg = static_cast<int>(icp / 25e-6) - 1;
_io_iface->poke8(0x045, 0x00); // REFCLK / 1 to BBPLL
_io_iface->poke8(0x046, icp_reg & 0x3F); // CP current
_io_iface->poke8(0x048, 0xe8); // BBPLL loop filters
_io_iface->poke8(0x049, 0x5b); // BBPLL loop filters
_io_iface->poke8(0x04a, 0x35); // BBPLL loop filters
_io_iface->poke8(0x04b, 0xe0);
_io_iface->poke8(0x04e, 0x10); // Max accuracy
_io_iface->poke8(0x043, nfrac & 0xFF); // Nfrac[7:0]
_io_iface->poke8(0x042, (nfrac >> 8) & 0xFF); // Nfrac[15:8]
_io_iface->poke8(0x041, (nfrac >> 16) & 0xFF); // Nfrac[23:16]
_io_iface->poke8(0x044, nint); // Nint
_calibrate_lock_bbpll();
_regs.bbpll = (_regs.bbpll & 0xF8) | i;
_bbpll_freq = actual_vcorate;
_adcclock_freq = (actual_vcorate / vcodiv);
return _adcclock_freq;
}
/* This function re-programs all of the gains in the system.
*
* Because the gain values match to different gain indices based on the
* current operating band, this function can be called to update all gain
* settings to the appropriate index after a re-tune. */
void ad9361_device_t::_reprogram_gains()
{
set_gain(RX, CHAIN_1,_rx1_gain);
set_gain(RX, CHAIN_2,_rx2_gain);
set_gain(TX, CHAIN_1,_tx1_gain);
set_gain(TX, CHAIN_2,_tx2_gain);
}
/* This is the internal tune function, not available for a host call.
*
* Calculate the VCO settings for the requested frquency, and then either
* tune the RX or TX VCO. */
double ad9361_device_t::_tune_helper(direction_t direction, const double value)
{
/* The RFPLL runs from 6 GHz - 12 GHz */
const double fref = 80e6;
const int modulus = 8388593;
const double vcomax = 12e9;
const double vcomin = 6e9;
double vcorate;
int vcodiv;
/* Iterate over VCO dividers until appropriate divider is found. */
int i;
for (i = 0; i <= 6; i++) {
vcodiv = 2 << i;
vcorate = value * vcodiv;
if (vcorate >= vcomin && vcorate <= vcomax)
break;
}
if (i == 7)
throw uhd::runtime_error("[ad9361_device_t] RFVCO can't find valid VCO rate!");
int nint = static_cast<int>(vcorate / fref);
int nfrac = static_cast<int>(((vcorate / fref) - nint) * modulus);
double actual_vcorate = fref * (nint + (double) (nfrac) / modulus);
double actual_lo = actual_vcorate / vcodiv;
if (direction == RX) {
_req_rx_freq = value;
/* Set band-specific settings. */
if (value < _client_params->get_band_edge(AD9361_RX_BAND0)) {
_regs.inputsel = (_regs.inputsel & 0xC0) | 0x30; // Port C, balanced
} else if ((value
>= _client_params->get_band_edge(AD9361_RX_BAND0))
&& (value
< _client_params->get_band_edge(AD9361_RX_BAND1))) {
_regs.inputsel = (_regs.inputsel & 0xC0) | 0x0C; // Port B, balanced
} else if ((value
>= _client_params->get_band_edge(AD9361_RX_BAND1))
&& (value <= 6e9)) {
_regs.inputsel = (_regs.inputsel & 0xC0) | 0x03; // Port A, balanced
} else {
throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
}
_io_iface->poke8(0x004, _regs.inputsel);
/* Store vcodiv setting. */
_regs.vcodivs = (_regs.vcodivs & 0xF0) | (i & 0x0F);
/* Setup the synthesizer. */
_setup_synth(RX, actual_vcorate);
/* Tune!!!! */
_io_iface->poke8(0x233, nfrac & 0xFF);
_io_iface->poke8(0x234, (nfrac >> 8) & 0xFF);
_io_iface->poke8(0x235, (nfrac >> 16) & 0xFF);
_io_iface->poke8(0x232, (nint >> 8) & 0xFF);
_io_iface->poke8(0x231, nint & 0xFF);
_io_iface->poke8(0x005, _regs.vcodivs);
/* Lock the PLL! */
boost::this_thread::sleep(boost::posix_time::milliseconds(2));
if ((_io_iface->peek8(0x247) & 0x02) == 0) {
throw uhd::runtime_error("[ad9361_device_t] RX PLL NOT LOCKED");
}
_rx_freq = actual_lo;
return actual_lo;
} else {
_req_tx_freq = value;
/* Set band-specific settings. */
if (value < _client_params->get_band_edge(AD9361_TX_BAND0)) {
_regs.inputsel = _regs.inputsel | 0x40;
} else if ((value
>= _client_params->get_band_edge(AD9361_TX_BAND0))
&& (value <= 6e9)) {
_regs.inputsel = _regs.inputsel & 0xBF;
} else {
throw uhd::runtime_error("[ad9361_device_t] [_tune_helper] INVALID_CODE_PATH");
}
_io_iface->poke8(0x004, _regs.inputsel);
/* Store vcodiv setting. */
_regs.vcodivs = (_regs.vcodivs & 0x0F) | ((i & 0x0F) << 4);
/* Setup the synthesizer. */
_setup_synth(TX, actual_vcorate);
/* Tune it, homey. */
_io_iface->poke8(0x273, nfrac & 0xFF);
_io_iface->poke8(0x274, (nfrac >> 8) & 0xFF);
_io_iface->poke8(0x275, (nfrac >> 16) & 0xFF);
_io_iface->poke8(0x272, (nint >> 8) & 0xFF);
_io_iface->poke8(0x271, nint & 0xFF);
_io_iface->poke8(0x005, _regs.vcodivs);
/* Lock the PLL! */
boost::this_thread::sleep(boost::posix_time::milliseconds(2));
if ((_io_iface->peek8(0x287) & 0x02) == 0) {
throw uhd::runtime_error("[ad9361_device_t] TX PLL NOT LOCKED");
}
_tx_freq = actual_lo;
return actual_lo;
}
}
/* Configure the various clock / sample rates in the RX and TX chains.
*
* Functionally, this function configures AD9361's RX and TX rates. For
* a requested TX & RX rate, it sets the interpolation & decimation filters,
* and tunes the VCO that feeds the ADCs and DACs.
*/
double ad9361_device_t::_setup_rates(const double rate)
{
/* If we make it into this function, then we are tuning to a new rate.
* Store the new rate. */
_req_clock_rate = rate;
UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] rate=%.6d\n") % rate;
/* Set the decimation and interpolation values in the RX and TX chains.
