aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/b200/b200_impl.cpp
blob: 40b316175ad0e66e3b306bf112e5f60ef4608fdb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
//
// Copyright 2012-2014 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include "b200_impl.hpp"
#include "b200_regs.hpp"
#include <uhd/transport/usb_control.hpp>
#include <uhd/utils/msg.hpp>
#include <uhd/utils/cast.hpp>
#include <uhd/exception.hpp>
#include <uhd/utils/static.hpp>
#include <uhd/utils/images.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhd/usrp/dboard_eeprom.hpp>
#include <boost/format.hpp>
#include <boost/assign/list_of.hpp>
#include <boost/filesystem.hpp>
#include <boost/thread/thread.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/functional/hash.hpp>
#include <cstdio>
#include <ctime>
#include <cmath>

using namespace uhd;
using namespace uhd::usrp;
using namespace uhd::transport;

static const boost::posix_time::milliseconds REENUMERATION_TIMEOUT_MS(3000);

//! mapping of frontend to radio perif index
static const size_t FE1 = 1;
static const size_t FE2 = 0;

/***********************************************************************
 * Discovery
 **********************************************************************/
static device_addrs_t b200_find(const device_addr_t &hint)
{
    device_addrs_t b200_addrs;

    //return an empty list of addresses when type is set to non-b200
    if (hint.has_key("type") and hint["type"] != "b200") return b200_addrs;

    //Return an empty list of addresses when an address or resource is specified,
    //since an address and resource is intended for a different, non-USB, device.
    if (hint.has_key("addr") || hint.has_key("resource")) return b200_addrs;

    boost::uint16_t vid, pid;

    if(hint.has_key("vid") && hint.has_key("pid") && hint.has_key("type") && hint["type"] == "b200") {
        vid = uhd::cast::hexstr_cast<boost::uint16_t>(hint.get("vid"));
        pid = uhd::cast::hexstr_cast<boost::uint16_t>(hint.get("pid"));
    } else {
        vid = B200_VENDOR_ID;
        pid = B200_PRODUCT_ID;
    }

    // Important note:
    // The get device list calls are nested inside the for loop.
    // This allows the usb guts to decontruct when not in use,
    // so that re-enumeration after fw load can occur successfully.
    // This requirement is a courtesy of libusb1.0 on windows.

    //find the usrps and load firmware
    size_t found = 0;
    BOOST_FOREACH(usb_device_handle::sptr handle, usb_device_handle::get_device_list(vid, pid)) {
        //extract the firmware path for the b200
        std::string b200_fw_image;
        try{
            b200_fw_image = find_image_path(hint.get("fw", B200_FW_FILE_NAME));
        }
        catch(...){
            UHD_MSG(warning) << boost::format(
                "Could not locate B200 firmware.\n"
                "Please install the images package. %s\n"
            ) % print_images_error();
            return b200_addrs;
        }
        UHD_LOG << "the firmware image: " << b200_fw_image << std::endl;

        usb_control::sptr control;
        try{control = usb_control::make(handle, 0);}
        catch(const uhd::exception &){continue;} //ignore claimed

        //check if fw was already loaded
        if (!(handle->firmware_loaded()))
        {
            b200_iface::make(control)->load_firmware(b200_fw_image);
        }

        found++;
    }

    const boost::system_time timeout_time = boost::get_system_time() + REENUMERATION_TIMEOUT_MS;

    //search for the device until found or timeout
    while (boost::get_system_time() < timeout_time and b200_addrs.empty() and found != 0)
    {
        BOOST_FOREACH(usb_device_handle::sptr handle, usb_device_handle::get_device_list(vid, pid))
        {
            usb_control::sptr control;
            try{control = usb_control::make(handle, 0);}
            catch(const uhd::exception &){continue;} //ignore claimed

            b200_iface::sptr iface = b200_iface::make(control);
            const mboard_eeprom_t mb_eeprom = mboard_eeprom_t(*iface, "B200");

            device_addr_t new_addr;
            new_addr["type"] = "b200";
            new_addr["name"] = mb_eeprom["name"];
            new_addr["serial"] = handle->get_serial();
            //this is a found b200 when the hint serial and name match or blank
            if (
                (not hint.has_key("name")   or hint["name"]   == new_addr["name"]) and
                (not hint.has_key("serial") or hint["serial"] == new_addr["serial"])
            ){
                b200_addrs.push_back(new_addr);
            }
        }
    }

    return b200_addrs;
}

/***********************************************************************
 * Make
 **********************************************************************/
static device::sptr b200_make(const device_addr_t &device_addr)
{
    return device::sptr(new b200_impl(device_addr));
}

UHD_STATIC_BLOCK(register_b200_device)
{
    device::register_device(&b200_find, &b200_make);
}

/***********************************************************************
 * Structors
 **********************************************************************/
b200_impl::b200_impl(const device_addr_t &device_addr)
{
    _tree = property_tree::make();
    const fs_path mb_path = "/mboards/0";

    //try to match the given device address with something on the USB bus
    boost::uint16_t vid = B200_VENDOR_ID;
    boost::uint16_t pid = B200_PRODUCT_ID;
    if (device_addr.has_key("vid"))
        vid = uhd::cast::hexstr_cast<boost::uint16_t>(device_addr.get("vid"));
    if (device_addr.has_key("pid"))
        pid = uhd::cast::hexstr_cast<boost::uint16_t>(device_addr.get("pid"));

    std::vector<usb_device_handle::sptr> device_list =
        usb_device_handle::get_device_list(vid, pid);

