1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
|
//
// Copyright 2019 Ettus Research, a National Instruments brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/utils/log.hpp>
#include <uhdlib/transport/dpdk/common.hpp>
#include <uhdlib/utils/prefs.hpp>
#include <arpa/inet.h>
#include <rte_arp.h>
#include <boost/algorithm/string.hpp>
namespace uhd { namespace transport { namespace dpdk {
namespace {
constexpr uint64_t USEC = 1000000;
constexpr size_t DEFAULT_FRAME_SIZE = 8000;
constexpr int DEFAULT_NUM_MBUFS = 1024;
constexpr int DEFAULT_MBUF_CACHE_SIZE = 315;
constexpr size_t DPDK_HEADERS_SIZE = 14 + 20 + 8; // Ethernet + IPv4 + UDP
constexpr uint16_t DPDK_DEFAULT_RING_SIZE = 512;
inline char* eal_add_opt(
std::vector<const char*>& argv, size_t n, char* dst, const char* opt, const char* arg)
{
char* ptr = dst;
strncpy(ptr, opt, n);
argv.push_back(ptr);
ptr += strlen(opt) + 1;
n -= ptr - dst;
strncpy(ptr, arg, n);
argv.push_back(ptr);
ptr += strlen(arg) + 1;
return ptr;
}
inline std::string eth_addr_to_string(const struct ether_addr mac_addr)
{
auto mac_stream = boost::format("%02hhx:%02hhx:%02hhx:%02hhx:%02hhx:%02hhx");
mac_stream % (uint32_t)mac_addr.addr_bytes[0] % (uint32_t)mac_addr.addr_bytes[1]
% (uint32_t)mac_addr.addr_bytes[2] % (uint32_t)mac_addr.addr_bytes[3]
% (uint32_t)mac_addr.addr_bytes[4] % (uint32_t)mac_addr.addr_bytes[5];
return mac_stream.str();
}
inline void separate_ipv4_addr(
const std::string ipv4, uint32_t& ipv4_addr, uint32_t& netmask)
{
std::vector<std::string> result;
boost::algorithm::split(
result, ipv4, [](const char& in) { return in == '/'; }, boost::token_compress_on);
UHD_ASSERT_THROW(result.size() == 2);
ipv4_addr = (uint32_t)inet_addr(result[0].c_str());
int netbits = std::atoi(result[1].c_str());
netmask = htonl(0xffffffff << (32 - netbits));
}
} // namespace
dpdk_port::uptr dpdk_port::make(port_id_t port,
size_t mtu,
uint16_t num_queues,
size_t num_mbufs,
struct rte_mempool* rx_pktbuf_pool,
struct rte_mempool* tx_pktbuf_pool,
std::string ipv4_address)
{
return std::make_unique<dpdk_port>(
port, mtu, num_queues, num_mbufs, rx_pktbuf_pool, tx_pktbuf_pool, ipv4_address);
}
dpdk_port::dpdk_port(port_id_t port,
size_t mtu,
uint16_t num_queues,
size_t num_mbufs,
struct rte_mempool* rx_pktbuf_pool,
struct rte_mempool* tx_pktbuf_pool,
std::string ipv4_address)
: _port(port)
, _mtu(mtu)
, _rx_pktbuf_pool(rx_pktbuf_pool)
, _tx_pktbuf_pool(tx_pktbuf_pool)
{
/* 1. Set MTU and IPv4 address */
int retval;
retval = rte_eth_dev_set_mtu(_port, _mtu);
if (retval) {
uint16_t actual_mtu;
UHD_LOGGER_WARNING("DPDK")
<< boost::format("Port %d: Could not set mtu to %d") % _port % _mtu;
rte_eth_dev_get_mtu(_port, &actual_mtu);
UHD_LOGGER_WARNING("DPDK")
<< boost::format("Port %d: Current mtu=%d") % _port % _mtu;
_mtu = actual_mtu;
}
separate_ipv4_addr(ipv4_address, _ipv4, _netmask);
/* 2. Set hardware offloads */
struct rte_eth_dev_info dev_info;
rte_eth_dev_info_get(_port, &dev_info);
uint64_t rx_offloads = DEV_RX_OFFLOAD_IPV4_CKSUM;
uint64_t tx_offloads = DEV_TX_OFFLOAD_IPV4_CKSUM;
