aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/usrp/b100/clock_ctrl.cpp
blob: e8d11263588b27ee8bca43179661f461400b3ed6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
//
// Copyright 2011,2014,2016 Ettus Research LLC
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include "clock_ctrl.hpp"
#include "ad9522_regs.hpp"
#include "b100_regs.hpp" //spi slave constants
#include <uhd/exception.hpp>
#include <uhd/utils/assert_has.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <uhd/utils/safe_call.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <stdint.h>
#include <boost/format.hpp>
#include <algorithm>
#include <chrono>
#include <thread>
#include <utility>

using namespace uhd;

/***********************************************************************
 * Constants
 **********************************************************************/
static const bool ENABLE_THE_TEST_OUT    = true;
static const double REFERENCE_INPUT_RATE = 10e6;

/***********************************************************************
 * Helpers
 **********************************************************************/
template <typename div_type, typename bypass_type>
static void set_clock_divider(
    size_t divider, div_type& low, div_type& high, bypass_type& bypass)
{
    high   = divider / 2 - 1;
    low    = divider - high - 2;
    bypass = (divider == 1) ? 1 : 0;
}

/***********************************************************************
 * Clock rate calculation stuff:
 *   Using the internal VCO between 1400 and 1800 MHz
 **********************************************************************/
struct clock_settings_type
{
    size_t ref_clock_doubler, r_counter, a_counter, b_counter, prescaler, vco_divider,
        chan_divider;
    size_t get_n_counter(void) const
    {
        return prescaler * b_counter + a_counter;
    }
    double get_ref_rate(void) const
    {
        return REFERENCE_INPUT_RATE * ref_clock_doubler;
    }
    double get_vco_rate(void) const
    {
        return get_ref_rate() / r_counter * get_n_counter();
    }
    double get_chan_rate(void) const
    {
        return get_vco_rate() / vco_divider;
    }
    double get_out_rate(void) const
    {
        return get_chan_rate() / chan_divider;
    }
    std::string to_pp_string(void) const
    {
        return str(boost::format("  r_counter: %d\n"
                                 "  a_counter: %d\n"
                                 "  b_counter: %d\n"
                                 "  prescaler: %d\n"
                                 "  vco_divider: %d\n"
                                 "  chan_divider: %d\n"
                                 "  vco_rate: %fMHz\n"
                                 "  chan_rate: %fMHz\n"
                                 "  out_rate: %fMHz\n")
                   % r_counter % a_counter % b_counter % prescaler % vco_divider
                   % chan_divider % (get_vco_rate() / 1e6) % (get_chan_rate() / 1e6)
                   % (get_out_rate() / 1e6));
    }
};

//! gives the greatest divisor of num between 1 and max inclusive
template <typename T>
static inline T greatest_divisor(T num, T max)
{
    for (T i = max; i > 1; i--) {
        if (num % i == 0) {
            return i;
        }
    }
    return 1;
}

//! gives the least divisor of num between min and num exclusive
template <typename T>
static inline T least_divisor(T num, T min)
{
    for (T i = min; i < num; i++) {
        if (num % i == 0) {
            return i;
        }
    }
    return 1;
}

static clock_settings_type get_clock_settings(double rate)
{
    clock_settings_type cs;
    cs.ref_clock_doubler = 2; // always doubling
    cs.prescaler         = 8; // set to 8 when input is under 2400 MHz

    // basic formulas used below:
    // out_rate*X = ref_rate*Y
    // X = i*ref_rate/gcd
    // Y = i*out_rate/gcd
    // X = chan_div * vco_div * R
    // Y = P*B + A

    const uint64_t out_rate = uint64_t(rate);
    const uint64_t ref_rate = uint64_t(cs.get_ref_rate());
    const size_t gcd =
        uhd::narrow_cast<size_t>((uhd::math::gcd<size_t>(ref_rate, out_rate)));

    for (size_t i = 1; i <= 100; i++) {
        const size_t X = size_t(i * ref_rate / gcd);
        const size_t Y = size_t(i * out_rate / gcd);