    //locate the matching handle in the device list
    usb_device_handle::sptr handle;
    BOOST_FOREACH(usb_device_handle::sptr dev_handle, device_list) {
        if (dev_handle->get_serial() == device_addr["serial"]){
            handle = dev_handle;
            break;
        }
    }
    UHD_ASSERT_THROW(handle.get() != NULL); //better be found

    //create control objects
    usb_control::sptr control = usb_control::make(handle, 0);
    _iface = b200_iface::make(control);
    this->check_fw_compat(); //check after making

    ////////////////////////////////////////////////////////////////////
    // setup the mboard eeprom
    ////////////////////////////////////////////////////////////////////
    const mboard_eeprom_t mb_eeprom(*_iface, "B200");
    _tree->create<mboard_eeprom_t>(mb_path / "eeprom")
        .set(mb_eeprom)
        .subscribe(boost::bind(&b200_impl::set_mb_eeprom, this, _1));

    ////////////////////////////////////////////////////////////////////
    // Load the FPGA image, then reset GPIF
    ////////////////////////////////////////////////////////////////////
    std::string default_file_name;
    std::string product_name = "B200?";
    if (not mb_eeprom["product"].empty())
    {
        switch (boost::lexical_cast<boost::uint16_t>(mb_eeprom["product"]))
        {
        case 0x0001:
        case 0x7737:
            product_name = "B200";
            default_file_name = B200_FPGA_FILE_NAME;
            break;
        case 0x7738:
        case 0x0002:
            product_name = "B210";
            default_file_name = B210_FPGA_FILE_NAME;
            break;
        default: UHD_MSG(error) << "B200 unknown product code: " << mb_eeprom["product"] << std::endl;
        }
    }
    if (default_file_name.empty())
    {
        UHD_ASSERT_THROW(device_addr.has_key("fpga"));
    }

    //extract the FPGA path for the B200
    std::string b200_fpga_image = find_image_path(
        device_addr.has_key("fpga")? device_addr["fpga"] : default_file_name
    );

    boost::uint32_t status = _iface->load_fpga(b200_fpga_image);

    if(status != 0) {
        throw uhd::runtime_error(str(boost::format("fx3 is in state %1%") % status));
    }

    _iface->reset_gpif();

    ////////////////////////////////////////////////////////////////////
    // Create control transport
    ////////////////////////////////////////////////////////////////////
    boost::uint8_t usb_speed = _iface->get_usb_speed();
    UHD_MSG(status) << "Operating over USB " << (int) usb_speed << "." << std::endl;
    const std::string min_frame_size = (usb_speed == 3) ? "1024" : "512";

    device_addr_t ctrl_xport_args;
    ctrl_xport_args["recv_frame_size"] = min_frame_size;
    ctrl_xport_args["num_recv_frames"] = "16";
    ctrl_xport_args["send_frame_size"] = min_frame_size;
    ctrl_xport_args["num_send_frames"] = "16";

    _ctrl_transport = usb_zero_copy::make(
        handle,
        4, 8, //interface, endpoint
        3, 4, //interface, endpoint
        ctrl_xport_args
    );
    while (_ctrl_transport->get_recv_buff(0.0)){} //flush ctrl xport
    _tree->create<double>(mb_path / "link_max_rate").set((usb_speed == 3) ? B200_MAX_RATE_USB3 : B200_MAX_RATE_USB2);

    ////////////////////////////////////////////////////////////////////
    // Async task structure
    ////////////////////////////////////////////////////////////////////
    _async_task_data.reset(new AsyncTaskData());
    _async_task_data->async_md.reset(new async_md_type(1000/*messages deep*/));
    _async_task = uhd::msg_task::make(boost::bind(&b200_impl::handle_async_task, this, _ctrl_transport, _async_task_data));

    ////////////////////////////////////////////////////////////////////
    // Local control endpoint
    ////////////////////////////////////////////////////////////////////
    _local_ctrl = radio_ctrl_core_3000::make(false/*lilE*/, _ctrl_transport, zero_copy_if::sptr()/*null*/, B200_LOCAL_CTRL_SID);
    _local_ctrl->hold_task(_async_task);
    _async_task_data->local_ctrl = _local_ctrl; //weak
    this->check_fpga_compat();

    /* Initialize the GPIOs, set the default bandsels to the lower range. Note
     * that calling update_bandsel calls update_gpio_state(). */
    _gpio_state = gpio_state();
    update_bandsel("RX", 800e6);
    update_bandsel("TX", 850e6);

    ////////////////////////////////////////////////////////////////////
    // Create the GPSDO control
    ////////////////////////////////////////////////////////////////////
    _async_task_data->gpsdo_uart = b200_uart::make(_ctrl_transport, B200_TX_GPS_UART_SID);
    _async_task_data->gpsdo_uart->set_baud_divider(B200_BUS_CLOCK_RATE/115200);
    _async_task_data->gpsdo_uart->write_uart("\n"); //cause the baud and response to be setup
    boost::this_thread::sleep(boost::posix_time::seconds(1)); //allow for a little propagation

    if ((_local_ctrl->peek32(RB32_CORE_STATUS) & 0xff) != B200_GPSDO_ST_NONE)
    {
        UHD_MSG(status) << "Detecting internal GPSDO.... " << std::flush;
        try
        {
            _gps = gps_ctrl::make(_async_task_data->gpsdo_uart);
        }
        catch(std::exception &e)
        {
            UHD_MSG(error) << "An error occurred making GPSDO control: " << e.what() << std::endl;
        }
        if (_gps and _gps->gps_detected())
        {
            //UHD_MSG(status) << "found" << std::endl;
            BOOST_FOREACH(const std::string &name, _gps->get_sensors())
            {
                _tree->create<sensor_value_t>(mb_path / "sensors" / name)
                    .publish(boost::bind(&gps_ctrl::get_sensor, _gps, name));
            }
        }
        else
        {
            UHD_MSG(status) << "not found" << std::endl;
            _local_ctrl->poke32(TOREG(SR_CORE_GPSDO_ST), B200_GPSDO_ST_NONE);
        }
    }