if ((dev_info.rx_offload_capa & rx_offloads) != rx_offloads) {
UHD_LOGGER_ERROR("DPDK") << boost::format("%d: Only supports RX offloads 0x%0llx")
% _port % dev_info.rx_offload_capa;
throw uhd::runtime_error("DPDK: Missing required RX offloads");
}
if ((dev_info.tx_offload_capa & tx_offloads) != tx_offloads) {
UHD_LOGGER_ERROR("DPDK") << boost::format("%d: Only supports TX offloads 0x%0llx")
% _port % dev_info.tx_offload_capa;
throw uhd::runtime_error("DPDK: Missing required TX offloads");
}
// Check number of available queues
if (dev_info.max_rx_queues < num_queues || dev_info.max_tx_queues < num_queues) {
_num_queues = std::min(dev_info.max_rx_queues, dev_info.max_tx_queues);
UHD_LOGGER_WARNING("DPDK")
<< boost::format("%d: Maximum queues supported is %d") % _port % _num_queues;
} else {
_num_queues = num_queues;
}
struct rte_eth_conf port_conf = {};
port_conf.rxmode.offloads = rx_offloads | DEV_RX_OFFLOAD_JUMBO_FRAME;
port_conf.rxmode.max_rx_pkt_len = _mtu;
port_conf.txmode.offloads = tx_offloads;
retval = rte_eth_dev_configure(_port, _num_queues, _num_queues, &port_conf);
if (retval != 0) {
UHD_LOG_ERROR("DPDK", "Failed to configure the device");
throw uhd::runtime_error("DPDK: Failed to configure the device");
}
/* 3. Set descriptor ring sizes */
uint16_t rx_desc = num_mbufs;
if (dev_info.rx_desc_lim.nb_max < rx_desc || dev_info.rx_desc_lim.nb_min > rx_desc
|| (dev_info.rx_desc_lim.nb_align - 1) & rx_desc) {
UHD_LOGGER_ERROR("DPDK")
<< boost::format("%d: %d RX descriptors requested, but must be in [%d,%d]")
% _port % num_mbufs % dev_info.rx_desc_lim.nb_min
% dev_info.rx_desc_lim.nb_max;
UHD_LOGGER_ERROR("DPDK")
<< boost::format("Num RX descriptors must also be aligned to 0x%x")
% dev_info.rx_desc_lim.nb_align;
throw uhd::runtime_error("DPDK: Failed to allocate RX descriptors");
}
uint16_t tx_desc = num_mbufs;
if (dev_info.tx_desc_lim.nb_max < tx_desc || dev_info.tx_desc_lim.nb_min > tx_desc
|| (dev_info.tx_desc_lim.nb_align - 1) & tx_desc) {
UHD_LOGGER_ERROR("DPDK")
<< boost::format("%d: %d TX descriptors requested, but must be in [%d,%d]")
% _port % num_mbufs % dev_info.tx_desc_lim.nb_min
% dev_info.tx_desc_lim.nb_max;
UHD_LOGGER_ERROR("DPDK")
<< boost::format("Num TX descriptors must also be aligned to 0x%x")
% dev_info.tx_desc_lim.nb_align;
throw uhd::runtime_error("DPDK: Failed to allocate TX descriptors");
}
retval = rte_eth_dev_adjust_nb_rx_tx_desc(_port, &rx_desc, &tx_desc);
if (retval != 0) {
UHD_LOG_ERROR("DPDK", "Failed to configure the DMA queues ");
throw uhd::runtime_error("DPDK: Failed to configure the DMA queues");
}
/* 4. Set up the RX and TX DMA queues (May not be generally supported after
* eth_dev_start) */
unsigned int cpu_socket = rte_eth_dev_socket_id(_port);
for (uint16_t i = 0; i < _num_queues; i++) {
retval =
rte_eth_rx_queue_setup(_port, i, rx_desc, cpu_socket, NULL, _rx_pktbuf_pool);
if (retval < 0) {
UHD_LOGGER_ERROR("DPDK")
<< boost::format("Port %d: Could not init RX queue %d") % _port % i;
throw uhd::runtime_error("DPDK: Failure to init RX queue");