* This also switches filters in / out. Note that all transmitters and
* receivers have to be turned on for the calibration portion of
* bring-up, and then they will be switched out to reflect the actual
* user-requested antenna selections. */
int divfactor = 0;
_tfir_factor = 0;
_rfir_factor = 0;
if (rate < 0.33e6) {
// RX1 + RX2 enabled, 3, 2, 2, 4
_regs.rxfilt = B8(11101111);
// TX1 + TX2 enabled, 3, 2, 2, 4
_regs.txfilt = B8(11101111);
divfactor = 48;
_tfir_factor = 4;
_rfir_factor = 4;
} else if (rate < 0.66e6) {
// RX1 + RX2 enabled, 2, 2, 2, 4
_regs.rxfilt = B8(11011111);
// TX1 + TX2 enabled, 2, 2, 2, 4
_regs.txfilt = B8(11011111);
divfactor = 32;
_tfir_factor = 4;
_rfir_factor = 4;
} else if (rate <= 20e6) {
// RX1 + RX2 enabled, 2, 2, 2, 2
_regs.rxfilt = B8(11011110);
// TX1 + TX2 enabled, 2, 2, 2, 2
_regs.txfilt = B8(11011110);
divfactor = 16;
_tfir_factor = 2;
_rfir_factor = 2;
} else if ((rate > 20e6) && (rate < 23e6)) {
// RX1 + RX2 enabled, 3, 2, 2, 2
_regs.rxfilt = B8(11101110);
// TX1 + TX2 enabled, 3, 1, 2, 2
_regs.txfilt = B8(11100110);
divfactor = 24;
_tfir_factor = 2;
_rfir_factor = 2;
} else if ((rate >= 23e6) && (rate < 41e6)) {
// RX1 + RX2 enabled, 2, 2, 2, 2
_regs.rxfilt = B8(11011110);
// TX1 + TX2 enabled, 1, 2, 2, 2
_regs.txfilt = B8(11001110);
divfactor = 16;
_tfir_factor = 2;
_rfir_factor = 2;
} else if ((rate >= 41e6) && (rate <= 58e6)) {
// RX1 + RX2 enabled, 3, 1, 2, 2
_regs.rxfilt = B8(11100110);
// TX1 + TX2 enabled, 3, 1, 1, 2
_regs.txfilt = B8(11100010);
divfactor = 12;
_tfir_factor = 2;
_rfir_factor = 2;
} else if ((rate > 58e6) && (rate <= 61.44e6)) {
// RX1 + RX2 enabled, 2, 1, 2, 2
_regs.rxfilt = B8(11010110);
// TX1 + TX2 enabled, 2, 1, 1, 2
_regs.txfilt = B8(11010010);
divfactor = 8;
_tfir_factor = 2;
_rfir_factor = 2;
} else {
// should never get in here
throw uhd::runtime_error("[ad9361_device_t] [_setup_rates] INVALID_CODE_PATH");
}
UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] divfactor=%d\n") % divfactor;
/* Tune the BBPLL to get the ADC and DAC clocks. */
const double adcclk = _tune_bbvco(rate * divfactor);
double dacclk = adcclk;
/* The DAC clock must be <= 336e6, and is either the ADC clock or 1/2 the
* ADC clock.*/
if (adcclk > 336e6) {
/* Make the DAC clock = ADC/2 */
_regs.bbpll = _regs.bbpll | 0x08;
dacclk = adcclk / 2.0;
} else {
_regs.bbpll = _regs.bbpll & 0xF7;
}
/* Set the dividers / interpolators in AD9361. */
_io_iface->poke8(0x002, _regs.txfilt);
_io_iface->poke8(0x003, _regs.rxfilt);
_io_iface->poke8(0x004, _regs.inputsel);
_io_iface->poke8(0x00A, _regs.bbpll);
UHD_LOG << boost::format("[ad9361_device_t::_setup_rates] adcclk=%f\n") % adcclk;
_baseband_bw = (adcclk / divfactor);
/*
The Tx & Rx FIR calculate 16 taps per clock cycle. This limits the number of available taps to the ratio of DAC_CLK/ADC_CLK
to the input data rate multiplied by 16. For example, if the input data rate is 25 MHz and DAC_CLK is 100 MHz,
then the ratio of DAC_CLK to the input data rate is 100/25 or 4. In this scenario, the total number of taps available is 64.
Also, whilst the Rx FIR filter always has memory available for 128 taps, the Tx FIR Filter can only support a maximum length of 64 taps
in 1x interpolation mode, and 128 taps in 2x & 4x modes.
*/
const size_t max_tx_taps = std::min<size_t>(
std::min<size_t>((16 * (int)((dacclk / rate) + 0.5)), 128),
(_tfir_factor == 1) ? 64 : 128);
const size_t max_rx_taps = std::min<size_t>((16 * (size_t)((adcclk / rate) + 0.5)),
128);
const size_t num_tx_taps = get_num_taps(max_tx_taps);
const size_t num_rx_taps = get_num_taps(max_rx_taps);
_setup_tx_fir(num_tx_taps,_tfir_factor);
_setup_rx_fir(num_rx_taps,_rfir_factor);
return _baseband_bw;
}
/***********************************************************************
* Publicly exported functions to host calls
**********************************************************************/
void ad9361_device_t::initialize()
{
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
/* Initialize shadow registers. */
_regs.vcodivs = 0x00;
_regs.inputsel = 0x30;
_regs.rxfilt = 0x00;
_regs.txfilt = 0x00;
_regs.bbpll = 0x02;
_regs.bbftune_config = 0x1e;
_regs.bbftune_mode = 0x1e;
/* Initialize private VRQ fields. */
_rx_freq = DEFAULT_RX_FREQ;
_tx_freq = DEFAULT_TX_FREQ;
_req_rx_freq = 0.0;
_req_tx_freq = 0.0;
_baseband_bw = 0.0;
_req_clock_rate = 0.0;
_req_coreclk = 0.0;
_bbpll_freq = 0.0;
_adcclock_freq = 0.0;
_rx_bbf_tunediv = 0;
_curr_gain_table = 0;
_rx1_gain = 0;
_rx2_gain = 0;
_tx1_gain = 0;
_tx2_gain = 0;
_use_dc_offset_tracking = true;
_use_iq_balance_tracking = true;
_rx1_agc_mode = GAIN_MODE_SLOW_AGC;
_rx2_agc_mode = GAIN_MODE_SLOW_AGC;
_rx1_agc_enable = false;
_rx2_agc_enable = false;
_rx_analog_bw = 0;
_tx_analog_bw = 0;
_rx_tia_lp_bw = 0;
_tx_sec_lp_bw = 0;
_rx_bb_lp_bw = 0;
_tx_bb_lp_bw = 0;
/* Reset the device. */
_io_iface->poke8(0x000, 0x01);
_io_iface->poke8(0x000, 0x00);
boost::this_thread::sleep(boost::posix_time::milliseconds(20));
/* Check device ID to make sure iface works */
uint32_t device_id = (_io_iface->peek8(0x037) & 0x8);
if (device_id != 0x8) {
throw uhd::runtime_error(str(boost::format("[ad9361_device_t::initialize] Device ID readback failure. Expected: 0x8, Received: 0x%x") % device_id));
}
/* There is not a WAT big enough for this. */
_io_iface->poke8(0x3df, 0x01);
_io_iface->poke8(0x2a6, 0x0e); // Enable master bias
_io_iface->poke8(0x2a8, 0x0e); // Set bandgap trim
/* Set RFPLL ref clock scale to REFCLK * 2 */
_io_iface->poke8(0x2ab, 0x07);
_io_iface->poke8(0x2ac, 0xff);
/* Enable clocks. */
switch (_client_params->get_clocking_mode()) {
case AD9361_XTAL_N_CLK_PATH: {
_io_iface->poke8(0x009, 0x17);
} break;
case AD9361_XTAL_P_CLK_PATH: {
_io_iface->poke8(0x009, 0x07);
_io_iface->poke8(0x292, 0x08);
_io_iface->poke8(0x293, 0x80);
_io_iface->poke8(0x294, 0x00);
_io_iface->poke8(0x295, 0x14);
} break;
default:
throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
}
boost::this_thread::sleep(boost::posix_time::milliseconds(20));
/* Tune the BBPLL, write TX and RX FIRS. */
_setup_rates(50e6);
/* Setup data ports (FDD dual port DDR):
* FDD dual port DDR CMOS no swap.