    ////////////////////////////////////////////////////////////////////
    // Initialize the properties tree
    ////////////////////////////////////////////////////////////////////
    _tree->create<std::string>("/name").set("B-Series Device");
    _tree->create<std::string>(mb_path / "name").set(product_name);
    _tree->create<std::string>(mb_path / "codename").set("Sasquatch");

    ////////////////////////////////////////////////////////////////////
    // Create data transport
    // This happens after FPGA ctrl instantiated so any junk that might
    // be in the FPGAs buffers doesn't get pulled into the transport
    // before being cleared.
    ////////////////////////////////////////////////////////////////////
    device_addr_t data_xport_args;
    data_xport_args["recv_frame_size"] = device_addr.get("recv_frame_size", "8192");
    data_xport_args["num_recv_frames"] = device_addr.get("num_recv_frames", "16");
    data_xport_args["send_frame_size"] = device_addr.get("send_frame_size", "8192");
    data_xport_args["num_send_frames"] = device_addr.get("num_send_frames", "16");

    _data_transport = usb_zero_copy::make(
        handle,        // identifier
        2, 6,          // IN interface, endpoint
        1, 2,          // OUT interface, endpoint
        data_xport_args    // param hints
    );
    while (_data_transport->get_recv_buff(0.0)){} //flush ctrl xport
    _demux = recv_packet_demuxer_3000::make(_data_transport);

    ////////////////////////////////////////////////////////////////////
    // Init codec - turns on clocks
    ////////////////////////////////////////////////////////////////////
    UHD_MSG(status) << "Initialize CODEC control..." << std::endl;
    _codec_ctrl = ad9361_ctrl::make(_iface);
    this->reset_codec_dcm();

    ////////////////////////////////////////////////////////////////////
    // create codec control objects
    ////////////////////////////////////////////////////////////////////
    {
        const fs_path codec_path = mb_path / ("rx_codecs") / "A";
        _tree->create<std::string>(codec_path / "name").set(product_name+" RX dual ADC");
        _tree->create<int>(codec_path / "gains"); //empty cuz gains are in frontend
    }
    {
        const fs_path codec_path = mb_path / ("tx_codecs") / "A";
        _tree->create<std::string>(codec_path / "name").set(product_name+" TX dual DAC");
        _tree->create<int>(codec_path / "gains"); //empty cuz gains are in frontend
    }

    ////////////////////////////////////////////////////////////////////
    // create clock control objects
    ////////////////////////////////////////////////////////////////////
    _tree->create<double>(mb_path / "tick_rate")
        .coerce(boost::bind(&b200_impl::set_tick_rate, this, _1))
        .publish(boost::bind(&b200_impl::get_tick_rate, this))
        .subscribe(boost::bind(&b200_impl::update_tick_rate, this, _1));
    _tree->create<time_spec_t>(mb_path / "time" / "cmd");

    ////////////////////////////////////////////////////////////////////
    // and do the misc mboard sensors
    ////////////////////////////////////////////////////////////////////
    _tree->create<sensor_value_t>(mb_path / "sensors" / "ref_locked")
        .publish(boost::bind(&b200_impl::get_ref_locked, this));

    ////////////////////////////////////////////////////////////////////
    // create frontend mapping
    ////////////////////////////////////////////////////////////////////
    std::vector<size_t> default_map(2, 0); default_map[1] = 1; // Set this to A->0 B->1 even if there's only A
    _tree->create<std::vector<size_t> >(mb_path / "rx_chan_dsp_mapping").set(default_map);
    _tree->create<std::vector<size_t> >(mb_path / "tx_chan_dsp_mapping").set(default_map);
    _tree->create<subdev_spec_t>(mb_path / "rx_subdev_spec")
        .set(subdev_spec_t())
        .subscribe(boost::bind(&b200_impl::update_subdev_spec, this, "rx", _1));
    _tree->create<subdev_spec_t>(mb_path / "tx_subdev_spec")
        .set(subdev_spec_t())
        .subscribe(boost::bind(&b200_impl::update_subdev_spec, this, "tx", _1));

    ////////////////////////////////////////////////////////////////////
    // setup radio control
    ////////////////////////////////////////////////////////////////////
    UHD_MSG(status) << "Initialize Radio control..." << std::endl;
    const size_t num_radio_chains = ((_local_ctrl->peek32(RB32_CORE_STATUS) >> 8) & 0xff);
    UHD_ASSERT_THROW(num_radio_chains > 0);
    UHD_ASSERT_THROW(num_radio_chains <= 2);
    _radio_perifs.resize(num_radio_chains);
    for (size_t i = 0; i < _radio_perifs.size(); i++) this->setup_radio(i);