}
struct rte_eth_txconf txconf = dev_info.default_txconf;
txconf.offloads = DEV_TX_OFFLOAD_IPV4_CKSUM;
retval = rte_eth_tx_queue_setup(_port, i, tx_desc, cpu_socket, &txconf);
if (retval < 0) {
UHD_LOGGER_ERROR("DPDK")
<< boost::format("Port %d: Could not init TX queue %d") % _port % i;
throw uhd::runtime_error("DPDK: Failure to init TX queue");
}
}
/* 5. Set up initial flow table */
/* Append all free queues except 0, which is reserved for ARP */
_free_queues.reserve(_num_queues - 1);
for (unsigned int i = 1; i < _num_queues; i++) {
_free_queues.push_back(i);
}
// struct rte_flow_attr flow_attr;
// flow_attr.group = 0;
// flow_attr.priority = 1;
// flow_attr.ingress = 1;
// flow_attr.egress = 0;
// flow_attr.transfer = 0;
// flow_attr.reserved = 0;
// struct rte_flow_item[] flow_pattern = {
//};
// int rte_flow_validate(uint16_t port_id,
// const struct rte_flow_attr *attr,
// const struct rte_flow_item pattern[],
// const struct rte_flow_action actions[],
// struct rte_flow_error *error);
// struct rte_flow * rte_flow_create(uint16_t port_id,
// const struct rte_flow_attr *attr,
// const struct rte_flow_item pattern[],
// const struct rte_flow_action *actions[],
// struct rte_flow_error *error);
/* 6. Start the Ethernet device */
retval = rte_eth_dev_start(_port);
if (retval < 0) {
UHD_LOGGER_ERROR("DPDK")
<< boost::format("Port %d: Could not start device") % _port;
throw uhd::runtime_error("DPDK: Failure to start device");
}
/* Grab and display the port MAC address. */
rte_eth_macaddr_get(_port, &_mac_addr);
UHD_LOGGER_TRACE("DPDK") << "Port " << _port
<< " MAC: " << eth_addr_to_string(_mac_addr);
}
/* TODO: Do flow directions */
queue_id_t dpdk_port::alloc_queue(struct rte_flow_pattern recv_pattern[])
{
std::lock_guard<std::mutex> lock(_mutex);
UHD_ASSERT_THROW(_free_queues.size() != 0);
auto queue = _free_queues.back();
_free_queues.pop_back();
return queue;
}
void dpdk_port::free_queue(queue_id_t queue)
{
std::lock_guard<std::mutex> lock(_mutex);
auto flow = _flow_rules.at(queue);
int status = rte_flow_destroy(_port, flow, NULL);
if (status) {
UHD_LOGGER_ERROR("DPDK")
<< boost::format("Failed to destroy flow rule on port %u, queue %u") % _port
% queue;
throw uhd::runtime_error("DPDK: Failed to destroy flow rule");
} else {
_flow_rules.erase(queue);
}
_free_queues.push_back(queue);
}
int dpdk_port::_arp_reply(struct rte_mempool* tx_pktbuf_pool, struct arp_hdr* arp_req)
{
struct rte_mbuf* mbuf;
struct ether_hdr* hdr;
struct arp_hdr* arp_frame;
mbuf = rte_pktmbuf_alloc(tx_pktbuf_pool);
if (unlikely(mbuf == NULL)) {
UHD_LOG_WARNING("DPDK", "Could not allocate packet buffer for ARP response");
return -ENOMEM;
}
hdr = rte_pktmbuf_mtod(mbuf, struct ether_hdr*);
arp_frame = (struct arp_hdr*)&hdr[1];
ether_addr_copy(&arp_req->arp_data.arp_sha, &hdr->d_addr);
ether_addr_copy(&_mac_addr, &hdr->s_addr);
hdr->ether_type = rte_cpu_to_be_16(ETHER_TYPE_ARP);
arp_frame->arp_hrd = rte_cpu_to_be_16(ARP_HRD_ETHER);
arp_frame->arp_pro = rte_cpu_to_be_16(ETHER_TYPE_IPv4);
arp_frame->arp_hln = 6;