* Force TX on one port, RX on the other. */
switch (_client_params->get_digital_interface_mode()) {
case AD9361_DDR_FDD_LVCMOS: {
_io_iface->poke8(0x010, 0xc8); // Swap I&Q on Tx, Swap I&Q on Rx, Toggle frame sync mode
_io_iface->poke8(0x011, 0x00);
_io_iface->poke8(0x012, 0x02);
} break;
case AD9361_DDR_FDD_LVDS: {
_io_iface->poke8(0x010, 0xcc); // Swap I&Q on Tx, Swap I&Q on Rx, Toggle frame sync mode, 2R2T timing.
_io_iface->poke8(0x011, 0x00);
_io_iface->poke8(0x012, 0x10);
//LVDS Specific
_io_iface->poke8(0x03C, 0x23);
_io_iface->poke8(0x03D, 0xFF);
_io_iface->poke8(0x03E, 0x0F);
} break;
default:
throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
}
/* Data delay for TX and RX data clocks */
digital_interface_delays_t timing =
_client_params->get_digital_interface_timing();
uint8_t rx_delays = ((timing.rx_clk_delay & 0xF) << 4)
| (timing.rx_data_delay & 0xF);
uint8_t tx_delays = ((timing.tx_clk_delay & 0xF) << 4)
| (timing.tx_data_delay & 0xF);
_io_iface->poke8(0x006, rx_delays);
_io_iface->poke8(0x007, tx_delays);
/* Setup AuxDAC */
_io_iface->poke8(0x018, 0x00); // AuxDAC1 Word[9:2]
_io_iface->poke8(0x019, 0x00); // AuxDAC2 Word[9:2]
_io_iface->poke8(0x01A, 0x00); // AuxDAC1 Config and Word[1:0]
_io_iface->poke8(0x01B, 0x00); // AuxDAC2 Config and Word[1:0]
_io_iface->poke8(0x023, 0xFF); // AuxDAC Manaul/Auto Control
_io_iface->poke8(0x026, 0x00); // AuxDAC Manual Select Bit/GPO Manual Select
_io_iface->poke8(0x030, 0x00); // AuxDAC1 Rx Delay
_io_iface->poke8(0x031, 0x00); // AuxDAC1 Tx Delay
_io_iface->poke8(0x032, 0x00); // AuxDAC2 Rx Delay
_io_iface->poke8(0x033, 0x00); // AuxDAC2 Tx Delay
/* LNA bypass polarity inversion
* According to the register map, we should invert the bypass path to
* match LNA phase. Extensive testing, however, shows otherwise and that
* to align bypass and LNA phases, the bypass inversion switch should be
* turned off.
*/
_io_iface->poke8(0x022, 0x0A);
/* Setup AuxADC */
_io_iface->poke8(0x00B, 0x00); // Temp Sensor Setup (Offset)
_io_iface->poke8(0x00C, 0x00); // Temp Sensor Setup (Temp Window)
_io_iface->poke8(0x00D, 0x00); // Temp Sensor Setup (Manual Measure)
_io_iface->poke8(0x00F, 0x04); // Temp Sensor Setup (Decimation)
_io_iface->poke8(0x01C, 0x10); // AuxADC Setup (Clock Div)
_io_iface->poke8(0x01D, 0x01); // AuxADC Setup (Decimation/Enable)
/* Setup control outputs. */
_io_iface->poke8(0x035, 0x01);
_io_iface->poke8(0x036, 0xFF);
/* Setup GPO */
_io_iface->poke8(0x03a, 0x27); //set delay register
_io_iface->poke8(0x020, 0x00); // GPO Auto Enable Setup in RX and TX
_io_iface->poke8(0x027, 0x03); // GPO Manual and GPO auto value in ALERT
_io_iface->poke8(0x028, 0x00); // GPO_0 RX Delay
_io_iface->poke8(0x029, 0x00); // GPO_1 RX Delay
_io_iface->poke8(0x02A, 0x00); // GPO_2 RX Delay
_io_iface->poke8(0x02B, 0x00); // GPO_3 RX Delay
_io_iface->poke8(0x02C, 0x00); // GPO_0 TX Delay
_io_iface->poke8(0x02D, 0x00); // GPO_1 TX Delay
_io_iface->poke8(0x02E, 0x00); // GPO_2 TX Delay
_io_iface->poke8(0x02F, 0x00); // GPO_3 TX Delay
_io_iface->poke8(0x261, 0x00); // RX LO power
_io_iface->poke8(0x2a1, 0x00); // TX LO power
_io_iface->poke8(0x248, 0x0b); // en RX VCO LDO
_io_iface->poke8(0x288, 0x0b); // en TX VCO LDO
_io_iface->poke8(0x246, 0x02); // pd RX cal Tcf
_io_iface->poke8(0x286, 0x02); // pd TX cal Tcf
_io_iface->poke8(0x249, 0x8e); // rx vco cal length
_io_iface->poke8(0x289, 0x8e); // rx vco cal length
_io_iface->poke8(0x23b, 0x80); // set RX MSB?, FIXME 0x89 magic cp
_io_iface->poke8(0x27b, 0x80); // "" TX //FIXME 0x88 see above
_io_iface->poke8(0x243, 0x0d); // set rx prescaler bias
_io_iface->poke8(0x283, 0x0d); // "" TX
_io_iface->poke8(0x23d, 0x00); // Clear half VCO cal clock setting
_io_iface->poke8(0x27d, 0x00); // Clear half VCO cal clock setting
/* The order of the following process is EXTREMELY important. If the
* below functions are modified at all, device initialization and
* calibration might be broken in the process! */
_io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
_io_iface->poke8(0x014, 0x05); // use SPI for TXNRX ctrl, to ALERT, TX on
_io_iface->poke8(0x013, 0x01); // enable ENSM
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
_calibrate_synth_charge_pumps();
_tune_helper(RX, _rx_freq);
_tune_helper(TX, _tx_freq);
_program_mixer_gm_subtable();
_program_gain_table();
_setup_gain_control(false);
set_bw_filter(RX, _baseband_bw);
set_bw_filter(TX, _baseband_bw);
_setup_adc();
_calibrate_baseband_dc_offset();
_calibrate_rf_dc_offset();
_calibrate_rx_quadrature();
/*
* Rx BB DC and IQ tracking are both disabled by calibration at this
* point. Only issue commands if tracking needs to be turned on.
*/
if (_use_dc_offset_tracking)
_configure_bb_dc_tracking();
if (_use_iq_balance_tracking)
_configure_rx_iq_tracking();
_last_rx_cal_freq = _rx_freq;
_last_tx_cal_freq = _tx_freq;
// cals done, set PPORT config
switch (_client_params->get_digital_interface_mode()) {
case AD9361_DDR_FDD_LVCMOS: {
_io_iface->poke8(0x012, 0x02);
} break;
case AD9361_DDR_FDD_LVDS: {
_io_iface->poke8(0x012, 0x10);
} break;
default:
throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
}
_io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
_io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
/* Default TX attentuation to 10dB on both TX1 and TX2 */
_io_iface->poke8(0x073, 0x00);
_io_iface->poke8(0x074, 0x00);
_io_iface->poke8(0x075, 0x00);
_io_iface->poke8(0x076, 0x00);
/* Setup RSSI Measurements */
_io_iface->poke8(0x150, 0x0E); // RSSI Measurement Duration 0, 1
_io_iface->poke8(0x151, 0x00); // RSSI Measurement Duration 2, 3
_io_iface->poke8(0x152, 0xFF); // RSSI Weighted Multiplier 0
_io_iface->poke8(0x153, 0x00); // RSSI Weighted Multiplier 1
_io_iface->poke8(0x154, 0x00); // RSSI Weighted Multiplier 2
_io_iface->poke8(0x155, 0x00); // RSSI Weighted Multiplier 3
_io_iface->poke8(0x156, 0x00); // RSSI Delay
_io_iface->poke8(0x157, 0x00); // RSSI Wait
_io_iface->poke8(0x158, 0x0D); // RSSI Mode Select
_io_iface->poke8(0x15C, 0x67); // Power Measurement Duration
/* Turn on the default RX & TX chains. */
set_active_chains(true, false, false, false);
/* Set TXers & RXers on (only works in FDD mode) */
_io_iface->poke8(0x014, 0x21);
}
void ad9361_device_t::set_io_iface(ad9361_io::sptr io_iface)
{
_io_iface = io_iface;
}
/* This function sets the RX / TX rate between AD9361 and the FPGA, and
* thus determines the interpolation / decimation required in the FPGA to
* achieve the user's requested rate.
