1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
|
//
// Copyright 2012-2015 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "b200_impl.hpp"
#include "../../transport/libusb1_base.hpp"
#include "b200_regs.hpp"
#include <uhd/cal/database.hpp>
#include <uhd/config.hpp>
#include <uhd/exception.hpp>
#include <uhd/transport/usb_control.hpp>
#include <uhd/usrp/dboard_eeprom.hpp>
#include <uhd/utils/cast.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/paths.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhd/utils/static.hpp>
#include <boost/filesystem.hpp>
#include <boost/format.hpp>
#include <boost/functional/hash.hpp>
#include <boost/lexical_cast.hpp>
#include <chrono>
#include <cmath>
#include <cstdio>
#include <ctime>
#include <functional>
#include <memory>
using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::usrp::gpio_atr;
using namespace uhd::transport;
namespace {
constexpr int64_t REENUMERATION_TIMEOUT_MS = 3000;
}
// B200 + B210:
class b200_ad9361_client_t : public ad9361_params
{
public:
~b200_ad9361_client_t() override {}
double get_band_edge(frequency_band_t band) override
{
switch (band) {
case AD9361_RX_BAND0:
return 2.2e9; // Port C
case AD9361_RX_BAND1:
return 4.0e9; // Port B
case AD9361_TX_BAND0:
return 2.5e9; // Port B
default:
return 0;
}
}
clocking_mode_t get_clocking_mode() override
{
return clocking_mode_t::AD9361_XTAL_N_CLK_PATH;
}
digital_interface_mode_t get_digital_interface_mode() override
{
return AD9361_DDR_FDD_LVCMOS;
}
digital_interface_delays_t get_digital_interface_timing() override
{
digital_interface_delays_t delays;
delays.rx_clk_delay = 0;
delays.rx_data_delay = 0xF;
delays.tx_clk_delay = 0;
delays.tx_data_delay = 0xF;
return delays;
}
};
// B205
class b2xxmini_ad9361_client_t : public ad9361_params
{
public:
~b2xxmini_ad9361_client_t() override {}
double get_band_edge(frequency_band_t band) override
{
switch (band) {
case AD9361_RX_BAND0:
return 0; // Set these all to
case AD9361_RX_BAND1:
return 0; // zero, so RF port A
case AD9361_TX_BAND0:
return 0; // is used all the time
default:
return 0; // On both Rx and Tx
}
}
clocking_mode_t get_clocking_mode() override
{
return clocking_mode_t::AD9361_XTAL_N_CLK_PATH;
}
digital_interface_mode_t get_digital_interface_mode() override
{
return AD9361_DDR_FDD_LVCMOS;
}
digital_interface_delays_t get_digital_interface_timing() override
{
digital_interface_delays_t delays;
delays.rx_clk_delay = 0;
delays.rx_data_delay = 0xF;
delays.tx_clk_delay = 0;
delays.tx_data_delay = 0xF;
return delays;
}
};
/***********************************************************************
* Helpers
**********************************************************************/
std::string check_option_valid(const std::string& name,
const std::vector<std::string>& valid_options,
const std::string& option)
{
if (std::find(valid_options.begin(), valid_options.end(), option)
== valid_options.end()) {
throw uhd::runtime_error(
str(boost::format("Invalid option chosen for: %s") % name));
}
return option;
}
/***********************************************************************
* Discovery
**********************************************************************/
//! Look up the type of B-Series device we're currently running.
// Throws a uhd::runtime_error if the USB PID and the product ID stored
// in the MB EEPROM are invalid,
b200_product_t get_b200_product(
const usb_device_handle::sptr& handle, const mboard_eeprom_t& mb_eeprom)
{
// Try USB PID first
uint16_t product_id = handle->get_product_id();
if (B2XX_PID_TO_PRODUCT.has_key(product_id))
return B2XX_PID_TO_PRODUCT[product_id];
// Try EEPROM product ID code second
if (mb_eeprom["product"].empty()) {
throw uhd::runtime_error("B200: Missing product ID on EEPROM.");
}
product_id = boost::lexical_cast<uint16_t>(mb_eeprom["product"]);
if (not B2XX_PRODUCT_ID.has_key(product_id)) {
throw uhd::runtime_error(
str(boost::format("B200 unknown product code: 0x%04x") % product_id));
}
return B2XX_PRODUCT_ID[product_id];
}
std::vector<usb_device_handle::sptr> get_b200_device_handles(const device_addr_t& hint)
{
std::vector<usb_device_handle::vid_pid_pair_t> vid_pid_pair_list;
if (hint.has_key("vid") && hint.has_key("pid") && hint.has_key("type")
&& hint["type"] == "b200") {
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(
uhd::cast::hexstr_cast<uint16_t>(hint.get("vid")),
uhd::cast::hexstr_cast<uint16_t>(hint.get("pid"))));
} else {
vid_pid_pair_list = b200_vid_pid_pairs;
}
// find the usrps and load firmware
return usb_device_handle::get_device_list(vid_pid_pair_list);
}
static device_addrs_t b200_find(const device_addr_t& hint)
{
device_addrs_t b200_addrs;
// return an empty list of addresses when type is set to non-b200
if (hint.has_key("type") and hint["type"] != "b200")
return b200_addrs;
// Return an empty list of addresses when an address or resource is specified,
// since an address and resource is intended for a different, non-USB, device.
for (device_addr_t hint_i : separate_device_addr(hint)) {
if (hint_i.has_key("addr") || hint_i.has_key("resource"))
return b200_addrs;
}
// Important note:
// The get device list calls are nested inside the for loop.
// This allows the usb guts to decontruct when not in use,
// so that re-enumeration after fw load can occur successfully.
// This requirement is a courtesy of libusb1.0 on windows.
size_t found = 0;
for (usb_device_handle::sptr handle : get_b200_device_handles(hint)) {
// extract the firmware path for the b200
std::string b200_fw_image;
try {
b200_fw_image = hint.get("fw", B200_FW_FILE_NAME);
b200_fw_image =
uhd::find_image_path(b200_fw_image, STR(UHD_IMAGES_DIR)); // FIXME
} catch (uhd::exception& e) {
UHD_LOGGER_WARNING("B200") << e.what();
return b200_addrs;
}
UHD_LOGGER_DEBUG("B200") << "the firmware image: " << b200_fw_image;
usb_control::sptr control;
try {
control = usb_control::make(handle, 0);
} catch (const uhd::exception&) {
continue;
} // ignore claimed
// check if fw was already loaded
if (!(handle->firmware_loaded())) {
b200_iface::make(control)->load_firmware(b200_fw_image);
}
found++;
}
const auto timeout_time = std::chrono::steady_clock::now()
+ std::chrono::milliseconds(REENUMERATION_TIMEOUT_MS);
// search for the device until found or timeout
while (std::chrono::steady_clock::now() < timeout_time and b200_addrs.empty()
and found != 0) {
for (usb_device_handle::sptr handle : get_b200_device_handles(hint)) {
usb_control::sptr control;
try {
control = usb_control::make(handle, 0);
} catch (const uhd::exception&) {
continue;
} // ignore claimed
b200_iface::sptr iface = b200_iface::make(control);
const mboard_eeprom_t mb_eeprom = b200_impl::get_mb_eeprom(iface);
device_addr_t new_addr;
new_addr["type"] = "b200";
new_addr["name"] = mb_eeprom["name"];
new_addr["serial"] = handle->get_serial();
try {
// Turn the 16-Bit product ID into a string representation
new_addr["product"] = B2XX_STR_NAMES[get_b200_product(handle, mb_eeprom)];
} catch (const uhd::runtime_error&) {
// No problem if this fails -- this is just device discovery, after all.