    //now test each radio module's connection to the codec interface
    _codec_ctrl->data_port_loopback(true);
    BOOST_FOREACH(radio_perifs_t &perif, _radio_perifs)
    {
        this->codec_loopback_self_test(perif.ctrl);
    }
    _codec_ctrl->data_port_loopback(false);

    ////////////////////////////////////////////////////////////////////
    // create time and clock control objects
    ////////////////////////////////////////////////////////////////////
    _spi_iface = spi_core_3000::make(_local_ctrl, TOREG(SR_CORE_SPI), RB32_CORE_SPI);
    _spi_iface->set_divider(B200_BUS_CLOCK_RATE/ADF4001_SPI_RATE);
    _adf4001_iface = boost::shared_ptr<adf4001_ctrl>(new adf4001_ctrl(_spi_iface, ADF4001_SLAVENO));

    //register time now and pps onto available radio cores
    _tree->create<time_spec_t>(mb_path / "time" / "now")
        .publish(boost::bind(&time_core_3000::get_time_now, _radio_perifs[0].time64));
    _tree->create<time_spec_t>(mb_path / "time" / "pps")
        .publish(boost::bind(&time_core_3000::get_time_last_pps, _radio_perifs[0].time64));
    for (size_t i = 0; i < _radio_perifs.size(); i++)
    {
        _tree->access<time_spec_t>(mb_path / "time" / "now")
            .subscribe(boost::bind(&time_core_3000::set_time_now, _radio_perifs[i].time64, _1));
        _tree->access<time_spec_t>(mb_path / "time" / "pps")
            .subscribe(boost::bind(&time_core_3000::set_time_next_pps, _radio_perifs[i].time64, _1));
    }

    //setup time source props
    _tree->create<std::string>(mb_path / "time_source" / "value")
        .subscribe(boost::bind(&b200_impl::update_time_source, this, _1));
    static const std::vector<std::string> time_sources = boost::assign::list_of("none")("external")("gpsdo");
    _tree->create<std::vector<std::string> >(mb_path / "time_source" / "options").set(time_sources);
    //setup reference source props
    _tree->create<std::string>(mb_path / "clock_source" / "value")
        .subscribe(boost::bind(&b200_impl::update_clock_source, this, _1));
    static const std::vector<std::string> clock_sources = boost::assign::list_of("internal")("external")("gpsdo");
    _tree->create<std::vector<std::string> >(mb_path / "clock_source" / "options").set(clock_sources);

    ////////////////////////////////////////////////////////////////////
    // dboard eeproms but not really
    ////////////////////////////////////////////////////////////////////
    dboard_eeprom_t db_eeprom;
    _tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "rx_eeprom").set(db_eeprom);
    _tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "tx_eeprom").set(db_eeprom);
    _tree->create<dboard_eeprom_t>(mb_path / "dboards" / "A" / "gdb_eeprom").set(db_eeprom);

    ////////////////////////////////////////////////////////////////////
    // do some post-init tasks
    ////////////////////////////////////////////////////////////////////

    //init the clock rate to something reasonable
    _tree->access<double>(mb_path / "tick_rate").set(
        device_addr.cast<double>("master_clock_rate", B200_DEFAULT_TICK_RATE));

    //subdev spec contains full width of selections
    subdev_spec_t rx_spec, tx_spec;
    BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "rx_frontends"))
    {
        rx_spec.push_back(subdev_spec_pair_t("A", fe));
    }
    BOOST_FOREACH(const std::string &fe, _tree->list(mb_path / "dboards" / "A" / "tx_frontends"))
    {
        tx_spec.push_back(subdev_spec_pair_t("A", fe));
    }
    _tree->access<subdev_spec_t>(mb_path / "rx_subdev_spec").set(rx_spec);
    _tree->access<subdev_spec_t>(mb_path / "tx_subdev_spec").set(tx_spec);

    //init to internal clock and time source
    _tree->access<std::string>(mb_path / "clock_source/value").set("internal");
    _tree->access<std::string>(mb_path / "time_source/value").set("none");

    //GPS installed: use external ref, time, and init time spec
    if (_gps and _gps->gps_detected())
    {
        UHD_MSG(status) << "Setting references to the internal GPSDO" << std::endl;
        _tree->access<std::string>(mb_path / "time_source" / "value").set("gpsdo");
        _tree->access<std::string>(mb_path / "clock_source" / "value").set("gpsdo");
        UHD_MSG(status) << "Initializing time to the internal GPSDO" << std::endl;
        const time_t tp = time_t(_gps->get_sensor("gps_time").to_int()+1);
        _tree->access<time_spec_t>(mb_path / "time" / "pps").set(time_spec_t(tp));
    }

}

b200_impl::~b200_impl(void)
{
	UHD_SAFE_CALL
    (
        _async_task.reset();
    )
}

/***********************************************************************
 * setup radio control objects
 **********************************************************************/

void b200_impl::setup_radio(const size_t dspno)
{
    radio_perifs_t &perif = _radio_perifs[dspno];
    const fs_path mb_path = "/mboards/0";