arp_frame->arp_pln = 4;
arp_frame->arp_op = rte_cpu_to_be_16(ARP_OP_REPLY);
ether_addr_copy(&_mac_addr, &arp_frame->arp_data.arp_sha);
arp_frame->arp_data.arp_sip = _ipv4;
ether_addr_copy(&hdr->d_addr, &arp_frame->arp_data.arp_tha);
arp_frame->arp_data.arp_tip = arp_req->arp_data.arp_sip;
mbuf->pkt_len = 42;
mbuf->data_len = 42;
// ARP replies always on queue 0
if (rte_eth_tx_burst(_port, 0, &mbuf, 1) != 1) {
UHD_LOGGER_WARNING("DPDK")
<< boost::format("%s: TX descriptor ring is full") % __func__;
rte_pktmbuf_free(mbuf);
return -EAGAIN;
}
return 0;
}
// TODO: ARP processing for queue 0
// int dpdk_port::process_arp(struct rte_mempool *tx_pktbuf_pool, struct arp_hdr
// *arp_frame)
//{
// std::lock_guard<std::mutex> lock(_mutex);
// uint32_t dest_ip = arp_frame->arp_data.arp_sip;
// struct ether_addr dest_addr = arp_frame->arp_data.arp_sha;
//
// /* Add entry to ARP table */
// struct uhd_dpdk_arp_entry *entry = NULL;
// rte_hash_lookup_data(_arp_table, &dest_ip, (void **) &entry);
// if (!entry) {
// entry = rte_zmalloc(NULL, sizeof(*entry), 0);
// if (!entry) {
// return -ENOMEM;
// }
// LIST_INIT(&entry->pending_list);
// ether_addr_copy(&dest_addr, &entry->mac_addr);
// if (rte_hash_add_key_data(port->arp_table, &dest_ip, entry) < 0) {
// rte_free(entry);
// return -ENOSPC;
// }
// } else {
// struct uhd_dpdk_config_req *req = NULL;
// ether_addr_copy(&dest_addr, &entry->mac_addr);
// /* Now wake any config reqs waiting for the ARP */
// LIST_FOREACH(req, &entry->pending_list, entry) {
// _uhd_dpdk_config_req_compl(req, 0);
// }
// while (entry->pending_list.lh_first != NULL) {
// LIST_REMOVE(entry->pending_list.lh_first, entry);
// }
// }
// /* Respond if this was an ARP request */
// if (arp_frame->arp_op == rte_cpu_to_be_16(ARP_OP_REQUEST) &&
// arp_frame->arp_data.arp_tip == port->ipv4_addr) {
// _arp_reply(tx_pktbuf_pool, arp_frame);
// }
//
// return 0;
//
//}
static dpdk_ctx* global_ctx = nullptr;
static std::mutex global_ctx_mutex;
dpdk_ctx::sptr dpdk_ctx::get()
{
std::lock_guard<std::mutex> lock(global_ctx_mutex);
if (!global_ctx) {
auto new_ctx = std::make_shared<dpdk_ctx>();
global_ctx = new_ctx.get();
return new_ctx;
}
return global_ctx->shared_from_this();
}
dpdk_ctx::dpdk_ctx(void) : _init_done(false) {}
dpdk_ctx::~dpdk_ctx(void)
{
std::lock_guard<std::mutex> lock(global_ctx_mutex);
global_ctx = nullptr;
// Stop all the ports
for (auto& port : _ports) {
rte_eth_dev_stop(port.first);
}
// Free mempools
for (auto& pool : _rx_pktbuf_pools) {
rte_mempool_free(pool);
}
for (auto& pool : _tx_pktbuf_pools) {
rte_mempool_free(pool);
}
// Free EAL resources
rte_eal_cleanup();
}
void dpdk_ctx::_eal_init(const device_addr_t& eal_args)
{
/* Build up argc and argv */
std::vector<const char*> argv;
argv.push_back("uhd::transport::dpdk");
auto args = new std::array<char, 4096>();
char* opt = args->data();
char* end = args->data() + args->size();
for (std::string& key : eal_args.keys()) {
std::string val = eal_args[key];
if (key == "dpdk_coremask") {
opt = eal_add_opt(argv, end - opt, opt, "-c", val.c_str());