new_addr["product"] = "B2??";
}
// this is a found b200 when the hint serial and name match or blank
if ((not hint.has_key("name") or hint["name"] == new_addr["name"])
and (not hint.has_key("serial")
or hint["serial"] == new_addr["serial"])) {
b200_addrs.push_back(new_addr);
}
}
}
return b200_addrs;
}
/***********************************************************************
* Make
**********************************************************************/
static device::sptr b200_make(const device_addr_t& device_addr)
{
uhd::transport::usb_device_handle::sptr handle;
// We try twice, because the first time, the link might be in a bad state
// and we might need to reset the link, but if that didn't help, trying
// a third time is pointless.
try {
return device::sptr(new b200_impl(device_addr, handle));
} catch (const uhd::usb_error&) {
UHD_LOGGER_INFO("B200") << "Detected bad USB state; resetting.";
libusb::device_handle::sptr dev_handle(libusb::device_handle::get_cached_handle(
std::static_pointer_cast<libusb::special_handle>(handle)->get_device()));
dev_handle->clear_endpoints(
B200_USB_CTRL_RECV_ENDPOINT, B200_USB_CTRL_SEND_ENDPOINT);
dev_handle->clear_endpoints(
B200_USB_DATA_RECV_ENDPOINT, B200_USB_DATA_SEND_ENDPOINT);
dev_handle->reset_device();
}
return device::sptr(new b200_impl(device_addr, handle));
}
UHD_STATIC_BLOCK(register_b200_device)
{
device::register_device(&b200_find, &b200_make, device::USRP);
}
/***********************************************************************
* Structors
**********************************************************************/
b200_impl::b200_impl(
const uhd::device_addr_t& device_addr, usb_device_handle::sptr& handle)
: _product(B200)
, // Some safe value
_revision(0)
, _enable_user_regs(device_addr.has_key("enable_user_regs"))
, _time_source(UNKNOWN)
, _time_set_with_pps(false)
, _tick_rate(0.0) // Forces a clock initialization at startup
{
_tree = property_tree::make();
_type = device::USRP;
const fs_path mb_path = "/mboards/0";
// try to match the given device address with something on the USB bus
uint16_t vid = B200_VENDOR_ID;
uint16_t pid = B200_PRODUCT_ID;
bool specified_vid = false;
bool specified_pid = false;
if (device_addr.has_key("vid")) {
vid = uhd::cast::hexstr_cast<uint16_t>(device_addr.get("vid"));
specified_vid = true;
}
if (device_addr.has_key("pid")) {
pid = uhd::cast::hexstr_cast<uint16_t>(device_addr.get("pid"));
specified_pid = true;
}
std::vector<usb_device_handle::vid_pid_pair_t>
vid_pid_pair_list; // search list for devices.
// Search only for specified VID and PID if both specified
if (specified_vid && specified_pid) {
vid_pid_pair_list.push_back(usb_device_handle::vid_pid_pair_t(vid, pid));
}
// Search for all supported PIDs limited to specified VID if only VID specified
else if (specified_vid) {
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(vid, B200_PRODUCT_ID));
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(vid, B200MINI_PRODUCT_ID));
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(vid, B205MINI_PRODUCT_ID));
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(vid, B200_PRODUCT_NI_ID));
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(vid, B210_PRODUCT_NI_ID));
}
// Search for all supported VIDs limited to specified PID if only PID specified
else if (specified_pid) {
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(B200_VENDOR_ID, pid));
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(B200_VENDOR_NI_ID, pid));
}
// Search for all supported devices if neither VID nor PID specified
else {
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(B200_VENDOR_ID, B200_PRODUCT_ID));
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(B200_VENDOR_ID, B200MINI_PRODUCT_ID));
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(B200_VENDOR_ID, B205MINI_PRODUCT_ID));
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(B200_VENDOR_NI_ID, B200_PRODUCT_NI_ID));
vid_pid_pair_list.push_back(
usb_device_handle::vid_pid_pair_t(B200_VENDOR_NI_ID, B210_PRODUCT_NI_ID));
}
std::vector<usb_device_handle::sptr> device_list =
usb_device_handle::get_device_list(vid_pid_pair_list);
// locate the matching handle in the device list
for (usb_device_handle::sptr dev_handle : device_list) {
try {
if (dev_handle->get_serial() == device_addr["serial"]) {
handle = dev_handle;
break;
}
} catch (const uhd::exception&) {
continue;
}
}
UHD_ASSERT_THROW(handle.get() != NULL); // better be found
// create control objects
usb_control::sptr control = usb_control::make(handle, 0);
_iface = b200_iface::make(control);
this->check_fw_compat(); // check after making
////////////////////////////////////////////////////////////////////
// setup the mboard eeprom
////////////////////////////////////////////////////////////////////
const mboard_eeprom_t mb_eeprom = get_mb_eeprom(_iface);
_tree->create<mboard_eeprom_t>(mb_path / "eeprom")
.set(mb_eeprom)
.add_coerced_subscriber(
std::bind(&b200_impl::set_mb_eeprom, this, std::placeholders::_1));
////////////////////////////////////////////////////////////////////
// Identify the device type
////////////////////////////////////////////////////////////////////
std::string default_file_name;
std::string product_name;
try {
// This will throw if the product ID is invalid:
_product = get_b200_product(handle, mb_eeprom);
default_file_name = B2XX_FPGA_FILE_NAME.get(_product);
product_name = B2XX_STR_NAMES.get(_product);
} catch (const uhd::runtime_error& e) {
// The only reason we may let this pass is if the user specified
// the FPGA file name:
if (not device_addr.has_key("fpga")) {
throw e;
}
// In this case, we must provide a default product name:
product_name = "B200?";
}
if (not mb_eeprom["revision"].empty()) {
_revision = boost::lexical_cast<size_t>(mb_eeprom["revision"]);
}
UHD_LOGGER_INFO("B200") << "Detected Device: " << B2XX_STR_NAMES[_product];
_gpsdo_capable = (not(_product == B200MINI or _product == B205MINI));
////////////////////////////////////////////////////////////////////
// Set up frontend mapping
////////////////////////////////////////////////////////////////////
// Explanation: The AD9361 has 2 frontends, FE1 and FE2.
// On the B210 FE1 maps to the B-side (or radio 1), and FE2 maps
// to the A-side (or radio 0). So, logically, the radios are swapped
// between the host side and the AD9361-side.
// B200 is more complicated: On Revs <= 4, the A-side is connected,
// which means FE2 is used (like B210). On Revs >= 5, the left side
// ("B-side") is connected, because these revs use an AD9364, which
// does not have an FE2, so we don't swap FEs.
// Swapped setup:
_fe1 = 1;
_fe2 = 0;
_gpio_state.swap_atr = 1;
// Unswapped setup:
if (_product == B200MINI or _product == B205MINI
or (_product == B200 and _revision >= 5)) {
_fe1 = 0; // map radio0 to FE1
_fe2 = 1; // map radio1 to FE2
_gpio_state.swap_atr = 0; // ATRs for radio0 are mapped to FE1
}
////////////////////////////////////////////////////////////////////
// Load the FPGA image, then reset GPIF
////////////////////////////////////////////////////////////////////
// extract the FPGA path for the B200
std::string b200_fpga_image = find_image_path(
device_addr.has_key("fpga") ? device_addr["fpga"] : default_file_name);
uint32_t status = _iface->load_fpga(b200_fpga_image);
if (status != 0) {
throw uhd::runtime_error(str(boost::format("fx3 is in state %1%") % status));
}
_iface->reset_gpif();
////////////////////////////////////////////////////////////////////
// Create control transport
////////////////////////////////////////////////////////////////////
uint8_t usb_speed = _iface->get_usb_speed();
UHD_LOGGER_INFO("B200") << "Operating over USB " << (int)usb_speed << ".";
const std::string min_frame_size = (usb_speed == 3) ? "1024" : "512";
device_addr_t ctrl_xport_args;
ctrl_xport_args["recv_frame_size"] = min_frame_size;
ctrl_xport_args["num_recv_frames"] = "16";
ctrl_xport_args["send_frame_size"] = min_frame_size;
ctrl_xport_args["num_send_frames"] = "16";
// This may throw a uhd::usb_error, which will be caught by b200_make().