    ////////////////////////////////////////////////////////////////////
    // radio control
    ////////////////////////////////////////////////////////////////////
    const boost::uint32_t sid = (dspno == 0)? B200_CTRL0_MSG_SID : B200_CTRL1_MSG_SID;
    perif.ctrl = radio_ctrl_core_3000::make(false/*lilE*/, _ctrl_transport, zero_copy_if::sptr()/*null*/, sid);
    perif.ctrl->hold_task(_async_task);
    _async_task_data->radio_ctrl[dspno] = perif.ctrl; //weak
    _tree->access<time_spec_t>(mb_path / "time" / "cmd")
        .subscribe(boost::bind(&radio_ctrl_core_3000::set_time, perif.ctrl, _1));
    _tree->access<double>(mb_path / "tick_rate")
        .subscribe(boost::bind(&radio_ctrl_core_3000::set_tick_rate, perif.ctrl, _1));
    this->register_loopback_self_test(perif.ctrl);
    perif.atr = gpio_core_200_32wo::make(perif.ctrl, TOREG(SR_ATR));

    ////////////////////////////////////////////////////////////////////
    // create rx dsp control objects
    ////////////////////////////////////////////////////////////////////
    perif.framer = rx_vita_core_3000::make(perif.ctrl, TOREG(SR_RX_CTRL));
    perif.ddc = rx_dsp_core_3000::make(perif.ctrl, TOREG(SR_RX_DSP), true /*is_b200?*/);
    perif.ddc->set_link_rate(10e9/8); //whatever
    perif.ddc->set_mux("IQ", false, dspno == 1 ? true : false, dspno == 1 ? true : false);
    _tree->access<double>(mb_path / "tick_rate")
        .subscribe(boost::bind(&rx_vita_core_3000::set_tick_rate, perif.framer, _1))
        .subscribe(boost::bind(&rx_dsp_core_3000::set_tick_rate, perif.ddc, _1));
    const fs_path rx_dsp_path = mb_path / "rx_dsps" / str(boost::format("%u") % dspno);
    _tree->create<meta_range_t>(rx_dsp_path / "rate" / "range")
        .publish(boost::bind(&rx_dsp_core_3000::get_host_rates, perif.ddc));
    _tree->create<double>(rx_dsp_path / "rate" / "value")
        .coerce(boost::bind(&rx_dsp_core_3000::set_host_rate, perif.ddc, _1))
        .subscribe(boost::bind(&b200_impl::update_rx_samp_rate, this, dspno, _1))
        .set(1e6);
    _tree->create<double>(rx_dsp_path / "freq" / "value")
        .coerce(boost::bind(&rx_dsp_core_3000::set_freq, perif.ddc, _1))
        .set(0.0);
    _tree->create<meta_range_t>(rx_dsp_path / "freq" / "range")
        .publish(boost::bind(&rx_dsp_core_3000::get_freq_range, perif.ddc));
    _tree->create<stream_cmd_t>(rx_dsp_path / "stream_cmd")
        .subscribe(boost::bind(&rx_vita_core_3000::issue_stream_command, perif.framer, _1));

    ////////////////////////////////////////////////////////////////////
    // create tx dsp control objects
    ////////////////////////////////////////////////////////////////////
    perif.deframer = tx_vita_core_3000::make(perif.ctrl, TOREG(SR_TX_CTRL));
    perif.duc = tx_dsp_core_3000::make(perif.ctrl, TOREG(SR_TX_DSP));
    perif.duc->set_link_rate(10e9/8); //whatever
    _tree->access<double>(mb_path / "tick_rate")
        .subscribe(boost::bind(&tx_vita_core_3000::set_tick_rate, perif.deframer, _1))
        .subscribe(boost::bind(&tx_dsp_core_3000::set_tick_rate, perif.duc, _1));
    const fs_path tx_dsp_path = mb_path / "tx_dsps" / str(boost::format("%u") % dspno);
    _tree->create<meta_range_t>(tx_dsp_path / "rate" / "range")
        .publish(boost::bind(&tx_dsp_core_3000::get_host_rates, perif.duc));
    _tree->create<double>(tx_dsp_path / "rate" / "value")
        .coerce(boost::bind(&tx_dsp_core_3000::set_host_rate, perif.duc, _1))
        .subscribe(boost::bind(&b200_impl::update_tx_samp_rate, this, dspno, _1))
        .set(1e6);
    _tree->create<double>(tx_dsp_path / "freq" / "value")
        .coerce(boost::bind(&tx_dsp_core_3000::set_freq, perif.duc, _1))
        .set(0.0);
    _tree->create<meta_range_t>(tx_dsp_path / "freq" / "range")
        .publish(boost::bind(&tx_dsp_core_3000::get_freq_range, perif.duc));

    ////////////////////////////////////////////////////////////////////
    // create time control objects
    ////////////////////////////////////////////////////////////////////
    time_core_3000::readback_bases_type time64_rb_bases;
    time64_rb_bases.rb_now = RB64_TIME_NOW;
    time64_rb_bases.rb_pps = RB64_TIME_PPS;
    perif.time64 = time_core_3000::make(perif.ctrl, TOREG(SR_TIME), time64_rb_bases);

    ////////////////////////////////////////////////////////////////////
    // create RF frontend interfacing
    ////////////////////////////////////////////////////////////////////
    for(size_t direction = 0; direction < 2; direction++)
    {
        const std::string x = direction? "rx" : "tx";
        const std::string key = std::string((direction? "RX" : "TX")) + std::string(((dspno == FE1)? "1" : "2"));
        const fs_path rf_fe_path = mb_path / "dboards" / "A" / (x+"_frontends") / (dspno? "B" : "A");