        // determine A and B (P is fixed)
        cs.b_counter = Y / cs.prescaler;
        cs.a_counter = Y - cs.b_counter * cs.prescaler;

        static const double vco_bound_pad = 100e6;
        for ( // calculate an r divider that fits into the bounds of the vco
            cs.r_counter =
                size_t(cs.get_n_counter() * cs.get_ref_rate() / (1800e6 - vco_bound_pad));
            cs.r_counter <= size_t(cs.get_n_counter() * cs.get_ref_rate()
                                   / (1400e6 + vco_bound_pad))
            and cs.r_counter > 0;
            cs.r_counter++) {
            // determine chan_div and vco_div
            // and fill in that order of preference
            cs.chan_divider = greatest_divisor<size_t>(X / cs.r_counter, 32);
            cs.vco_divider =
                greatest_divisor<size_t>(X / cs.chan_divider / cs.r_counter, 6);

            // avoid a vco divider of 1 (if possible)
            if (cs.vco_divider == 1) {
                cs.vco_divider = least_divisor<size_t>(cs.chan_divider, 2);
                cs.chan_divider /= cs.vco_divider;
            }

            UHD_LOGGER_TRACE("B100")
                << "gcd: " << gcd << " X: " << X << " Y: " << Y << cs.to_pp_string();

            // filter limits on the counters
            if (cs.vco_divider == 1)
                continue;
            if (cs.r_counter >= (1 << 14))
                continue;
            if (cs.b_counter == 2)
                continue;
            if (cs.b_counter == 1 and cs.a_counter != 0)
                continue;
            if (cs.b_counter >= (1 << 13))
                continue;
            if (cs.a_counter >= (1 << 6))
                continue;
            if (cs.get_vco_rate() > 1800e6 - vco_bound_pad)
                continue;
            if (cs.get_vco_rate() < 1400e6 + vco_bound_pad)
                continue;
            if (cs.get_out_rate() != rate)
                continue;

            UHD_LOGGER_TRACE("B100")
                << "USRP-B100 clock control: " << i << cs.to_pp_string();
            return cs;
        }
    }

    throw uhd::value_error(str(
        boost::format(
            "USRP-B100 clock control: could not calculate settings for clock rate %fMHz")
        % (rate / 1e6)));
}

b100_clock_ctrl::~b100_clock_ctrl(void)
{
    /* NOP */
}

/***********************************************************************
 * Clock Control Implementation
 **********************************************************************/
class b100_clock_ctrl_impl : public b100_clock_ctrl
{
public:
    b100_clock_ctrl_impl(i2c_iface::sptr iface, double master_clock_rate)
    {
        _iface     = iface;
        _chan_rate = 0.0;
        _out_rate  = 0.0;

        // perform soft-reset
        _ad9522_regs.soft_reset = 1;
        this->send_reg(0x000);
        this->latch_regs();
        _ad9522_regs.soft_reset = 0;

        // init the clock gen registers
        _ad9522_regs.sdo_active                  = ad9522_regs_t::SDO_ACTIVE_SDO_SDIO;
        _ad9522_regs.enb_stat_eeprom_at_stat_pin = 0; // use status pin
        _ad9522_regs.status_pin_control          = 0x1; // n divider
        _ad9522_regs.ld_pin_control              = 0x00; // dld
        _ad9522_regs.refmon_pin_control          = 0x12; // show ref2
        _ad9522_regs.lock_detect_counter = ad9522_regs_t::LOCK_DETECT_COUNTER_16CYC;

        this->use_internal_ref();

        this->set_fpga_clock_rate(master_clock_rate); // initialize to something

        this->enable_fpga_clock(true);
        this->enable_test_clock(ENABLE_THE_TEST_OUT);
        this->enable_rx_dboard_clock(false);
        this->enable_tx_dboard_clock(false);
    }

    ~b100_clock_ctrl_impl(void) override
    {
        UHD_SAFE_CALL(this->enable_test_clock(ENABLE_THE_TEST_OUT);
                      this->enable_rx_dboard_clock(false);
                      this->enable_tx_dboard_clock(false);
            // this->enable_fpga_clock(false); //FIXME
        )
    }

    /***********************************************************************
     * Clock rate control:
     *  - set clock rate w/ internal VCO
     *  - set clock rate w/ external VCXO
     **********************************************************************/
    void set_clock_settings_with_internal_vco(double rate)
    {
        const clock_settings_type cs = get_clock_settings(rate);

        // set the rates to private variables so the implementation knows!
        _chan_rate = cs.get_chan_rate();
        _out_rate  = cs.get_out_rate();

        _ad9522_regs.enable_clock_doubler = (cs.ref_clock_doubler == 2) ? 1 : 0;