_ctrl_transport = usb_zero_copy::make(handle,
B200_USB_CTRL_RECV_INTERFACE,
B200_USB_CTRL_RECV_ENDPOINT, // interface, endpoint
B200_USB_CTRL_SEND_INTERFACE,
B200_USB_CTRL_SEND_ENDPOINT, // interface, endpoint
ctrl_xport_args);
while (_ctrl_transport->get_recv_buff(0.0)) {
} // flush ctrl xport
_tree->create<double>(mb_path / "link_max_rate")
.set((usb_speed == 3) ? B200_MAX_RATE_USB3 : B200_MAX_RATE_USB2);
_tree->create<int>(mb_path / "usb_version").set(usb_speed);
////////////////////////////////////////////////////////////////////
// Async task structure
////////////////////////////////////////////////////////////////////
_async_task_data.reset(new AsyncTaskData());
_async_task_data->async_md.reset(new async_md_type(1000 /*messages deep*/));
if (_gpsdo_capable) {
_async_task_data->gpsdo_uart =
b200_uart::make(_ctrl_transport, B200_TX_GPS_UART_SID);
}
_async_task = uhd::msg_task::make(std::bind(
&b200_impl::handle_async_task, this, _ctrl_transport, _async_task_data));
////////////////////////////////////////////////////////////////////
// Local control endpoint
////////////////////////////////////////////////////////////////////
_local_ctrl = b200_radio_ctrl_core::make(false /*lilE*/,
_ctrl_transport,
zero_copy_if::sptr() /*null*/,
B200_LOCAL_CTRL_SID);
_local_ctrl->hold_task(_async_task);
_async_task_data->local_ctrl = _local_ctrl; // weak
this->check_fpga_compat();
/* Initialize the GPIOs, set the default bandsels to the lower range. Note
* that calling update_bandsel calls update_gpio_state(). */
update_bandsel("RX", 800e6);
update_bandsel("TX", 850e6);
////////////////////////////////////////////////////////////////////
// Create the GPSDO control
////////////////////////////////////////////////////////////////////
if (_gpsdo_capable) {
if ((_local_ctrl->peek32(RB32_CORE_STATUS) & 0xff) != B200_GPSDO_ST_NONE) {
UHD_LOGGER_INFO("B200") << "Detecting internal GPSDO.... " << std::flush;
try {
_gps = gps_ctrl::make(_async_task_data->gpsdo_uart);
} catch (std::exception& e) {
UHD_LOGGER_ERROR("B200")
<< "An error occurred making GPSDO control: " << e.what();
}
if (_gps and _gps->gps_detected()) {
for (const std::string& name : _gps->get_sensors()) {
_tree->create<sensor_value_t>(mb_path / "sensors" / name)
.set_publisher(std::bind(&gps_ctrl::get_sensor, _gps, name));
}
} else {
_local_ctrl->poke32(TOREG(SR_CORE_GPSDO_ST), B200_GPSDO_ST_NONE);
}
}
}
////////////////////////////////////////////////////////////////////
// Initialize the properties tree
////////////////////////////////////////////////////////////////////
_tree->create<std::string>("/name").set("B-Series Device");
_tree->create<std::string>(mb_path / "name").set(product_name);
_tree->create<std::string>(mb_path / "codename")
.set((_product == B200MINI or _product == B205MINI) ? "Pixie" : "Sasquatch");
////////////////////////////////////////////////////////////////////
// Create data transport
// This happens after FPGA ctrl instantiated so any junk that might
// be in the FPGAs buffers doesn't get pulled into the transport
// before being cleared.
////////////////////////////////////////////////////////////////////
device_addr_t data_xport_args;
const int max_transfer = usb_speed == 3 ? 1024 : 512;
int recv_frame_size =
device_addr.cast<int>("recv_frame_size", B200_USB_DATA_DEFAULT_FRAME_SIZE);
// Check that recv_frame_size limits.
if (recv_frame_size < B200_USB_DATA_MIN_RECV_FRAME_SIZE) {
UHD_LOGGER_WARNING("B200") << "Requested recv_frame_size of " << recv_frame_size
<< " is too small. It will be set to "
<< B200_USB_DATA_MIN_RECV_FRAME_SIZE << ".";
recv_frame_size = B200_USB_DATA_MIN_RECV_FRAME_SIZE;
} else if (recv_frame_size > B200_USB_DATA_MAX_RECV_FRAME_SIZE) {
UHD_LOGGER_WARNING("B200") << "Requested recv_frame_size of " << recv_frame_size
<< " is too large. It will be set to "
<< B200_USB_DATA_MAX_RECV_FRAME_SIZE << ".";
recv_frame_size = B200_USB_DATA_MAX_RECV_FRAME_SIZE;
} else if (recv_frame_size % max_transfer == 0 or recv_frame_size % 8 != 0) {
// The Cypress FX3 does not properly handle recv_frame_sizes that are
// aligned to the maximum transfer size and the FPGA code requires the
// data to be aligned to 8 byte words. The code below coerces the
// recv_frame_size to a value that is a multiple of 8 bytes, not
// a multiple of the maximum transfer size, and aligned to 24 bytes
// to support full 8 byte word alignment for sc8, sc12, and sc16 data
// types.
// Align to 8 byte words
recv_frame_size += 8 - (recv_frame_size % 8);
if (recv_frame_size % max_transfer == 0) {
recv_frame_size = (((recv_frame_size - 16) / 24) * 24) + 16;
}
UHD_LOGGER_WARNING("B200")
<< "The recv_frame_size must be a multiple of 8 bytes and not a multiple of "
<< max_transfer << " bytes. Requested recv_frame_size of "
<< device_addr["recv_frame_size"] << " coerced to " << recv_frame_size << ".";
}
data_xport_args["recv_frame_size"] = std::to_string(recv_frame_size);
data_xport_args["num_recv_frames"] = device_addr.get("num_recv_frames", "16");
data_xport_args["send_frame_size"] = device_addr.get(
"send_frame_size", std::to_string(B200_USB_DATA_DEFAULT_FRAME_SIZE));
data_xport_args["num_send_frames"] = device_addr.get("num_send_frames", "16");
// This may throw a uhd::usb_error, which will be caught by b200_make().