        _tree->create<std::string>(rf_fe_path / "name").set("FE-"+key);
        _tree->create<int>(rf_fe_path / "sensors"); //empty TODO
        BOOST_FOREACH(const std::string &name, ad9361_ctrl::get_gain_names(key))
        {
            _tree->create<meta_range_t>(rf_fe_path / "gains" / name / "range")
                .set(ad9361_ctrl::get_gain_range(key));

            _tree->create<double>(rf_fe_path / "gains" / name / "value")
                .coerce(boost::bind(&ad9361_ctrl::set_gain, _codec_ctrl, key, _1))
                .set(0.0);
        }
        _tree->create<std::string>(rf_fe_path / "connection").set("IQ");
        _tree->create<bool>(rf_fe_path / "enabled").set(true);
        _tree->create<bool>(rf_fe_path / "use_lo_offset").set(false);
        _tree->create<double>(rf_fe_path / "bandwidth" / "value")
            .coerce(boost::bind(&ad9361_ctrl::set_bw_filter, _codec_ctrl, key, _1))
            .set(40e6);
        _tree->create<meta_range_t>(rf_fe_path / "bandwidth" / "range")
            .publish(boost::bind(&ad9361_ctrl::get_bw_filter_range, key));
        _tree->create<double>(rf_fe_path / "freq" / "value")
            .set(0.0)
            .coerce(boost::bind(&ad9361_ctrl::tune, _codec_ctrl, key, _1))
            .subscribe(boost::bind(&b200_impl::update_bandsel, this, key, _1));
        _tree->create<meta_range_t>(rf_fe_path / "freq" / "range")
            .publish(boost::bind(&ad9361_ctrl::get_rf_freq_range));

        //setup antenna stuff
        if (key[0] == 'R')
        {
            static const std::vector<std::string> ants = boost::assign::list_of("TX/RX")("RX2");
            _tree->create<std::vector<std::string> >(rf_fe_path / "antenna" / "options").set(ants);
            _tree->create<std::string>(rf_fe_path / "antenna" / "value")
                .subscribe(boost::bind(&b200_impl::update_antenna_sel, this, dspno, _1))
                .set("RX2");
        }
        if (key[0] == 'T')
        {
            static const std::vector<std::string> ants(1, "TX/RX");
            _tree->create<std::vector<std::string> >(rf_fe_path / "antenna" / "options").set(ants);
            _tree->create<std::string>(rf_fe_path / "antenna" / "value").set("TX/RX");
        }

    }
}

/***********************************************************************
 * loopback tests
 **********************************************************************/

void b200_impl::register_loopback_self_test(wb_iface::sptr iface)
{
    bool test_fail = false;
    UHD_MSG(status) << "Performing register loopback test... " << std::flush;
    size_t hash = time(NULL);
    for (size_t i = 0; i < 100; i++)
    {
        boost::hash_combine(hash, i);
        iface->poke32(TOREG(SR_TEST), boost::uint32_t(hash));
        test_fail = iface->peek32(RB32_TEST) != boost::uint32_t(hash);
        if (test_fail) break; //exit loop on any failure
    }
    UHD_MSG(status) << ((test_fail)? "fail" : "pass") << std::endl;
}

void b200_impl::codec_loopback_self_test(wb_iface::sptr iface)
{
    bool test_fail = false;
    UHD_MSG(status) << "Performing CODEC loopback test... " << std::flush;
    size_t hash = size_t(time(NULL));
    for (size_t i = 0; i < 100; i++)
    {
        boost::hash_combine(hash, i);
        const boost::uint32_t word32 = boost::uint32_t(hash) & 0xfff0fff0;
        iface->poke32(TOREG(SR_CODEC_IDLE), word32);
        iface->peek64(RB64_CODEC_READBACK); //enough idleness for loopback to propagate
        const boost::uint64_t rb_word64 = iface->peek64(RB64_CODEC_READBACK);
        const boost::uint32_t rb_tx = boost::uint32_t(rb_word64 >> 32);
        const boost::uint32_t rb_rx = boost::uint32_t(rb_word64 & 0xffffffff);
        test_fail = word32 != rb_tx or word32 != rb_rx;
        if (test_fail) break; //exit loop on any failure
    }
    UHD_MSG(status) << ((test_fail)? "fail" : "pass") << std::endl;

    /* Zero out the idle data. */
    iface->poke32(TOREG(SR_CODEC_IDLE), 0);
}

/***********************************************************************
 * Sample and tick rate comprehension below
 **********************************************************************/
void b200_impl::enforce_tick_rate_limits(size_t chan_count, double tick_rate, const char* direction /*= NULL*/)
{
    const size_t max_chans = 2;
    if (chan_count > max_chans)
    {
        throw uhd::value_error(boost::str(
            boost::format("cannot not setup %d %s channels (maximum is %d)")
                % chan_count
                % (direction ? direction : "data")
                % max_chans
        ));
    }
    else
    {
        const double max_tick_rate = ((chan_count <= 1) ? AD9361_1_CHAN_CLOCK_RATE_MAX : AD9361_2_CHAN_CLOCK_RATE_MAX);
        if (tick_rate > max_tick_rate and (tick_rate - max_tick_rate > 1.0))
        {
            throw uhd::value_error(boost::str(
                boost::format("current master clock rate (%.2f MHz) exceeds maximum possible master clock rate (%.2f MHz) when using %d %s channels")
                    % (tick_rate/1e6)
                    % (max_tick_rate/1e6)
                    % chan_count
                    % (direction ? direction : "data")
            ));
        }
    }
}

double b200_impl::set_tick_rate(const double rate)
{
    UHD_MSG(status) << (boost::format("Asking for clock rate %.2f MHz\n") % (rate/1e6));

    check_tick_rate_with_current_streamers(rate);   // Defined in b200_io_impl.cpp

    _tick_rate = _codec_ctrl->set_clock_rate(rate);
    UHD_MSG(status) << (boost::format("Actually got clock rate %.2f MHz\n") % (_tick_rate/1e6));