        _ad9522_regs.set_r_counter(cs.r_counter);
        _ad9522_regs.a_counter = cs.a_counter;
        _ad9522_regs.set_b_counter(cs.b_counter);
        UHD_ASSERT_THROW(cs.prescaler == 8); // assumes this below:
        _ad9522_regs.prescaler_p = ad9522_regs_t::PRESCALER_P_DIV8_9;

        _ad9522_regs.pll_power_down = ad9522_regs_t::PLL_POWER_DOWN_NORMAL;
        _ad9522_regs.cp_current     = ad9522_regs_t::CP_CURRENT_1_2MA;

        _ad9522_regs.bypass_vco_divider = 0;
        switch (cs.vco_divider) {
            case 1:
                _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV1;
                break;
            case 2:
                _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV2;
                break;
            case 3:
                _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV3;
                break;
            case 4:
                _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV4;
                break;
            case 5:
                _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV5;
                break;
            case 6:
                _ad9522_regs.vco_divider = ad9522_regs_t::VCO_DIVIDER_DIV6;
                break;
        }
        _ad9522_regs.select_vco_or_clock = ad9522_regs_t::SELECT_VCO_OR_CLOCK_VCO;

        // setup fpga master clock
        _ad9522_regs.out0_format = ad9522_regs_t::OUT0_FORMAT_LVDS;
        set_clock_divider(cs.chan_divider,
            _ad9522_regs.divider0_low_cycles,
            _ad9522_regs.divider0_high_cycles,
            _ad9522_regs.divider0_bypass);

        // setup codec clock
        _ad9522_regs.out3_format = ad9522_regs_t::OUT3_FORMAT_LVDS;
        set_clock_divider(cs.chan_divider,
            _ad9522_regs.divider1_low_cycles,
            _ad9522_regs.divider1_high_cycles,
            _ad9522_regs.divider1_bypass);

        this->send_all_regs();
        calibrate_now();
    }

    void set_clock_settings_with_external_vcxo(double rate)
    {
        // set the rates to private variables so the implementation knows!
        _chan_rate = rate;
        _out_rate  = rate;

        _ad9522_regs.enable_clock_doubler = 1; // doubler always on
        const double ref_rate             = REFERENCE_INPUT_RATE * 2;

        // bypass prescaler such that N = B
        long gcd = uhd::math::gcd(long(ref_rate), long(rate));
        _ad9522_regs.set_r_counter(int(ref_rate / gcd));
        _ad9522_regs.a_counter = 0;
        _ad9522_regs.set_b_counter(int(rate / gcd));
        _ad9522_regs.prescaler_p = ad9522_regs_t::PRESCALER_P_DIV1;

        // setup external vcxo
        _ad9522_regs.pll_power_down      = ad9522_regs_t::PLL_POWER_DOWN_NORMAL;
        _ad9522_regs.cp_current          = ad9522_regs_t::CP_CURRENT_1_2MA;
        _ad9522_regs.bypass_vco_divider  = 1;
        _ad9522_regs.select_vco_or_clock = ad9522_regs_t::SELECT_VCO_OR_CLOCK_EXTERNAL;

        // setup fpga master clock
        _ad9522_regs.out0_format     = ad9522_regs_t::OUT0_FORMAT_LVDS;
        _ad9522_regs.divider0_bypass = 1;

        // setup codec clock
        _ad9522_regs.out3_format     = ad9522_regs_t::OUT3_FORMAT_LVDS;
        _ad9522_regs.divider1_bypass = 1;

        this->send_all_regs();
    }

    void set_fpga_clock_rate(double rate) override
    {
        if (_out_rate == rate)
            return;
        if (rate == 61.44e6)
            set_clock_settings_with_external_vcxo(rate);
        else
            set_clock_settings_with_internal_vco(rate);
        // clock rate changed! update dboard clocks and FPGA ticks per second
        set_rx_dboard_clock_rate(rate);
        set_tx_dboard_clock_rate(rate);
    }

    double get_fpga_clock_rate(void) override
    {
        return this->_out_rate;
    }

    /***********************************************************************
     * FPGA clock enable
     **********************************************************************/
    void enable_fpga_clock(bool enb) override
    {
        _ad9522_regs.out0_format          = ad9522_regs_t::OUT0_FORMAT_LVDS;
        _ad9522_regs.out0_lvds_power_down = !enb;
        this->send_reg(0x0F0);
        this->latch_regs();
    }