_data_transport = usb_zero_copy::make(handle, // identifier
B200_USB_DATA_RECV_INTERFACE,
B200_USB_DATA_RECV_ENDPOINT, // interface, endpoint
B200_USB_DATA_SEND_INTERFACE,
B200_USB_DATA_SEND_ENDPOINT, // interface, endpoint
data_xport_args // param hints
);
while (_data_transport->get_recv_buff(0.0)) {
} // flush ctrl xport
_demux = recv_packet_demuxer_3000::make(_data_transport);
////////////////////////////////////////////////////////////////////
// create time and clock control objects
////////////////////////////////////////////////////////////////////
_spi_iface = b200_local_spi_core::make(_local_ctrl);
if (not(_product == B200MINI or _product == B205MINI)) {
_adf4001_iface = std::make_shared<b200_ref_pll_ctrl>(_spi_iface);
}
////////////////////////////////////////////////////////////////////
// Init codec - turns on clocks
////////////////////////////////////////////////////////////////////
UHD_LOGGER_INFO("B200") << "Initialize CODEC control...";
reset_codec();
ad9361_params::sptr client_settings;
if (_product == B200MINI or _product == B205MINI) {
client_settings = std::make_shared<b2xxmini_ad9361_client_t>();
} else {
client_settings = std::make_shared<b200_ad9361_client_t>();
}
_codec_ctrl = ad9361_ctrl::make_spi(client_settings, _spi_iface, AD9361_SLAVENO);
////////////////////////////////////////////////////////////////////
// create codec control objects
////////////////////////////////////////////////////////////////////
{
const fs_path codec_path = mb_path / ("rx_codecs") / "A";
_tree->create<std::string>(codec_path / "name")
.set(product_name + " RX dual ADC");
_tree->create<int>(codec_path / "gains"); // empty cuz gains are in frontend
}
{
const fs_path codec_path = mb_path / ("tx_codecs") / "A";
_tree->create<std::string>(codec_path / "name")
.set(product_name + " TX dual DAC");
_tree->create<int>(codec_path / "gains"); // empty cuz gains are in frontend
}
////////////////////////////////////////////////////////////////////
// create clock control objects
////////////////////////////////////////////////////////////////////
_tree->create<double>(mb_path / "tick_rate")
.set_coercer(std::bind(&b200_impl::set_tick_rate, this, std::placeholders::_1))
.set_publisher(std::bind(&b200_impl::get_tick_rate, this))
.add_coerced_subscriber(
std::bind(&b200_impl::update_tick_rate, this, std::placeholders::_1));
_tree->create<meta_range_t>(mb_path / "tick_rate/range").set_publisher([this]() {
return this->_codec_ctrl->get_clock_rate_range();
});
_tree->create<time_spec_t>(mb_path / "time" / "cmd");
_tree->create<bool>(mb_path / "auto_tick_rate").set(false);
////////////////////////////////////////////////////////////////////
// and do the misc mboard sensors
////////////////////////////////////////////////////////////////////
_tree->create<sensor_value_t>(mb_path / "sensors" / "ref_locked")
.set_publisher(std::bind(&b200_impl::get_ref_locked, this));
////////////////////////////////////////////////////////////////////
// create frontend mapping
////////////////////////////////////////////////////////////////////
std::vector<size_t> default_map(2, 0);
default_map[1] = 1; // Set this to A->0 B->1 even if there's only A
_tree->create<std::vector<size_t>>(mb_path / "rx_chan_dsp_mapping").set(default_map);
_tree->create<std::vector<size_t>>(mb_path / "tx_chan_dsp_mapping").set(default_map);
_tree->create<subdev_spec_t>(mb_path / "rx_subdev_spec")
.set_coercer(
std::bind(&b200_impl::coerce_subdev_spec, this, std::placeholders::_1))
.set(subdev_spec_t())
.add_coerced_subscriber(
std::bind(&b200_impl::update_subdev_spec, this, "rx", std::placeholders::_1));
_tree->create<subdev_spec_t>(mb_path / "tx_subdev_spec")
.set_coercer(
std::bind(&b200_impl::coerce_subdev_spec, this, std::placeholders::_1))
.set(subdev_spec_t())
.add_coerced_subscriber(
std::bind(&b200_impl::update_subdev_spec, this, "tx", std::placeholders::_1));
////////////////////////////////////////////////////////////////////
// setup radio control
////////////////////////////////////////////////////////////////////
UHD_LOGGER_INFO("B200") << "Initialize Radio control...";
const size_t num_radio_chains = ((_local_ctrl->peek32(RB32_CORE_STATUS) >> 8) & 0xff);
UHD_ASSERT_THROW(num_radio_chains > 0);
UHD_ASSERT_THROW(num_radio_chains <= 2);
_radio_perifs.resize(num_radio_chains);
_codec_mgr = ad936x_manager::make(_codec_ctrl, num_radio_chains);
_codec_mgr->init_codec();
for (size_t i = 0; i < _radio_perifs.size(); i++)
this->setup_radio(i);
// now test each radio module's connection to the codec interface
for (radio_perifs_t& perif : _radio_perifs) {
_codec_mgr->loopback_self_test(
[&perif](const uint32_t value) {
perif.ctrl->poke32(TOREG(SR_CODEC_IDLE), value);
},
[&perif]() { return perif.ctrl->peek64(RB64_CODEC_READBACK); });
}
// register time now and pps onto available radio cores
_tree->create<time_spec_t>(mb_path / "time" / "now")
.set_publisher(std::bind(&time_core_3000::get_time_now, _radio_perifs[0].time64))
.add_coerced_subscriber(
std::bind(&b200_impl::set_time, this, std::placeholders::_1))
.set(0.0);
// re-sync the times when the tick rate changes
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber(std::bind(&b200_impl::sync_times, this));
_tree->create<time_spec_t>(mb_path / "time" / "pps")
.set_publisher(
std::bind(&time_core_3000::get_time_last_pps, _radio_perifs[0].time64));
_tree->access<time_spec_t>(mb_path / "time" / "pps")
.add_coerced_subscriber(std::bind(
&b200_impl::set_time_next_pps, this, std::placeholders::_1));
// setup time source props
const std::vector<std::string> time_sources =
(_gpsdo_capable)
? std::vector<std::string>{"none", "internal", "external", "gpsdo"}
: std::vector<std::string>{"none", "internal", "external"};
_tree->create<std::vector<std::string>>(mb_path / "time_source" / "options")
.set(time_sources);
_tree->create<std::string>(mb_path / "time_source" / "value")
.set_coercer(std::bind(
&check_option_valid, "time source", time_sources, std::placeholders::_1))
.add_coerced_subscriber(
std::bind(&b200_impl::update_time_source, this, std::placeholders::_1));
// setup reference source props
const std::vector<std::string> clock_sources =
(_gpsdo_capable) ? std::vector<std::string>{"internal", "external", "gpsdo"}
: std::vector<std::string>{"internal", "external"};
_tree->create<std::vector<std::string>>(mb_path / "clock_source" / "options")
.set(clock_sources);
_tree->create<std::string>(mb_path / "clock_source" / "value")
.set_coercer(std::bind(
&check_option_valid, "clock source", clock_sources, std::placeholders::_1))
.add_coerced_subscriber(
std::bind(&b200_impl::update_clock_source, this, std::placeholders::_1));
////////////////////////////////////////////////////////////////////
// front panel gpio
////////////////////////////////////////////////////////////////////
_radio_perifs[0].fp_gpio =
gpio_atr_3000::make(_radio_perifs[0].ctrl,
gpio_atr_offsets::make_default(TOREG(SR_FP_GPIO), RB32_FP_GPIO));
for (const auto& attr : gpio_attr_map) {
switch (attr.first) {
case usrp::gpio_atr::GPIO_SRC:
_tree
->create<std::vector<std::string>>(
mb_path / "gpio" / "FP0" / attr.second)
.set(std::vector<std::string>(
32, usrp::gpio_atr::default_attr_value_map.at(attr.first)))
.add_coerced_subscriber([](const std::vector<std::string>&) {
throw uhd::runtime_error("This device does not support setting "
"the GPIO_SRC attribute.");
});
break;
case usrp::gpio_atr::GPIO_CTRL:
case usrp::gpio_atr::GPIO_DDR:
_tree
->create<std::vector<std::string>>(
mb_path / "gpio" / "FP0" / attr.second)
.set(std::vector<std::string>(
32, usrp::gpio_atr::default_attr_value_map.at(attr.first)))
.add_coerced_subscriber([this, attr](
const std::vector<std::string> str_val) {
uint32_t val = 0;
for (size_t i = 0; i < str_val.size(); i++) {
val += usrp::gpio_atr::gpio_attr_value_pair.at(attr.second)
.at(str_val[i])
<< i;
}
_radio_perifs[0].fp_gpio->set_gpio_attr(attr.first, val);
});
break;
case usrp::gpio_atr::GPIO_READBACK:
_tree->create<uint32_t>(mb_path / "gpio" / "FP0" / "READBACK")
.set_publisher(
std::bind(&gpio_atr_3000::read_gpio, _radio_perifs[0].fp_gpio));
break;
default:
_tree->create<uint32_t>(mb_path / "gpio" / "FP0" / attr.second)
.set(0)
.add_coerced_subscriber(std::bind(&gpio_atr_3000::set_gpio_attr,
_radio_perifs[0].fp_gpio,
attr.first,
std::placeholders::_1));
}
}
////////////////////////////////////////////////////////////////////
// dboard eeproms but not really
////////////////////////////////////////////////////////////////////
dboard_eeprom_t db_eeprom;
_tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "rx_eeprom")
.set(db_eeprom);
_tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "tx_eeprom")
.set(db_eeprom);
_tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "gdb_eeprom")
.set(db_eeprom);
////////////////////////////////////////////////////////////////////
// do some post-init tasks
////////////////////////////////////////////////////////////////////
// Init the clock rate and the auto mcr appropriately
if (not device_addr.has_key("master_clock_rate")) {
UHD_LOGGER_INFO("B200") << "Setting master clock rate selection to 'automatic'.";
}
// We can automatically choose a master clock rate, but not if the user specifies one
const double default_tick_rate =
device_addr.cast<double>("master_clock_rate", ad936x_manager::DEFAULT_TICK_RATE);
_tree->access<double>(mb_path / "tick_rate").set(default_tick_rate);
_tree->access<bool>(mb_path / "auto_tick_rate")
.set(not device_addr.has_key("master_clock_rate"));
// subdev spec contains full width of selections
subdev_spec_t rx_spec, tx_spec;
for (const std::string& fe :
_tree->list(mb_path / "dboards" / "A" / "rx_frontends")) {
rx_spec.push_back(subdev_spec_pair_t("A", fe));
}
for (const std::string& fe :
_tree->list(mb_path / "dboards" / "A" / "tx_frontends")) {
tx_spec.push_back(subdev_spec_pair_t("A", fe));
}
_tree->access<subdev_spec_t>(mb_path / "rx_subdev_spec").set(rx_spec);
_tree->access<subdev_spec_t>(mb_path / "tx_subdev_spec").set(tx_spec);
// init to internal clock and time source
_tree->access<std::string>(mb_path / "clock_source/value").set("internal");
_tree->access<std::string>(mb_path / "time_source/value").set("internal");
// Set the DSP chains to some safe value
for (size_t i = 0; i < _radio_perifs.size(); i++) {
_radio_perifs[i].ddc->set_host_rate(
default_tick_rate / ad936x_manager::DEFAULT_DECIM);
_radio_perifs[i].duc->set_host_rate(
default_tick_rate / ad936x_manager::DEFAULT_INTERP);
}
}
b200_impl::~b200_impl(void)
{
UHD_SAFE_CALL(_async_task.reset();)
}
/***********************************************************************
* setup radio control objects
**********************************************************************/
void b200_impl::setup_radio(const size_t dspno)
{
radio_perifs_t& perif = _radio_perifs[dspno];
const fs_path mb_path = "/mboards/0";
////////////////////////////////////////////////////////////////////
// Set up transport
////////////////////////////////////////////////////////////////////
const uint32_t sid = (dspno == 0) ? B200_CTRL0_MSG_SID : B200_CTRL1_MSG_SID;
////////////////////////////////////////////////////////////////////
// radio control
////////////////////////////////////////////////////////////////////
perif.ctrl = b200_radio_ctrl_core::make(
false /*lilE*/, _ctrl_transport, zero_copy_if::sptr() /*null*/, sid);
perif.ctrl->hold_task(_async_task);
_async_task_data->radio_ctrl[dspno] = perif.ctrl; // weak
_tree->access<time_spec_t>(mb_path / "time" / "cmd")
.add_coerced_subscriber(std::bind(
&b200_radio_ctrl_core::set_time, perif.ctrl, std::placeholders::_1));
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber(std::bind(
&b200_radio_ctrl_core::set_tick_rate, perif.ctrl, std::placeholders::_1));
this->register_loopback_self_test(perif.ctrl);
////////////////////////////////////////////////////////////////////
// Set up peripherals
////////////////////////////////////////////////////////////////////
perif.atr = gpio_atr_3000::make(perif.ctrl, gpio_atr_offsets::make_write_only(TOREG(SR_ATR)));
perif.atr->set_atr_mode(MODE_ATR, 0xFFFFFFFF);
// create rx dsp control objects
perif.framer = rx_vita_core_3000::make(perif.ctrl, TOREG(SR_RX_CTRL));
perif.ddc = rx_dsp_core_3000::make(perif.ctrl, TOREG(SR_RX_DSP), true /*is_b200?*/);
perif.ddc->set_link_rate(10e9 / 8); // whatever
perif.ddc->set_mux(usrp::fe_connection_t(dspno == 1 ? "IbQb" : "IQ"));
perif.ddc->set_freq(rx_dsp_core_3000::DEFAULT_CORDIC_FREQ);
perif.deframer = tx_vita_core_3000::make_no_radio_buff(perif.ctrl, TOREG(SR_TX_CTRL));
perif.duc = tx_dsp_core_3000::make(perif.ctrl, TOREG(SR_TX_DSP));
perif.duc->set_link_rate(10e9 / 8); // whatever
perif.duc->set_freq(tx_dsp_core_3000::DEFAULT_CORDIC_FREQ);
if (_enable_user_regs) {
UHD_LOG_DEBUG("B200", "Enabling user settings registers");
perif.user_settings = user_settings_core_3000::make(
perif.ctrl, TOREG(SR_USER_SR_BASE), TOREG(SR_USER_RB_ADDR));
if (!perif.user_settings) {
const std::string error_msg = "Failed to create user settings bus!";
UHD_LOG_ERROR("B200", error_msg);
throw uhd::runtime_error(error_msg);
}
}
////////////////////////////////////////////////////////////////////
// create time control objects
////////////////////////////////////////////////////////////////////
time_core_3000::readback_bases_type time64_rb_bases;
time64_rb_bases.rb_now = RB64_TIME_NOW;
time64_rb_bases.rb_pps = RB64_TIME_PPS;
perif.time64 = time_core_3000::make(perif.ctrl, TOREG(SR_TIME), time64_rb_bases);
////////////////////////////////////////////////////////////////////
// connect rx dsp control objects
////////////////////////////////////////////////////////////////////
const fs_path rx_dsp_path = mb_path / "rx_dsps" / dspno;
perif.ddc->populate_subtree(_tree->subtree(rx_dsp_path));
_tree->create<bool>(rx_dsp_path / "rate" / "set").set(false);
_tree->access<double>(rx_dsp_path / "rate" / "value")
.set_coercer(std::bind(&b200_impl::coerce_rx_samp_rate,
this,
perif.ddc,
dspno,
std::placeholders::_1))
.add_coerced_subscriber([this, rx_dsp_path](const double) {
if (this->_tree) {
this->_tree->access<bool>(rx_dsp_path / "rate" / "set").set(true);
}
})
.add_coerced_subscriber(std::bind(
&b200_impl::update_rx_samp_rate, this, dspno, std::placeholders::_1));
_tree->create<stream_cmd_t>(rx_dsp_path / "stream_cmd")
.add_coerced_subscriber(std::bind(&rx_vita_core_3000::issue_stream_command,
perif.framer,
std::placeholders::_1));
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber(std::bind(
&rx_vita_core_3000::set_tick_rate, perif.framer, std::placeholders::_1))
.add_coerced_subscriber(std::bind(&b200_impl::update_rx_dsp_tick_rate,
this,
std::placeholders::_1,
perif.ddc,
rx_dsp_path));
////////////////////////////////////////////////////////////////////
// create tx dsp control objects
////////////////////////////////////////////////////////////////////
const fs_path tx_dsp_path = mb_path / "tx_dsps" / dspno;
perif.duc->populate_subtree(_tree->subtree(tx_dsp_path));
_tree->create<bool>(tx_dsp_path / "rate" / "set").set(false);
_tree->access<double>(tx_dsp_path / "rate" / "value")
.set_coercer(std::bind(&b200_impl::coerce_tx_samp_rate,
this,
perif.duc,
dspno,
std::placeholders::_1))
.add_coerced_subscriber([this, tx_dsp_path](const double) {
if (this->_tree) {
this->_tree->access<bool>(tx_dsp_path / "rate" / "set").set(true);
}
})
.add_coerced_subscriber(std::bind(
&b200_impl::update_tx_samp_rate, this, dspno, std::placeholders::_1));
_tree->access<double>(mb_path / "tick_rate")
.add_coerced_subscriber(std::bind(&b200_impl::update_tx_dsp_tick_rate,
this,
std::placeholders::_1,
perif.duc,
tx_dsp_path));
////////////////////////////////////////////////////////////////////
// create RF frontend interfacing
////////////////////////////////////////////////////////////////////
// The "calibration serial" is the motherboard serial plus the frontend
// (A or B) separated by colon, e.g. "1234ABC:A".