*
* This is the only clock setting function that is exposed to the outside. */
double ad9361_device_t::set_clock_rate(const double req_rate)
{
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
if (req_rate > 61.44e6) {
throw uhd::runtime_error("[ad9361_device_t] Requested master clock rate outside range");
}
UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] req_rate=%.10f\n") % req_rate;
/* UHD has a habit of requesting the same rate like four times when it
* starts up. This prevents that, and any bugs in user code that request
* the same rate over and over. */
if (freq_is_nearly_equal(req_rate, _req_clock_rate)) {
// We return _baseband_bw, because that's closest to the
// actual value we're currently running.
return _baseband_bw;
}
/* We must be in the SLEEP / WAIT state to do this. If we aren't already
* there, transition the ENSM to State 0. */
uint8_t current_state = _io_iface->peek8(0x017) & 0x0F;
switch (current_state) {
case 0x05:
/* We are in the ALERT state. */
_io_iface->poke8(0x014, 0x21);
boost::this_thread::sleep(boost::posix_time::milliseconds(5));
_io_iface->poke8(0x014, 0x00);
break;
case 0x0A:
/* We are in the FDD state. */
_io_iface->poke8(0x014, 0x00);
break;
default:
throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:1] AD9361 in unknown state");
break;
};
/* Store the current chain / antenna selections so that we can restore
* them at the end of this routine; all chains will be enabled from
* within setup_rates for calibration purposes. */
uint8_t orig_tx_chains = _regs.txfilt & 0xC0;
uint8_t orig_rx_chains = _regs.rxfilt & 0xC0;
/* Call into the clock configuration / settings function. This is where
* all the hard work gets done. */
double rate = _setup_rates(req_rate);
UHD_LOG << boost::format("[ad9361_device_t::set_clock_rate] rate=%.10f\n") % rate;
/* Transition to the ALERT state and calibrate everything. */
_io_iface->poke8(0x015, 0x04); //dual synth mode, synth en ctrl en
_io_iface->poke8(0x014, 0x05); //use SPI for TXNRX ctrl, to ALERT, TX on
_io_iface->poke8(0x013, 0x01); //enable ENSM
boost::this_thread::sleep(boost::posix_time::milliseconds(1));
_calibrate_synth_charge_pumps();
_tune_helper(RX, _rx_freq);
_tune_helper(TX, _tx_freq);
_program_mixer_gm_subtable();
_program_gain_table();
_setup_gain_control(false);
_reprogram_gains();
set_bw_filter(RX, _baseband_bw);
set_bw_filter(TX, _baseband_bw);
_setup_adc();
_calibrate_baseband_dc_offset();
_calibrate_rf_dc_offset();
_calibrate_rx_quadrature();
/*
* Rx BB DC and IQ tracking are both disabled by calibration at this
* point. Only issue commands if tracking needs to be turned on.
*/
if (_use_dc_offset_tracking)
_configure_bb_dc_tracking();
if (_use_iq_balance_tracking)
_configure_rx_iq_tracking();
_last_rx_cal_freq = _rx_freq;
_last_tx_cal_freq = _tx_freq;
// cals done, set PPORT config
switch (_client_params->get_digital_interface_mode()) {
case AD9361_DDR_FDD_LVCMOS: {
_io_iface->poke8(0x012, 0x02);
}break;
case AD9361_DDR_FDD_LVDS: {
_io_iface->poke8(0x012, 0x10);
}break;
default:
throw uhd::runtime_error("[ad9361_device_t] NOT IMPLEMENTED");
}
_io_iface->poke8(0x013, 0x01); // Set ENSM FDD bit
_io_iface->poke8(0x015, 0x04); // dual synth mode, synth en ctrl en
/* End the function in the same state as the entry state. */
switch (current_state) {
case 0x05:
/* We are already in ALERT. */
break;
case 0x0A:
/* Transition back to FDD, and restore the original antenna
* / chain selections. */
_regs.txfilt = (_regs.txfilt & 0x3F) | orig_tx_chains;
_regs.rxfilt = (_regs.rxfilt & 0x3F) | orig_rx_chains;
_io_iface->poke8(0x002, _regs.txfilt);
_io_iface->poke8(0x003, _regs.rxfilt);
_io_iface->poke8(0x014, 0x21);
break;
default:
throw uhd::runtime_error("[ad9361_device_t] [set_clock_rate:2] AD9361 in unknown state");
break;
};
return rate;
}
/* Set which of the four TX / RX chains provided by AD9361 are active.
*
* AD9361 provides two sets of chains, Side A and Side B. Each side
* provides one TX antenna, and one RX antenna. The B200 maintains the USRP
* standard of providing one antenna connection that is both TX & RX, and
* one that is RX-only - for each chain. Thus, the possible antenna and
* chain selections are:
*
* B200 Antenna AD9361 Side AD9361 Chain
* -------------------------------------------------------------------
* TX / RX1 Side A TX1 (when switched to TX)
* TX / RX1 Side A RX1 (when switched to RX)
* RX1 Side A RX1
*
* TX / RX2 Side B TX2 (when switched to TX)
* TX / RX2 Side B RX2 (when switched to RX)
* RX2 Side B RX2
*/
void ad9361_device_t::set_active_chains(bool tx1, bool tx2, bool rx1, bool rx2)
{
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
/* Clear out the current active chain settings. */
_regs.txfilt = _regs.txfilt & 0x3F;
_regs.rxfilt = _regs.rxfilt & 0x3F;
/* Turn on the different chains based on the passed parameters. */
if (tx1) {
_regs.txfilt = _regs.txfilt | 0x40;
}
if (tx2) {
_regs.txfilt = _regs.txfilt | 0x80;
}
if (rx1) {
_regs.rxfilt = _regs.rxfilt | 0x40;
}
if (rx2) {
_regs.rxfilt = _regs.rxfilt | 0x80;
}
/* Check for FDD state */
uint8_t set_back_to_fdd = 0;
uint8_t ensm_state = _io_iface->peek8(0x017) & 0x0F;
if (ensm_state == 0xA) // FDD
{
/* Put into ALERT state (via the FDD flush state). */
_io_iface->poke8(0x014, 0x01);
set_back_to_fdd = 1;
}
/* Wait for FDD flush state to complete (if necessary) */
while (ensm_state == 0xA || ensm_state == 0xB)
ensm_state = _io_iface->peek8(0x017) & 0x0F;
/* Turn on / off the chains. */
_io_iface->poke8(0x002, _regs.txfilt);
_io_iface->poke8(0x003, _regs.rxfilt);
/*
* Last unconditional Tx calibration point. Any later Tx calibration will
* require user intervention (currently triggered by tuning difference that
* is > 100 MHz). Late calibration provides better performance.