    //reset after clock rate change
    this->reset_codec_dcm();

    BOOST_FOREACH(radio_perifs_t &perif, _radio_perifs)
    {
        perif.time64->set_tick_rate(_tick_rate);
        perif.time64->self_test();
    }
    return _tick_rate;
}

/***********************************************************************
 * compat checks
 **********************************************************************/

void b200_impl::check_fw_compat(void)
{
    boost::uint16_t compat_num = _iface->get_compat_num();
    boost::uint32_t compat_major = (boost::uint32_t) (compat_num >> 8);
    boost::uint32_t compat_minor = (boost::uint32_t) (compat_num & 0xFF);

    if (compat_major != B200_FW_COMPAT_NUM_MAJOR){
        throw uhd::runtime_error(str(boost::format(
            "Expected firmware compatibility number 0x%x, but got 0x%x.%x:\n"
            "The firmware build is not compatible with the host code build.\n"
            "%s"
        ) % int(B200_FW_COMPAT_NUM_MAJOR) % compat_major % compat_minor
          % print_images_error()));
    }
    _tree->create<std::string>("/mboards/0/fw_version").set(str(boost::format("%u.%u")
                % compat_major % compat_minor));
}

void b200_impl::check_fpga_compat(void)
{
    const boost::uint64_t compat = _local_ctrl->peek64(0);
    const boost::uint32_t signature = boost::uint32_t(compat >> 32);
    const boost::uint16_t compat_major = boost::uint16_t(compat >> 16);
    const boost::uint16_t compat_minor = boost::uint16_t(compat & 0xffff);
    if (signature != 0xACE0BA5E) throw uhd::runtime_error(
        "b200::check_fpga_compat signature register readback failed");

    if (compat_major != B200_FPGA_COMPAT_NUM){
        throw uhd::runtime_error(str(boost::format(
            "Expected FPGA compatibility number 0x%x, but got 0x%x.%x:\n"
            "The FPGA build is not compatible with the host code build.\n"
            "%s"
        ) % int(B200_FPGA_COMPAT_NUM) % compat_major % compat_minor
          % print_images_error()));
    }
    _tree->create<std::string>("/mboards/0/fpga_version").set(str(boost::format("%u.%u")
                % compat_major % compat_minor));
}

void b200_impl::set_mb_eeprom(const uhd::usrp::mboard_eeprom_t &mb_eeprom)
{
    mb_eeprom.commit(*_iface, "B200");
}


/***********************************************************************
 * Reference time and clock
 **********************************************************************/

void b200_impl::update_clock_source(const std::string &source)
{
    if (source == "internal"){
        _adf4001_iface->set_lock_to_ext_ref(false);
    }
    else if ((source == "external")
              or (source == "gpsdo")){

        _adf4001_iface->set_lock_to_ext_ref(true);
    } else {
        throw uhd::key_error("update_clock_source: unknown source: " + source);
    }

    _gpio_state.ref_sel = (source == "gpsdo")? 1 : 0;
    this->update_gpio_state();
}

void b200_impl::update_time_source(const std::string &source)
{
    if (source == "none"){}
    else if (source == "external"){}
    else if (source == "gpsdo"){}
    else throw uhd::key_error("update_time_source: unknown source: " + source);
    _local_ctrl->poke32(TOREG(SR_CORE_PPS_SEL), (source == "external")? 1 : 0);
}

/***********************************************************************
 * GPIO setup
 **********************************************************************/

void b200_impl::update_bandsel(const std::string& which, double freq)
{
    if(which[0] == 'R') {
        if(freq < 2.2e9) {
            _gpio_state.rx_bandsel_a = 0;
            _gpio_state.rx_bandsel_b = 0;
            _gpio_state.rx_bandsel_c = 1;
        } else if((freq >= 2.2e9) && (freq < 4e9)) {
            _gpio_state.rx_bandsel_a = 0;
            _gpio_state.rx_bandsel_b = 1;
            _gpio_state.rx_bandsel_c = 0;
        } else if((freq >= 4e9) && (freq <= 6e9)) {
            _gpio_state.rx_bandsel_a = 1;
            _gpio_state.rx_bandsel_b = 0;
            _gpio_state.rx_bandsel_c = 0;
        } else {
            UHD_THROW_INVALID_CODE_PATH();
        }
    } else if(which[0] == 'T') {
        if(freq < 2.5e9) {
            _gpio_state.tx_bandsel_a = 0;
            _gpio_state.tx_bandsel_b = 1;
        } else if((freq >= 2.5e9) && (freq <= 6e9)) {
            _gpio_state.tx_bandsel_a = 1;
            _gpio_state.tx_bandsel_b = 0;
        } else {
            UHD_THROW_INVALID_CODE_PATH();
        }
    } else {
        UHD_THROW_INVALID_CODE_PATH();
    }

    update_gpio_state();
}

void b200_impl::update_gpio_state(void)
{
    const boost::uint32_t misc_word = 0
        | (_gpio_state.tx_bandsel_a << 7)
        | (_gpio_state.tx_bandsel_b << 6)
        | (_gpio_state.rx_bandsel_a << 5)
        | (_gpio_state.rx_bandsel_b << 4)
        | (_gpio_state.rx_bandsel_c << 3)
        | (_gpio_state.codec_arst << 2)
        | (_gpio_state.mimo << 1)
        | (_gpio_state.ref_sel << 0)
    ;