const std::string cal_serial =
_tree->access<mboard_eeprom_t>(mb_path / "eeprom").get()["serial"] + "#"
+ (dspno ? "B" : "A");
// The "calibration key" is either b2xxmini_power_cal_$dir_$ant, or
// b2xx_power_cal_$dir_$ant, depending on the form factor.
// $dir is either "tx" or "rx", and "ant" is either "tx_rx" or "rx2" (i.e.,
// sanitized version of the antenna names that work in filenames.
const std::string cal_key_base =
(_product == B200MINI or _product == B205MINI) ? "b2xxmini_pwr_" : "b2xx_pwr_";
for (direction_t dir : std::vector<direction_t>{RX_DIRECTION, TX_DIRECTION}) {
const std::string dir_key = (dir == RX_DIRECTION) ? "rx" : "tx";
const std::string key = std::string(((dir == RX_DIRECTION) ? "RX" : "TX"))
+ std::string(((dspno == _fe1) ? "1" : "2"));
const fs_path rf_fe_path =
mb_path / "dboards" / "A" / (dir_key + "_frontends") / (dspno ? "B" : "A");
const std::vector<std::string> ants =
(dir == RX_DIRECTION) ? std::vector<std::string>{"TX/RX", "RX2"}
: std::vector<std::string>{"TX/RX"};
// This will connect all the AD936x-specific items
_codec_mgr->populate_frontend_subtree(_tree->subtree(rf_fe_path), key, dir);
// Antenna controls are board-specific, not AD936x specific
if (dir == RX_DIRECTION) {
_tree->create<std::string>(rf_fe_path / "antenna" / "value")
.add_coerced_subscriber([this, dspno](const std::string& antenna) {
this->update_antenna_sel(dspno, antenna);
})
.set("RX2");
} else if (dir == TX_DIRECTION) {
_tree->create<std::string>(rf_fe_path / "antenna" / "value").set("TX/RX");
}
// We don't add any baseband correction
auto ggroup = uhd::gain_group::make();
constexpr char HW_GAIN_STAGE[] = "hw";
ggroup->register_fcns(HW_GAIN_STAGE,
{// Get gain range:
[key]() { return ad9361_ctrl::get_gain_range(key); },
// Get gain:
[this, rf_fe_path, key]() {
return _tree
->access<double>(rf_fe_path / "gains"
/ ad9361_ctrl::get_gain_names(key).at(0)
/ "value")
.get();
},
// Set gain:
[this, rf_fe_path, key](const double gain) {
_tree
->access<double>(rf_fe_path / "gains"
/ ad9361_ctrl::get_gain_names(key).at(0)
/ "value")
.set(gain);
}});
// Add power controls
perif.pwr_mgr.insert({dir_key,
pwr_cal_mgr::make(
cal_serial,
"B200-CAL-" + key,
// Frequency getter:
[this, rf_fe_path]() {
return _tree->access<double>(rf_fe_path / "freq" / "value").get();
},
// Current key getter (see notes on calibration key above):
[this, rf_fe_path, cal_key_base, dir_key]() {
return cal_key_base + dir_key + "_"
+ pwr_cal_mgr::sanitize_antenna_name(
_tree->access<std::string>(
rf_fe_path / "antenna" / "value")
.get());
},
ggroup)});
perif.pwr_mgr.at(dir_key)->populate_subtree(_tree->subtree(rf_fe_path));
perif.pwr_mgr.at(dir_key)->set_temperature(
_tree->access<sensor_value_t>(rf_fe_path / "sensors" / "temp")
.get()
.to_int());
// Now connect all the b200_impl-specific items
_tree->create<sensor_value_t>(rf_fe_path / "sensors" / "lo_locked")
.set_publisher(
[this, dir]() { return this->get_fe_pll_locked(dir == TX_DIRECTION); });
_tree->access<double>(rf_fe_path / "freq" / "value")
.add_coerced_subscriber([this, key](const double freq) {
return this->update_bandsel(key, freq);
})
// Every time we retune, we re-set the power level.
.add_coerced_subscriber([pwr_mgr = perif.pwr_mgr.at(dir_key)](
const double) { pwr_mgr->update_power(); })
;
_tree->create<std::vector<std::string>>(rf_fe_path / "antenna" / "options")
.set(ants);
// When we set the gain, we need to disable power tracking. Note that
// the power manager also calls into the gains property, and thus
// clobbers its own tracking mode, but that's OK because set_power() will
// always reset the tracking mode.