*/
if (tx1 | tx2)
_calibrate_tx_quadrature();
/* Put back into FDD state if necessary */
if (set_back_to_fdd)
_io_iface->poke8(0x014, 0x21);
}
/* Tune the RX or TX frequency.
*
* This is the publicly-accessible tune function. It makes sure the tune
* isn't a redundant request, and if not, passes it on to the class's
* internal tune function.
*
* After tuning, it runs any appropriate calibrations. */
double ad9361_device_t::tune(direction_t direction, const double value)
{
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
double last_cal_freq;
if (direction == RX) {
if (freq_is_nearly_equal(value, _req_rx_freq)) {
return _rx_freq;
}
last_cal_freq = _last_rx_cal_freq;
} else if (direction == TX) {
if (freq_is_nearly_equal(value, _req_tx_freq)) {
return _tx_freq;
}
last_cal_freq = _last_tx_cal_freq;
} else {
throw uhd::runtime_error("[ad9361_device_t] [tune] INVALID_CODE_PATH");
}
/* If we aren't already in the ALERT state, we will need to return to
* the FDD state after tuning. */
int not_in_alert = 0;
if ((_io_iface->peek8(0x017) & 0x0F) != 5) {
/* Force the device into the ALERT state. */
not_in_alert = 1;
_io_iface->poke8(0x014, 0x01);
}
/* Tune the RF VCO! */
double tune_freq = _tune_helper(direction, value);
/* Run any necessary calibrations / setups */
if (direction == RX) {
_program_gain_table();
}
/* Update the gain settings. */
_reprogram_gains();
/*
* Only run the following calibrations if we are more than 100MHz away
* from the previous Tx or Rx calibration point. Leave out single shot
* Rx quadrature unless Rx quad-cal is disabled.
*/
if (std::abs(last_cal_freq - tune_freq) > AD9361_CAL_VALID_WINDOW) {
/* Run the calibration algorithms. */
if (direction == RX) {
_calibrate_rf_dc_offset();
if (!_use_iq_balance_tracking)
_calibrate_rx_quadrature();
if (_use_dc_offset_tracking)
_configure_bb_dc_tracking();
_last_rx_cal_freq = tune_freq;
} else {
_calibrate_tx_quadrature();
_last_tx_cal_freq = tune_freq;
}
/* Rx IQ tracking can be disabled on Rx or Tx re-calibration */
if (_use_iq_balance_tracking)
_configure_rx_iq_tracking();
}
/* If we were in the FDD state, return it now. */
if (not_in_alert) {
_io_iface->poke8(0x014, 0x21);
}
return tune_freq;
}
/* Get the current RX or TX frequency. */
double ad9361_device_t::get_freq(direction_t direction)
{
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
if (direction == RX)
return _rx_freq;
else
return _tx_freq;
}
/* Set the gain of RX1, RX2, TX1, or TX2.
*
* Note that the 'value' passed to this function is the gain index
* for RX. Also note that the RX chains are done in terms of gain, and
* the TX chains are done in terms of attenuation. */
double ad9361_device_t::set_gain(direction_t direction, chain_t chain, const double value)
{
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
if (direction == RX) {
int gain_index = static_cast<int>(value);
/* Clip the gain values to the proper min/max gain values. */
if (gain_index > 76)
gain_index = 76;
if (gain_index < 0)
gain_index = 0;
if (chain == CHAIN_1) {
_rx1_gain = value;
_io_iface->poke8(0x109, gain_index);
} else {
_rx2_gain = value;
_io_iface->poke8(0x10c, gain_index);
}
return gain_index;
} else {
/* Setting the below bits causes a change in the TX attenuation word
* to immediately take effect. */
_io_iface->poke8(0x077, 0x40);
_io_iface->poke8(0x07c, 0x40);
/* Each gain step is -0.25dB. Calculate the attenuation necessary
* for the requested gain, convert it into gain steps, then write
* the attenuation word. Max gain (so zero attenuation) is 89.75.
* Ugly values will be written to the attenuation registers if
* "value" is out of bounds, so range checking must be performed
* outside this function.
*/
double atten = AD9361_MAX_GAIN - value;
uint32_t attenreg = uint32_t(atten * 4);
if (chain == CHAIN_1) {
_tx1_gain = value;
_io_iface->poke8(0x073, attenreg & 0xFF);
_io_iface->poke8(0x074, (attenreg >> 8) & 0x01);
} else {
_tx2_gain = value;
_io_iface->poke8(0x075, attenreg & 0xFF);
_io_iface->poke8(0x076, (attenreg >> 8) & 0x01);
}
return AD9361_MAX_GAIN - ((double) (attenreg) / 4);
}
}
void ad9361_device_t::output_test_tone() // On RF side!
{
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
/* Output a 480 kHz tone at 800 MHz */
_io_iface->poke8(0x3F4, 0x0B);
_io_iface->poke8(0x3FC, 0xFF);
_io_iface->poke8(0x3FD, 0xFF);
_io_iface->poke8(0x3FE, 0x3F);
}
void ad9361_device_t::digital_test_tone(bool enb) // Digital output
{
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
_io_iface->poke8(0x3F4, 0x02 | (enb ? 0x01 : 0x00));
}
void ad9361_device_t::data_port_loopback(const bool loopback_enabled)
{
boost::lock_guard<boost::recursive_mutex> lock(_mutex);
_io_iface->poke8(0x3F5, (loopback_enabled ? 0x01 : 0x00));
}
/* Read back the internal RSSI measurement data. The result is in dB
* but not in absolute units. If absolute units are required
* a bench calibration should be done.
* -0.25dB / bit 9bit resolution.*/
double ad9361_device_t::get_rssi(chain_t chain)
{
uint32_t reg_rssi = 0;
uint8_t lsb_bit_pos = 0;
if (chain == CHAIN_1) {
reg_rssi = 0x1A7;
lsb_bit_pos = 0;
}else {
reg_rssi = 0x1A9;
lsb_bit_pos = 1;
}
uint8_t msbs = _io_iface->peek8(reg_rssi);
uint8_t lsb = ((_io_iface->peek8(0x1AB)) >> lsb_bit_pos) & 0x01;
uint16_t val = ((msbs << 1) | lsb);
double rssi = (-0.25f * ((double)val)); //-0.25dB/lsb (See Gain Control Users Guide p. 25)
return rssi;
}
/*
* Returns the reading of the internal temperature sensor.
* One point calibration of the sensor was done according to datasheet
* leading to the given default constant correction factor.