    /***********************************************************************
     * Special test clock output
     **********************************************************************/
    void enable_test_clock(bool enb)
    {
        // setup test clock (same divider as codec clock)
        _ad9522_regs.out4_format = ad9522_regs_t::OUT4_FORMAT_CMOS;
        _ad9522_regs.out4_cmos_configuration =
            (enb) ? ad9522_regs_t::OUT4_CMOS_CONFIGURATION_A_ON
                  : ad9522_regs_t::OUT4_CMOS_CONFIGURATION_OFF;
        this->send_reg(0x0F4);
        this->latch_regs();
    }

    /***********************************************************************
     * RX Dboard Clock Control (output 9, divider 3)
     **********************************************************************/
    void enable_rx_dboard_clock(bool enb) override
    {
        _ad9522_regs.out9_format          = ad9522_regs_t::OUT9_FORMAT_LVDS;
        _ad9522_regs.out9_lvds_power_down = !enb;
        this->send_reg(0x0F9);
        this->latch_regs();
    }

    std::vector<double> get_rx_dboard_clock_rates(void) override
    {
        std::vector<double> rates;
        for (size_t div = 1; div <= 16 + 16; div++)
            rates.push_back(this->_chan_rate / div);
        return rates;
    }

    void set_rx_dboard_clock_rate(double rate) override
    {
        assert_has(get_rx_dboard_clock_rates(), rate, "rx dboard clock rate");
        _rx_clock_rate = rate;
        size_t divider = size_t(this->_chan_rate / rate);
        // set the divider registers
        set_clock_divider(divider,
            _ad9522_regs.divider3_low_cycles,
            _ad9522_regs.divider3_high_cycles,
            _ad9522_regs.divider3_bypass);
        this->send_reg(0x199);
        this->send_reg(0x19a);
        this->soft_sync();
    }

    double get_rx_clock_rate(void) override
    {
        return _rx_clock_rate;
    }

    /***********************************************************************
     * TX Dboard Clock Control (output 6, divider 2)
     **********************************************************************/
    void enable_tx_dboard_clock(bool enb) override
    {
        _ad9522_regs.out6_format          = ad9522_regs_t::OUT6_FORMAT_LVDS;
        _ad9522_regs.out6_lvds_power_down = !enb;
        this->send_reg(0x0F6);
        this->latch_regs();
    }

    std::vector<double> get_tx_dboard_clock_rates(void) override
    {
        return get_rx_dboard_clock_rates(); // same master clock, same dividers...
    }

    void set_tx_dboard_clock_rate(double rate) override
    {
        assert_has(get_tx_dboard_clock_rates(), rate, "tx dboard clock rate");
        _tx_clock_rate = rate;
        size_t divider = size_t(this->_chan_rate / rate);
        // set the divider registers
        set_clock_divider(divider,
            _ad9522_regs.divider2_low_cycles,
            _ad9522_regs.divider2_high_cycles,
            _ad9522_regs.divider2_bypass);
        this->send_reg(0x196);
        this->send_reg(0x197);
        this->soft_sync();
    }

    double get_tx_clock_rate(void) override
    {
        return _tx_clock_rate;
    }

    /***********************************************************************
     * Clock reference control
     **********************************************************************/
    void use_internal_ref(void) override
    {
        _ad9522_regs.enable_ref2 = 1;
        _ad9522_regs.enable_ref1 = 0;
        _ad9522_regs.select_ref  = ad9522_regs_t::SELECT_REF_REF2;
        _ad9522_regs.enb_auto_ref_switchover =
            ad9522_regs_t::ENB_AUTO_REF_SWITCHOVER_MANUAL;
        this->send_reg(0x01C);
        this->latch_regs();
    }

    void use_external_ref(void) override
    {
        _ad9522_regs.enable_ref2 = 0;
        _ad9522_regs.enable_ref1 = 1;
        _ad9522_regs.select_ref  = ad9522_regs_t::SELECT_REF_REF1;
        _ad9522_regs.enb_auto_ref_switchover =
            ad9522_regs_t::ENB_AUTO_REF_SWITCHOVER_MANUAL;
        this->send_reg(0x01C);
        this->latch_regs();
    }