    _local_ctrl->poke32(TOREG(RB32_CORE_MISC), misc_word);
}

void b200_impl::reset_codec_dcm(void)
{
    _gpio_state.codec_arst = 1;
    this->update_gpio_state();
    boost::this_thread::sleep(boost::posix_time::milliseconds(10));
    _gpio_state.codec_arst = 0;
    this->update_gpio_state();
}

void b200_impl::update_atrs(void)
{
    if (_radio_perifs.size() > FE1 and _radio_perifs[FE1].atr)
    {
        radio_perifs_t &perif = _radio_perifs[FE1];
        const bool enb_rx = bool(perif.rx_streamer.lock());
        const bool enb_tx = bool(perif.tx_streamer.lock());
        const bool is_rx2 = perif.ant_rx2;
        const size_t rxonly = (enb_rx)? ((is_rx2)? STATE_RX1_RX2 : STATE_RX1_TXRX) : STATE_OFF;
        const size_t txonly = (enb_tx)? (STATE_TX1_TXRX) : STATE_OFF;
        size_t fd = STATE_OFF;
        if (enb_rx and enb_tx) fd = STATE_FDX1_TXRX;
        if (enb_rx and not enb_tx) fd = rxonly;
        if (not enb_rx and enb_tx) fd = txonly;
        gpio_core_200_32wo::sptr atr = perif.atr;
        atr->set_atr_reg(dboard_iface::ATR_REG_IDLE, STATE_OFF);
        atr->set_atr_reg(dboard_iface::ATR_REG_RX_ONLY, rxonly);
        atr->set_atr_reg(dboard_iface::ATR_REG_TX_ONLY, txonly);
        atr->set_atr_reg(dboard_iface::ATR_REG_FULL_DUPLEX, fd);
    }
    if (_radio_perifs.size() > FE2 and _radio_perifs[FE2].atr)
    {
        radio_perifs_t &perif = _radio_perifs[FE2];
        const bool enb_rx = bool(perif.rx_streamer.lock());
        const bool enb_tx = bool(perif.tx_streamer.lock());
        const bool is_rx2 = perif.ant_rx2;
        const size_t rxonly = (enb_rx)? ((is_rx2)? STATE_RX2_RX2 : STATE_RX2_TXRX) : STATE_OFF;
        const size_t txonly = (enb_tx)? (STATE_TX2_TXRX) : STATE_OFF;
        size_t fd = STATE_OFF;
        if (enb_rx and enb_tx) fd = STATE_FDX2_TXRX;
        if (enb_rx and not enb_tx) fd = rxonly;
        if (not enb_rx and enb_tx) fd = txonly;
        gpio_core_200_32wo::sptr atr = perif.atr;
        atr->set_atr_reg(dboard_iface::ATR_REG_IDLE, STATE_OFF);
        atr->set_atr_reg(dboard_iface::ATR_REG_RX_ONLY, rxonly);
        atr->set_atr_reg(dboard_iface::ATR_REG_TX_ONLY, txonly);
        atr->set_atr_reg(dboard_iface::ATR_REG_FULL_DUPLEX, fd);
    }
}

void b200_impl::update_antenna_sel(const size_t which, const std::string &ant)
{
    if (ant != "TX/RX" and ant != "RX2") throw uhd::value_error("b200: unknown RX antenna option: " + ant);
    _radio_perifs[which].ant_rx2 = (ant == "RX2");
    this->update_atrs();
}

void b200_impl::update_enables(void)
{
    //extract settings from state variables
    const bool enb_tx1 = (_radio_perifs.size() > FE1) and bool(_radio_perifs[FE1].tx_streamer.lock());
    const bool enb_rx1 = (_radio_perifs.size() > FE1) and bool(_radio_perifs[FE1].rx_streamer.lock());
    const bool enb_tx2 = (_radio_perifs.size() > FE2) and bool(_radio_perifs[FE2].tx_streamer.lock());
    const bool enb_rx2 = (_radio_perifs.size() > FE2) and bool(_radio_perifs[FE2].rx_streamer.lock());
    const size_t num_rx = (enb_rx1?1:0) + (enb_rx2?1:0);
    const size_t num_tx = (enb_tx1?1:0) + (enb_tx2?1:0);
    const bool mimo = num_rx == 2 or num_tx == 2;

    //setup the active chains in the codec
    _codec_ctrl->set_active_chains(enb_tx1, enb_tx2, enb_rx1, enb_rx2);
    if ((num_rx + num_tx) == 0) _codec_ctrl->set_active_chains(true, false, true, false); //enable something
    this->reset_codec_dcm(); //set_active_chains could cause a clock rate change - reset dcm

    //figure out if mimo is enabled based on new state
    _gpio_state.mimo = (mimo)? 1 : 0;
    update_gpio_state();

    //atrs change based on enables
    this->update_atrs();
}

sensor_value_t b200_impl::get_ref_locked(void)
{
    const bool lock = (_local_ctrl->peek32(RB32_CORE_MISC) & 0x1) == 0x1;
    return sensor_value_t("Ref", lock, "locked", "unlocked");
}