*/
double ad9361_device_t::_get_temperature(const double cal_offset, const double timeout)
{
//set 0x01D[0] to 1 to disable AuxADC GPIO reading
uint8_t tmp = 0;
tmp = _io_iface->peek8(0x01D);
_io_iface->poke8(0x01D, (tmp | 0x01));
_io_iface->poke8(0x00B, 0); //set offset to 0
_io_iface->poke8(0x00C, 0x01); //start reading, clears bit 0x00C[1]
boost::posix_time::ptime start_time = boost::posix_time::microsec_clock::local_time();
boost::posix_time::time_duration elapsed;
//wait for valid data (toggle of bit 1 in 0x00C)
while(((_io_iface->peek8(0x00C) >> 1) & 0x01) == 0) {
boost::this_thread::sleep(boost::posix_time::microseconds(100));
elapsed = boost::posix_time::microsec_clock::local_time() - start_time;
if(elapsed.total_milliseconds() > (timeout*1000))
{
throw uhd::runtime_error("[ad9361_device_t] timeout while reading temperature");
}
}
_io_iface->poke8(0x00C, 0x00); //clear read flag
uint8_t temp = _io_iface->peek8(0x00E); //read temperature.
double tmp_temp = temp/1.140f; //according to ADI driver
tmp_temp = tmp_temp + cal_offset; //Constant offset acquired by one point calibration.
return tmp_temp;
}
double ad9361_device_t::get_average_temperature(const double cal_offset, const size_t num_samples)
{
double d_temp = 0;
for(size_t i = 0; i < num_samples; i++) {
double tmp_temp = _get_temperature(cal_offset);
d_temp += (tmp_temp/num_samples);
}
return d_temp;
}
/*
* Enable/Disable DC offset tracking
*
* Only disable BB tracking while leaving static RF and BB DC calibrations enabled.
* According to correspondance from ADI, turning off Rx BB DC tracking clears the
* correction words so we don't need to be concerned with leaving the calibration
* in a bad state upon disabling. Testing also confirms this behavior.
*
* Note that Rx IQ tracking does not show similar state clearing behavior when
* disabled.
*/
void ad9361_device_t::set_dc_offset_auto(direction_t direction, const bool on)
{
if (direction == RX) {
_use_dc_offset_tracking = on;
_configure_bb_dc_tracking();
} else {
throw uhd::runtime_error("[ad9361_device_t] [set_dc_offset_auto] Tx DC tracking not supported");
}
}
/*
* Enable/Disable IQ balance tracking
*
* Run static Rx quadrature calibration after disabling quadrature tracking.
* This avoids the situation where a user might disable tracking when the loop
* is in a confused state (e.g. at or near saturation). Otherwise, the
* calibration setting could be forced to and left in a bad state.
*/
void ad9361_device_t::set_iq_balance_auto(direction_t direction, const bool on)
{
if (direction == RX) {
_use_iq_balance_tracking = on;
_configure_rx_iq_tracking();
if (!on) {
_io_iface->poke8(0x014, 0x05); // ALERT mode
_calibrate_rx_quadrature();
_io_iface->poke8(0x014, 0x21); // FDD mode
}
} else {
throw uhd::runtime_error("[ad9361_device_t] [set_iq_balance_auto] Tx IQ tracking not supported");
}
}
/* Sets the RX gain mode to be used.
* If a transition from an AGC to an non AGC mode occurs (or vice versa)
* the gain configuration will be reloaded. */
void ad9361_device_t::_setup_agc(chain_t chain, gain_mode_t gain_mode)
{
uint8_t gain_mode_reg = 0;
uint8_t gain_mode_prev = 0;
uint8_t gain_mode_bits_pos = 0;
gain_mode_reg = _io_iface->peek8(0x0FA);
gain_mode_prev = (gain_mode_reg & 0x0F);
if (chain == CHAIN_1) {
gain_mode_bits_pos = 0;
} else if (chain == CHAIN_2) {
gain_mode_bits_pos = 2;
} else
{
throw uhd::runtime_error("[ad9361_device_t] Wrong value for chain");
}
gain_mode_reg = (gain_mode_reg & (~(0x03<<gain_mode_bits_pos))); //clear mode bits
switch (gain_mode) {
case GAIN_MODE_MANUAL:
//leave bits cleared
break;
case GAIN_MODE_SLOW_AGC:
gain_mode_reg = (gain_mode_reg | (0x02<<gain_mode_bits_pos));
break;
case GAIN_MODE_FAST_AGC:
gain_mode_reg = (gain_mode_reg | (0x01<<gain_mode_bits_pos));
break;
default:
throw uhd::runtime_error("[ad9361_device_t] Gain mode does not exist");
}
_io_iface->poke8(0x0FA, gain_mode_reg);
uint8_t gain_mode_status = _io_iface->peek8(0x0FA);
gain_mode_status = (gain_mode_status & 0x0F);
/*Check if gain mode configuration needs to be reprogrammed*/
if (((gain_mode_prev == 0) && (gain_mode_status != 0)) || ((gain_mode_prev != 0) && (gain_mode_status == 0))) {
if (gain_mode_status == 0) {
/*load manual mode config*/
_setup_gain_control(false);
} else {
/*load agc mode config*/
_setup_gain_control(true);
}
}
}
void ad9361_device_t::set_agc(chain_t chain, bool enable)
{
if(chain == CHAIN_1) {
_rx1_agc_enable = enable;
if(enable) {
_setup_agc(chain, _rx1_agc_mode);
} else {
_setup_agc(chain, GAIN_MODE_MANUAL);
}
} else if (chain == CHAIN_2){
_rx2_agc_enable = enable;
if(enable) {
_setup_agc(chain, _rx2_agc_mode);
} else {
_setup_agc(chain, GAIN_MODE_MANUAL);
}
} else
{
throw uhd::runtime_error("[ad9361_device_t] Wrong value for chain");
}
}
void ad9361_device_t::set_agc_mode(chain_t chain, gain_mode_t gain_mode)
{
if(chain == CHAIN_1) {
_rx1_agc_mode = gain_mode;
if(_rx1_agc_enable) {
_setup_agc(chain, _rx1_agc_mode);
}
} else if(chain == CHAIN_2){
_rx2_agc_mode = gain_mode;
if(_rx2_agc_enable) {
_setup_agc(chain, _rx2_agc_mode);
}
} else
{
throw uhd::runtime_error("[ad9361_device_t] Wrong value for chain");
}
}
std::vector<std::string> ad9361_device_t::get_filter_names(direction_t direction)
{
std::vector<std::string> ret;
if(direction == RX) {
for(std::map<std::string, filter_query_helper>::iterator it = _rx_filters.begin(); it != _rx_filters.end(); ++it) {
ret.push_back(it->first);
}
} else if (direction == TX)
{
for(std::map<std::string, filter_query_helper>::iterator it = _tx_filters.begin(); it != _tx_filters.end(); ++it) {
ret.push_back(it->first);
}
}
return ret;
}
filter_info_base::sptr ad9361_device_t::get_filter(direction_t direction, chain_t chain, const std::string &name)
{
if(direction == RX) {
if (not _rx_filters[name].get)
{
throw uhd::runtime_error("ad9361_device_t::get_filter this filter can not be read.");
}
return _rx_filters[name].get(direction, chain);
} else if (direction == TX) {
if (not _tx_filters[name].get)
{
throw uhd::runtime_error("ad9361_device_t::get_filter this filter can not be read.");
}
return _tx_filters[name].get(direction, chain);
}
throw uhd::runtime_error("ad9361_device_t::get_filter wrong direction parameter.");
}
void ad9361_device_t::set_filter(direction_t direction, chain_t chain, const std::string &name, filter_info_base::sptr filter)
{
if(direction == RX) {
if(not _rx_filters[name].set)
{
throw uhd::runtime_error("ad9361_device_t::set_filter this filter can not be written.");
}
_rx_filters[name].set(direction, chain, filter);
} else if (direction == TX) {
if(not _tx_filters[name].set)
{
throw uhd::runtime_error("ad9361_device_t::set_filter this filter can not be written.");
}
_tx_filters[name].set(direction, chain, filter);
}
}
double ad9361_device_t::set_bw_filter(direction_t direction, const double rf_bw)
{
//both low pass filters are programmed to the same bw. However, their cutoffs will differ.