_tree
->access<double>(
rf_fe_path / "gains" / ad9361_ctrl::get_gain_names(key).at(0) / "value")
.add_coerced_subscriber([pwr_mgr = perif.pwr_mgr.at(dir_key)](const double) {
pwr_mgr->set_tracking_mode(pwr_cal_mgr::tracking_mode::TRACK_GAIN);
});
if (_enable_user_regs) {
_tree->create<uhd::wb_iface::sptr>(rf_fe_path / "user_settings/iface")
.set(perif.user_settings);
}
}
}
/***********************************************************************
* loopback tests
**********************************************************************/
void b200_impl::register_loopback_self_test(wb_iface::sptr iface)
{
bool test_fail = false;
UHD_LOGGER_INFO("B200") << "Performing register loopback test... ";
size_t hash = size_t(time(NULL));
for (size_t i = 0; i < 100; i++) {
boost::hash_combine(hash, i);
iface->poke32(TOREG(SR_TEST), uint32_t(hash));
test_fail = iface->peek32(RB32_TEST) != uint32_t(hash);
if (test_fail)
break; // exit loop on any failure
}
UHD_LOGGER_INFO("B200") << "Register loopback test "
<< ((test_fail) ? "failed" : "passed");
}
/***********************************************************************
* Sample and tick rate comprehension below
**********************************************************************/
void b200_impl::enforce_tick_rate_limits(
size_t chan_count, double tick_rate, const std::string& direction /*= ""*/)
{
const size_t max_chans = 2;
if (chan_count > max_chans) {
throw uhd::value_error(boost::str(
boost::format("cannot not setup %d %s channels (maximum is %d)") % chan_count
% (direction.empty() ? "data" : direction) % max_chans));
} else {
const double max_tick_rate =
ad9361_device_t::AD9361_MAX_CLOCK_RATE / ((chan_count <= 1) ? 1 : 2);
if (tick_rate - max_tick_rate >= 1.0) {
throw uhd::value_error(boost::str(
boost::format(
"current master clock rate (%.6f MHz) exceeds maximum possible "
"master clock rate (%.6f MHz) when using %d %s channels")
% (tick_rate / 1e6) % (max_tick_rate / 1e6) % chan_count
% (direction.empty() ? "data" : direction)));
}
const double min_tick_rate =
ad9361_device_t::AD9361_MIN_CLOCK_RATE / ((chan_count <= 1) ? 1 : 2);
if (min_tick_rate - tick_rate >= 1.0) {
throw uhd::value_error(boost::str(
boost::format(
"current master clock rate (%.6f MHz) is less than minimum possible "
"master clock rate (%.6f MHz) when using %d %s channels")
% (tick_rate / 1e6) % (min_tick_rate / 1e6) % chan_count
% (direction.empty() ? "data" : direction)));
}
}
}
double b200_impl::set_tick_rate(const double new_tick_rate)
{
UHD_LOGGER_INFO("B200") << (boost::format("Asking for clock rate %.6f MHz... ")
% (new_tick_rate / 1e6))
<< std::flush;
check_tick_rate_with_current_streamers(new_tick_rate); // Defined in b200_io_impl.cpp
// Make sure the clock rate is actually changed before doing
// the full Monty of setting regs and loopback tests etc.
if (std::abs(new_tick_rate - _tick_rate) < 1.0) {
UHD_LOGGER_INFO("B200") << "OK";
return _tick_rate;
}
_tick_rate = _codec_ctrl->set_clock_rate(new_tick_rate);
UHD_LOGGER_INFO("B200") << (boost::format("Actually got clock rate %.6f MHz.")
% (_tick_rate / 1e6));
for (radio_perifs_t& perif : _radio_perifs) {
perif.time64->set_tick_rate(_tick_rate);
perif.time64->self_test();
}
return _tick_rate;
}
/***********************************************************************
* compat checks
**********************************************************************/
void b200_impl::check_fw_compat(void)
{
uint16_t compat_num = _iface->get_compat_num();
uint32_t compat_major = (uint32_t)(compat_num >> 8);
uint32_t compat_minor = (uint32_t)(compat_num & 0xFF);
if (compat_major != B200_FW_COMPAT_NUM_MAJOR) {
throw uhd::runtime_error(str(
boost::format(
"Expected firmware compatibility number %d.%d, but got %d.%d:\n"
"The firmware build is not compatible with the host code build.\n"
"%s")
% int(B200_FW_COMPAT_NUM_MAJOR) % int(B200_FW_COMPAT_NUM_MINOR) % compat_major
% compat_minor % print_utility_error("uhd_images_downloader.py")));
}
_tree->create<std::string>("/mboards/0/fw_version")
.set(str(boost::format("%u.%u") % compat_major % compat_minor));
}
void b200_impl::check_fpga_compat(void)
{
const uint64_t compat = _local_ctrl->peek64(0);
const uint32_t signature = uint32_t(compat >> 32);
const uint16_t compat_major = uint16_t(compat >> 16);
const uint16_t compat_minor = uint16_t(compat & 0xffff);
if (signature != 0xACE0BA5E)
throw uhd::runtime_error(
"b200::check_fpga_compat signature register readback failed");
const uint16_t expected = ((_product == B200MINI or _product == B205MINI)
? B205_FPGA_COMPAT_NUM
: B200_FPGA_COMPAT_NUM);
if (compat_major != expected) {
throw uhd::runtime_error(str(
boost::format("Expected FPGA compatibility number %d, but got %d:\n"
"The FPGA build is not compatible with the host code build.\n"
"%s")
% int(expected) % compat_major
% print_utility_error("uhd_images_downloader.py")));
}
_tree->create<std::string>("/mboards/0/fpga_version")
.set(str(boost::format("%u.%u") % compat_major % compat_minor));
}
/***********************************************************************
* Reference time and clock
**********************************************************************/
void b200_impl::update_clock_source(const std::string& source)
{
// For B205, ref_sel selects whether or not to lock to the external clock source
if (_product == B200MINI or _product == B205MINI) {
if (source == "external" and _time_source == EXTERNAL) {
throw uhd::value_error(
"external reference cannot be both a clock source and a time source");
}
if (source == "internal") {
if (_gpio_state.ref_sel != 0) {
_gpio_state.ref_sel = 0;
this->update_gpio_state();
}
} else if (source == "external") {
if (_gpio_state.ref_sel != 1) {
_gpio_state.ref_sel = 1;
this->update_gpio_state();
}
} else {
throw uhd::key_error("update_clock_source: unknown source: " + source);
}
return;
}
// For all other devices, ref_sel selects the external or gpsdo clock source
// and the ADF4001 selects whether to lock to it or not
if (source == "internal") {
_adf4001_iface->set_lock_to_ext_ref(false);
} else if (source == "external") {
if (_gpio_state.ref_sel != 0) {
_gpio_state.ref_sel = 0;
this->update_gpio_state();
}
_adf4001_iface->set_lock_to_ext_ref(true);
} else if (source == "gpsdo") {
if (not _gps or not _gps->gps_detected()) {
throw uhd::key_error(
"update_clock_source: gpsdo selected, but no gpsdo detected!");
}
if (_gpio_state.ref_sel != 1) {
_gpio_state.ref_sel = 1;
this->update_gpio_state();
}
_adf4001_iface->set_lock_to_ext_ref(true);
} else {
throw uhd::key_error("update_clock_source: unknown source: " + source);
}
}
void b200_impl::update_time_source(const std::string& source)
{