    void use_auto_ref(void) override
    {
        _ad9522_regs.enable_ref2 = 1;
        _ad9522_regs.enable_ref1 = 1;
        _ad9522_regs.select_ref  = ad9522_regs_t::SELECT_REF_REF1;
        _ad9522_regs.enb_auto_ref_switchover =
            ad9522_regs_t::ENB_AUTO_REF_SWITCHOVER_AUTO;
        this->send_reg(0x01C);
        this->latch_regs();
    }

    bool get_locked(void) override
    {
        static const uint8_t addr = 0x01F;
        uint32_t reg              = this->read_reg(addr);
        _ad9522_regs.set_reg(addr, reg);
        return _ad9522_regs.digital_lock_detect != 0;
    }

private:
    i2c_iface::sptr _iface;
    ad9522_regs_t _ad9522_regs;
    double _out_rate; // rate at the fpga and codec
    double _chan_rate; // rate before final dividers
    double _rx_clock_rate, _tx_clock_rate;

    void latch_regs(void)
    {
        _ad9522_regs.io_update = 1;
        this->send_reg(0x232);
    }

    void send_reg(uint16_t addr)
    {
        uint32_t reg = _ad9522_regs.get_write_reg(addr);
        UHD_LOGGER_TRACE("B100") << "clock control write reg: " << std::hex << reg;
        byte_vector_t buf;
        buf.push_back(uint8_t(reg >> 16));
        buf.push_back(uint8_t(reg >> 8));
        buf.push_back(uint8_t(reg & 0xff));

        _iface->write_i2c(0x5C, buf);
    }

    uint8_t read_reg(uint16_t addr)
    {
        byte_vector_t buf;
        buf.push_back(uint8_t(addr >> 8));
        buf.push_back(uint8_t(addr & 0xff));
        _iface->write_i2c(0x5C, buf);

        buf = _iface->read_i2c(0x5C, 1);

        return uint32_t(buf[0] & 0xFF);
    }

    void calibrate_now(void)
    {
        // vco calibration routine:
        _ad9522_regs.vco_calibration_now = 0;
        this->send_reg(0x18);
        this->latch_regs();
        _ad9522_regs.vco_calibration_now = 1;
        this->send_reg(0x18);
        this->latch_regs();
        // wait for calibration done:
        static const uint8_t addr = 0x01F;
        for (size_t ms10 = 0; ms10 < 100; ms10++) {
            std::this_thread::sleep_for(std::chrono::milliseconds(10));
            uint32_t reg = read_reg(addr);
            _ad9522_regs.set_reg(addr, reg);
            if (_ad9522_regs.vco_calibration_finished)
                goto wait_for_ld;
        }
        UHD_LOGGER_ERROR("B100") << "USRP-B100 clock control: VCO calibration timeout";
    wait_for_ld:
        // wait for digital lock detect:
        for (size_t ms10 = 0; ms10 < 100; ms10++) {
            std::this_thread::sleep_for(std::chrono::milliseconds(10));
            uint32_t reg = read_reg(addr);
            _ad9522_regs.set_reg(addr, reg);
            if (_ad9522_regs.digital_lock_detect)
                return;
        }
        UHD_LOGGER_ERROR("B100") << "USRP-B100 clock control: lock detection timeout";
    }

    void soft_sync(void)
    {
        _ad9522_regs.soft_sync = 1;
        this->send_reg(0x230);
        this->latch_regs();
        _ad9522_regs.soft_sync = 0;
        this->send_reg(0x230);
        this->latch_regs();
    }

    void send_all_regs(void)
    {
        // setup a list of register ranges to write
        typedef std::pair<uint16_t, uint16_t> range_t;
        static const std::vector<range_t> ranges{range_t(0x000, 0x000),
            range_t(0x010, 0x01F),
            range_t(0x0F0, 0x0FD),
            range_t(0x190, 0x19B),
            range_t(0x1E0, 0x1E1),
            range_t(0x230, 0x230)};

        // write initial register values and latch/update
        for (const range_t& range : ranges) {
            for (uint16_t addr = range.first; addr <= range.second; addr++) {
                this->send_reg(addr);
            }
        }
        this->latch_regs();
    }
};

/***********************************************************************
 * Clock Control Make
 **********************************************************************/
b100_clock_ctrl::sptr b100_clock_ctrl::make(
    i2c_iface::sptr iface, double master_clock_rate)
{
    return sptr(new b100_clock_ctrl_impl(iface, master_clock_rate));
}