//Together they should create the requested bb bw.
double set_analog_bb_bw = 0;
if(direction == RX)
{
_rx_bb_lp_bw = _calibrate_baseband_rx_analog_filter(rf_bw); //returns bb bw
_rx_tia_lp_bw = _calibrate_rx_TIAs(rf_bw);
_rx_analog_bw = _rx_bb_lp_bw;
set_analog_bb_bw = _rx_analog_bw;
} else {
_tx_bb_lp_bw = _calibrate_baseband_tx_analog_filter(rf_bw); //returns bb bw
_tx_sec_lp_bw = _calibrate_secondary_tx_filter(rf_bw);
_tx_analog_bw = _tx_bb_lp_bw;
set_analog_bb_bw = _tx_analog_bw;
}
return (2.0 * set_analog_bb_bw);
}
void ad9361_device_t::_set_fir_taps(direction_t direction, chain_t chain, const std::vector<int16_t>& taps)
{
size_t num_taps = taps.size();
size_t num_taps_avail = _get_num_fir_taps(direction);
if(num_taps == num_taps_avail)
{
boost::scoped_array<uint16_t> coeffs(new uint16_t[num_taps_avail]);
for (size_t i = 0; i < num_taps_avail; i++)
{
coeffs[i] = uint16_t(taps[i]);
}
_program_fir_filter(direction, chain, num_taps_avail, coeffs.get());
} else if(num_taps < num_taps_avail){
throw uhd::runtime_error("ad9361_device_t::_set_fir_taps not enough coefficients.");
} else {
throw uhd::runtime_error("ad9361_device_t::_set_fir_taps too many coefficients.");
}
}
size_t ad9361_device_t::_get_num_fir_taps(direction_t direction)
{
uint8_t num = 0;
if(direction == RX)
num = _io_iface->peek8(0x0F5);
else
num = _io_iface->peek8(0x065);
num = ((num >> 5) & 0x07);
return ((num + 1) * 16);
}
size_t ad9361_device_t::_get_fir_dec_int(direction_t direction)
{
uint8_t dec_int = 0;
if(direction == RX)
dec_int = _io_iface->peek8(0x003);
else
dec_int = _io_iface->peek8(0x002);
/*
* 0 = dec/int by 1 and bypass filter
* 1 = dec/int by 1
* 2 = dec/int by 2
* 3 = dec/int by 4 */
dec_int = (dec_int & 0x03);
if(dec_int == 3)
{
return 4;
}
return dec_int;
}
std::vector<int16_t> ad9361_device_t::_get_fir_taps(direction_t direction, chain_t chain)
{
int base;
size_t num_taps = _get_num_fir_taps(direction);
uint8_t config;
uint8_t reg_numtaps = (((num_taps / 16) - 1) & 0x07) << 5;
config = reg_numtaps | 0x02; //start the programming clock
if(chain == CHAIN_1)
{
config = config | (1 << 3);
} else if (chain == CHAIN_2){
config = config | (1 << 4);
} else {
throw uhd::runtime_error("[ad9361_device_t] Can not read both chains synchronously");
}
if(direction == RX)
{
base = 0xF0;
} else {
base = 0x60;
}
_io_iface->poke8(base+5,config);
std::vector<int16_t> taps;
uint8_t lower_val;
uint8_t higher_val;
uint16_t coeff;
for(size_t i = 0;i < num_taps;i++)
{
_io_iface->poke8(base,0x00+i);
lower_val = _io_iface->peek8(base+3);
higher_val = _io_iface->peek8(base+4);
coeff = ((higher_val << 8) | lower_val);
taps.push_back(int16_t(coeff));
}
config = (config & (~(1 << 1))); //disable filter clock
_io_iface->poke8(base+5,config);
return taps;
}
/*
* Returns either RX TIA LPF or TX Secondary LPF
* depending on the direction.
* See UG570 for details on used scaling factors. */
filter_info_base::sptr ad9361_device_t::_get_filter_lp_tia_sec(direction_t direction)
{
double cutoff = 0;
if(direction == RX)
{
cutoff = 2.5 * _rx_tia_lp_bw;
} else {
cutoff = 5 * _tx_sec_lp_bw;
}
filter_info_base::sptr lp(new analog_filter_lp(filter_info_base::ANALOG_LOW_PASS, false, 0, "single-pole", cutoff, 20));
return lp;
}
/*
* Returns RX/TX BB LPF.
* See UG570 for details on used scaling factors. */
filter_info_base::sptr ad9361_device_t::_get_filter_lp_bb(direction_t direction)
{
double cutoff = 0;
if(direction == RX)
{
cutoff = 1.4 * _rx_bb_lp_bw;
} else {
cutoff = 1.6 * _tx_bb_lp_bw;
}
filter_info_base::sptr bb_lp(new analog_filter_lp(filter_info_base::ANALOG_LOW_PASS, false, 1, "third-order Butterworth", cutoff, 60));
return bb_lp;
}
/*
* For RX direction the DEC3 is returned.
* For TX direction the INT3 is returned. */
filter_info_base::sptr ad9361_device_t::_get_filter_dec_int_3(direction_t direction)
{
uint8_t enable = 0;
double rate = _adcclock_freq;
double full_scale;
size_t dec = 0;
size_t interpol = 0;
filter_info_base::filter_type type = filter_info_base::DIGITAL_I16;
std::string name;
int16_t taps_array_rx[] = {55, 83, 0, -393, -580, 0, 1914, 4041, 5120, 4041, 1914, 0, -580, -393, 0, 83, 55};
int16_t taps_array_tx[] = {36, -19, 0, -156, -12, 0, 479, 233, 0, -1215, -993, 0, 3569, 6277, 8192, 6277, 3569, 0, -993, -1215, 0, 223, 479, 0, -12, -156, 0, -19, 36};
std::vector<int16_t> taps;
filter_info_base::sptr ret;
if(direction == RX)
{
full_scale = 16384;
dec = 3;
interpol = 1;
enable = _io_iface->peek8(0x003);
enable = ((enable >> 4) & 0x03);
taps.assign(taps_array_rx, taps_array_rx + sizeof(taps_array_rx) / sizeof(int16_t) );
} else {
full_scale = 8192;
dec = 1;
interpol = 3;
uint8_t use_dac_clk_div = _io_iface->peek8(0x00A);
use_dac_clk_div = ((use_dac_clk_div >> 3) & 0x01);
if(use_dac_clk_div == 1)
{
rate = rate / 2;
}
enable = _io_iface->peek8(0x002);
enable = ((enable >> 4) & 0x03);
if(enable == 2) //0 => int. by 1, 1 => int. by 2 (HB3), 2 => int. by 3
{
rate /= 3;
}
taps.assign(taps_array_tx, taps_array_tx + sizeof(taps_array_tx) / sizeof(int16_t) );
}
ret = filter_info_base::sptr(new digital_filter_base<int16_t>(type, (enable != 2) ? true : false, 2, rate, interpol, dec, full_scale, taps.size(), taps));
return ret;
}
filter_info_base::sptr ad9361_device_t::_get_filter_hb_3(direction_t direction)
{
uint8_t enable = 0;
double rate = _adcclock_freq;
double full_scale = 0;
size_t dec = 1;
size_t interpol = 1;
filter_info_base::filter_type type = filter_info_base::DIGITAL_I16;
int16_t taps_array_rx[] = {1, 4, 6, 4, 1};
int16_t taps_array_tx[] = {1, 2, 1};
std::vector<int16_t> taps;
if(direction == RX)
{
full_scale = 16;
dec = 2;
enable = _io_iface->peek8(0x003);
enable = ((enable >> 4) & 0x03);
taps.assign(taps_array_rx, taps_array_rx + sizeof(taps_array_rx) / sizeof(int16_t) );
} else {
full_scale = 2;
interpol = 2;