if ((_product == B200MINI or _product == B205MINI) and source == "external"
and _gpio_state.ref_sel == 1) {
throw uhd::value_error(
"external reference cannot be both a time source and a clock source");
}
// We assume source is valid for this device (if it's gone through
// the prop three, then it definitely is thanks to our coercer)
time_source_t value;
if (source == "none")
value = NONE;
else if (source == "internal")
value = INTERNAL;
else if (source == "external")
value = EXTERNAL;
else if (_gps and source == "gpsdo")
value = GPSDO;
else
throw uhd::key_error("update_time_source: unknown source: " + source);
if (_time_source != value) {
_local_ctrl->poke32(TOREG(SR_CORE_SYNC), value);
_time_source = value;
}
}
void b200_impl::set_time(const uhd::time_spec_t& t)
{
for (radio_perifs_t& perif : _radio_perifs)
perif.time64->set_time_sync(t);
_local_ctrl->poke32(TOREG(SR_CORE_SYNC), 1 << 2 | uint32_t(_time_source));
_local_ctrl->poke32(TOREG(SR_CORE_SYNC), _time_source);
_time_set_with_pps = false;
}
void b200_impl::set_time_next_pps(const uhd::time_spec_t& t)
{
for (radio_perifs_t& perif : _radio_perifs)
perif.time64->set_time_next_pps(t);
_time_set_with_pps = true;
}
void b200_impl::sync_times()
{
if (_time_set_with_pps) {
UHD_LOG_DEBUG("B200", "Re-synchronizing time using PPS");
uhd::time_spec_t time_last_pps = _radio_perifs[0].time64->get_time_last_pps();
while (_radio_perifs[0].time64->get_time_last_pps() == time_last_pps) {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
set_time_next_pps(time_last_pps + 2.0);
} else {
set_time(_radio_perifs[0].time64->get_time_now());
}
}
/***********************************************************************
* GPIO setup
**********************************************************************/
void b200_impl::update_bandsel(const std::string& which, double freq)
{
// B205 does not have bandsels
if (_product == B200MINI or _product == B205MINI) {
return;
}
if (which[0] == 'R') {
if (freq < 2.2e9) {
_gpio_state.rx_bandsel_a = 0;
_gpio_state.rx_bandsel_b = 0;
_gpio_state.rx_bandsel_c = 1;
} else if ((freq >= 2.2e9) && (freq < 4e9)) {
_gpio_state.rx_bandsel_a = 0;
_gpio_state.rx_bandsel_b = 1;
_gpio_state.rx_bandsel_c = 0;
} else if ((freq >= 4e9) && (freq <= 6e9)) {
_gpio_state.rx_bandsel_a = 1;
_gpio_state.rx_bandsel_b = 0;
_gpio_state.rx_bandsel_c = 0;
} else {
UHD_THROW_INVALID_CODE_PATH();
}
} else if (which[0] == 'T') {
if (freq < 2.5e9) {
_gpio_state.tx_bandsel_a = 0;
_gpio_state.tx_bandsel_b = 1;
} else if ((freq >= 2.5e9) && (freq <= 6e9)) {
_gpio_state.tx_bandsel_a = 1;
_gpio_state.tx_bandsel_b = 0;
} else {
UHD_THROW_INVALID_CODE_PATH();
}
} else {
UHD_THROW_INVALID_CODE_PATH();
}
update_gpio_state();
}
void b200_impl::reset_codec()
{
_gpio_state.codec_arst = 1;
update_gpio_state();
_gpio_state.codec_arst = 0;
update_gpio_state();
}
void b200_impl::update_gpio_state(void)
{
const uint32_t misc_word =
0 | (_gpio_state.swap_atr << 8) | (_gpio_state.tx_bandsel_a << 7)
| (_gpio_state.tx_bandsel_b << 6) | (_gpio_state.rx_bandsel_a << 5)
| (_gpio_state.rx_bandsel_b << 4) | (_gpio_state.rx_bandsel_c << 3)
| (_gpio_state.codec_arst << 2) | (_gpio_state.mimo << 1)
| (_gpio_state.ref_sel << 0);
_local_ctrl->poke32(TOREG(SR_CORE_MISC), misc_word);
}
void b200_impl::update_atrs(void)
{
if (_radio_perifs.size() > _fe1 and _radio_perifs[_fe1].atr) {
radio_perifs_t& perif = _radio_perifs[_fe1];
const bool enb_rx = bool(perif.rx_streamer.lock());
const bool enb_tx = bool(perif.tx_streamer.lock());
const bool is_rx2 = perif.ant_rx2;
const uint32_t rxonly = (enb_rx) ? ((is_rx2) ? STATE_RX1_RX2 : STATE_RX1_TXRX)
: STATE_OFF;
const uint32_t txonly = (enb_tx) ? (STATE_TX1_TXRX) : STATE_OFF;
uint32_t fd = STATE_OFF;
if (enb_rx and enb_tx)
fd = STATE_FDX1_TXRX;
if (enb_rx and not enb_tx)
fd = rxonly;
if (not enb_rx and enb_tx)
fd = txonly;
gpio_atr_3000::sptr atr = perif.atr;
atr->set_atr_reg(ATR_REG_IDLE, STATE_OFF);
atr->set_atr_reg(ATR_REG_RX_ONLY, rxonly);
atr->set_atr_reg(ATR_REG_TX_ONLY, txonly);
atr->set_atr_reg(ATR_REG_FULL_DUPLEX, fd);
}
if (_radio_perifs.size() > _fe2 and _radio_perifs[_fe2].atr) {
radio_perifs_t& perif = _radio_perifs[_fe2];
const bool enb_rx = bool(perif.rx_streamer.lock());
const bool enb_tx = bool(perif.tx_streamer.lock());
const bool is_rx2 = perif.ant_rx2;
const uint32_t rxonly = (enb_rx) ? ((is_rx2) ? STATE_RX2_RX2 : STATE_RX2_TXRX)
: STATE_OFF;
const uint32_t txonly = (enb_tx) ? (STATE_TX2_TXRX) : STATE_OFF;
uint32_t fd = STATE_OFF;
if (enb_rx and enb_tx)
fd = STATE_FDX2_TXRX;
if (enb_rx and not enb_tx)
fd = rxonly;
if (not enb_rx and enb_tx)
fd = txonly;
gpio_atr_3000::sptr atr = perif.atr;
atr->set_atr_reg(ATR_REG_IDLE, STATE_OFF);
atr->set_atr_reg(ATR_REG_RX_ONLY, rxonly);
atr->set_atr_reg(ATR_REG_TX_ONLY, txonly);
atr->set_atr_reg(ATR_REG_FULL_DUPLEX, fd);
}
}
void b200_impl::update_antenna_sel(const size_t which, const std::string& ant)
{
if (ant != "TX/RX" and ant != "RX2")
throw uhd::value_error("b200: unknown RX antenna option: " + ant);
_radio_perifs[which].ant_rx2 = (ant == "RX2");
this->update_atrs();
}
void b200_impl::update_enables(void)
{
// extract settings from state variables
const bool enb_tx1 = (_radio_perifs.size() > _fe1)
and bool(_radio_perifs[_fe1].tx_streamer.lock());
const bool enb_rx1 = (_radio_perifs.size() > _fe1)
and bool(_radio_perifs[_fe1].rx_streamer.lock());
const bool enb_tx2 = (_radio_perifs.size() > _fe2)
and bool(_radio_perifs[_fe2].tx_streamer.lock());
const bool enb_rx2 = (_radio_perifs.size() > _fe2)
and bool(_radio_perifs[_fe2].rx_streamer.lock());
const size_t num_rx = (enb_rx1 ? 1 : 0) + (enb_rx2 ? 1 : 0);
const size_t num_tx = (enb_tx1 ? 1 : 0) + (enb_tx2 ? 1 : 0);
const uint32_t mimo = (num_rx == 2 or num_tx == 2) ? 1 : 0;
if ((num_rx + num_tx) == 3) {
throw uhd::runtime_error(
"b200: 2 RX 1 TX and 1 RX 2 TX configurations not possible");
}
// setup the active chains in the codec
_codec_ctrl->set_active_chains(enb_tx1, enb_tx2, enb_rx1, enb_rx2);
if ((num_rx + num_tx) == 0)
_codec_ctrl->set_active_chains(true, false, true, false); // enable something
// update MIMO state and re-sync times if necessary
if (_gpio_state.mimo != mimo) {
_gpio_state.mimo = mimo;
update_gpio_state();
sync_times();
}
// atrs change based on enables
this->update_atrs();
}
sensor_value_t b200_impl::get_ref_locked(void)
{
const bool lock = (_local_ctrl->peek32(RB32_CORE_MISC) & 0x1) == 0x1;
return sensor_value_t("Ref", lock, "locked", "unlocked");
}
sensor_value_t b200_impl::get_fe_pll_locked(const bool is_tx)
{
const uint32_t st = _local_ctrl->peek32(RB32_CORE_PLL);
const bool locked = is_tx ? ((st & 0x1) > 0) : ((st & 0x2) > 0);
return sensor_value_t("LO", locked, "locked", "unlocked");
}
|