uint8_t use_dac_clk_div = _io_iface->peek8(0x00A);
use_dac_clk_div = ((use_dac_clk_div >> 3) & 0x01);
if(use_dac_clk_div == 1)
{
rate = rate / 2;
}
enable = _io_iface->peek8(0x002);
enable = ((enable >> 4) & 0x03);
if(enable == 1)
{
rate /= 2;
}
taps.assign(taps_array_tx, taps_array_tx + sizeof(taps_array_tx) / sizeof(int16_t) );
}
filter_info_base::sptr hb = filter_info_base::sptr(new digital_filter_base<int16_t>(type, (enable != 1) ? true : false, 2, rate, interpol, dec, full_scale, taps.size(), taps));
return hb;
}
filter_info_base::sptr ad9361_device_t::_get_filter_hb_2(direction_t direction)
{
uint8_t enable = 0;
double rate = _adcclock_freq;
double full_scale = 0;
size_t dec = 1;
size_t interpol = 1;
filter_info_base::filter_type type = filter_info_base::DIGITAL_I16;
int16_t taps_array[] = {-9, 0, 73, 128, 73, 0, -9};
std::vector<int16_t> taps(taps_array, taps_array + sizeof(taps_array) / sizeof(int16_t) );
digital_filter_base<int16_t>::sptr hb_3 = boost::dynamic_pointer_cast<digital_filter_base<int16_t> >(_get_filter_hb_3(direction));
digital_filter_base<int16_t>::sptr dec_int_3 = boost::dynamic_pointer_cast<digital_filter_base<int16_t> >(_get_filter_dec_int_3(direction));
if(direction == RX)
{
full_scale = 256;
dec = 2;
enable = _io_iface->peek8(0x003);
} else {
full_scale = 128;
interpol = 2;
enable = _io_iface->peek8(0x002);
}
enable = ((enable >> 3) & 0x01);
if(!(hb_3->is_bypassed()))
{
if(direction == RX)
{
rate = hb_3->get_output_rate();
}else if (direction == TX) {
rate = hb_3->get_input_rate();
if(enable)
{
rate /= 2;
}
}
} else { //else dec3/int3 or none of them is used.
if(direction == RX)
{
rate = dec_int_3->get_output_rate();
}else if (direction == TX) {
rate = dec_int_3->get_input_rate();
if(enable)
{
rate /= 2;
}
}
}
filter_info_base::sptr hb(new digital_filter_base<int16_t>(type, (enable == 0) ? true : false, 3, rate, interpol, dec, full_scale, taps.size(), taps));
return hb;
}
filter_info_base::sptr ad9361_device_t::_get_filter_hb_1(direction_t direction)
{
uint8_t enable = 0;
double rate = 0;
double full_scale = 0;
size_t dec = 1;
size_t interpol = 1;
filter_info_base::filter_type type = filter_info_base::DIGITAL_I16;
std::vector<int16_t> taps;
int16_t taps_rx_array[] = {-8, 0, 42, 0, -147, 0, 619, 1013, 619, 0, -147, 0, 42, 0, -8};
int16_t taps_tx_array[] = {-53, 0, 313, 0, -1155, 0, 4989, 8192, 4989, 0, -1155, 0, 313, 0, -53};
digital_filter_base<int16_t>::sptr hb_2 = boost::dynamic_pointer_cast<digital_filter_base<int16_t> >(_get_filter_hb_2(direction));
if(direction == RX)
{
full_scale = 2048;
dec = 2;
enable = _io_iface->peek8(0x003);
enable = ((enable >> 2) & 0x01);
rate = hb_2->get_output_rate();
taps.assign(taps_rx_array, taps_rx_array + sizeof(taps_rx_array) / sizeof(int16_t) );
} else if (direction == TX) {
full_scale = 8192;
interpol = 2;
enable = _io_iface->peek8(0x002);
enable = ((enable >> 2) & 0x01);
rate = hb_2->get_input_rate();
if(enable)
{
rate /= 2;
}
taps.assign(taps_tx_array, taps_tx_array + sizeof(taps_tx_array) / sizeof(int16_t) );
}
filter_info_base::sptr hb(new digital_filter_base<int16_t>(type, (enable == 0) ? true : false, 4, rate, interpol, dec, full_scale, taps.size(), taps));
return hb;
}
filter_info_base::sptr ad9361_device_t::_get_filter_fir(direction_t direction, chain_t chain)
{
double rate = 0;
size_t dec = 1;
size_t interpol = 1;
size_t max_num_taps = 128;
uint8_t enable = 1;
digital_filter_base<int16_t>::sptr hb_1 = boost::dynamic_pointer_cast<digital_filter_base<int16_t> >(_get_filter_hb_1(direction));
if(direction == RX)
{
dec = _get_fir_dec_int(direction);
if(dec == 0)
{
enable = 0;
dec = 1;
}
interpol = 1;
rate = hb_1->get_output_rate();
}else if (direction == TX) {
interpol = _get_fir_dec_int(direction);
if(interpol == 0)
{
enable = 0;
interpol = 1;
}
dec = 1;
rate = hb_1->get_input_rate();
if(enable)
{
rate /= interpol;
}
}
max_num_taps = _get_num_fir_taps(direction);
filter_info_base::sptr fir(new digital_filter_fir<int16_t>(filter_info_base::DIGITAL_FIR_I16, (enable == 0) ? true : false, 5, rate, interpol, dec, 32767, max_num_taps, _get_fir_taps(direction, chain)));
return fir;
}
void ad9361_device_t::_set_filter_fir(direction_t direction, chain_t channel, filter_info_base::sptr filter)
{
digital_filter_fir<int16_t>::sptr fir = boost::dynamic_pointer_cast<digital_filter_fir<int16_t> >(filter);
//only write taps. Ignore everything else for now
_set_fir_taps(direction, channel, fir->get_taps());
}
/*
* If BW of one of the analog filters gets overwritten manually,
* _tx_analog_bw and _rx_analog_bw are not valid any more!
* For useful data in those variables set_bw_filter method should be used
*/
void ad9361_device_t::_set_filter_lp_bb(direction_t direction, filter_info_base::sptr filter)
{
analog_filter_lp::sptr lpf = boost::dynamic_pointer_cast<analog_filter_lp>(filter);
double bw = lpf->get_cutoff();
if(direction == RX)
{
//remember: this function takes rf bw as its input and calibrated to 1.4 x the given value
_rx_bb_lp_bw = _calibrate_baseband_rx_analog_filter(2 * bw / 1.4); //returns bb bw
} else {
//remember: this function takes rf bw as its input and calibrates to 1.6 x the given value
_tx_bb_lp_bw = _calibrate_baseband_tx_analog_filter(2 * bw / 1.6);
}
}
void ad9361_device_t::_set_filter_lp_tia_sec(direction_t direction, filter_info_base::sptr filter)
{
analog_filter_lp::sptr lpf = boost::dynamic_pointer_cast<analog_filter_lp>(filter);
double bw = lpf->get_cutoff();
if(direction == RX)
{
//remember: this function takes rf bw as its input and calibrated to 2.5 x the given value
_rx_tia_lp_bw = _calibrate_rx_TIAs(2 * bw / 2.5); //returns bb bw
} else {
//remember: this function takes rf bw as its input and calibrates to 5 x the given value
_tx_sec_lp_bw = _calibrate_secondary_tx_filter(2 * bw / 5);
}
}
}}
|