} else if (key == "dpdk_corelist") {
/* NOTE: This arg may have commas, so limited to config file */
opt = eal_add_opt(argv, end - opt, opt, "-l", val.c_str());
} else if (key == "dpdk_coremap") {
opt = eal_add_opt(argv, end - opt, opt, "--lcores", val.c_str());
} else if (key == "dpdk_master_lcore") {
opt = eal_add_opt(argv, end - opt, opt, "--master-lcore", val.c_str());
} else if (key == "dpdk_pci_blacklist") {
opt = eal_add_opt(argv, end - opt, opt, "-b", val.c_str());
} else if (key == "dpdk_pci_whitelist") {
opt = eal_add_opt(argv, end - opt, opt, "-w", val.c_str());
} else if (key == "dpdk_log_level") {
opt = eal_add_opt(argv, end - opt, opt, "--log-level", val.c_str());
} else if (key == "dpdk_huge_dir") {
opt = eal_add_opt(argv, end - opt, opt, "--huge-dir", val.c_str());
} else if (key == "dpdk_file_prefix") {
opt = eal_add_opt(argv, end - opt, opt, "--file-prefix", val.c_str());
} else if (key == "dpdk_driver") {
opt = eal_add_opt(argv, end - opt, opt, "-d", val.c_str());
}
/* TODO: Change where log goes?
int rte_openlog_stream( FILE * f)
*/
}
/* Init DPDK's EAL */
int ret = rte_eal_init(argv.size(), (char**)argv.data());
/* Done with the temporaries */
delete args;
if (ret < 0) {
UHD_LOG_ERROR("DPDK", "Error with EAL initialization");
throw uhd::runtime_error("Error with EAL initialization");
}
/* Create pktbuf pool entries, but only allocate on use */
int socket_count = rte_socket_count();
for (int i = 0; i < socket_count; i++) {
_rx_pktbuf_pools.push_back(NULL);
_tx_pktbuf_pools.push_back(NULL);
}
}
/**
* Init DPDK environment, including DPDK's EAL.
* This will make available information about the DPDK-assigned NIC devices.
*
* \param user_args User args passed in to override config files
*/
void dpdk_ctx::init(const device_addr_t& user_args)
{
unsigned int i;
std::lock_guard<std::mutex> lock(_init_mutex);
if (!_init_done) {
/* Gather global config, build args for EAL, and init UHD-DPDK */
const device_addr_t dpdk_args = uhd::prefs::get_dpdk_args(user_args);
UHD_LOG_TRACE("DPDK", "Configuration:" << std::endl << dpdk_args.to_pp_string());
_eal_init(dpdk_args);
/* TODO: Should MTU be defined per-port? */
_mtu = dpdk_args.cast<size_t>("dpdk_mtu", DEFAULT_FRAME_SIZE);
/* This is per queue */
_num_mbufs = dpdk_args.cast<int>("dpdk_num_mbufs", DEFAULT_NUM_MBUFS);
_mbuf_cache_size =
dpdk_args.cast<int>("dpdk_mbuf_cache_size", DEFAULT_MBUF_CACHE_SIZE);
/* Get device info for all the NIC ports */
int num_dpdk_ports = rte_eth_dev_count_avail();
UHD_ASSERT_THROW(num_dpdk_ports > 0);
device_addrs_t nics(num_dpdk_ports);
RTE_ETH_FOREACH_DEV(i)
{
struct ether_addr mac_addr;
rte_eth_macaddr_get(i, &mac_addr);
nics[i]["dpdk_mac"] = eth_addr_to_string(mac_addr);
}
/* Get user configuration for each NIC port */
device_addrs_t args = separate_device_addr(user_args);
size_t queue_count = 0;
RTE_ETH_FOREACH_DEV(i)
{
auto& nic = nics.at(i);
for (const auto& arg : args) {
/* Match DPDK-discovered NICs and user config via MAC addr */
if (arg.has_key("dpdk_mac") && nic["dpdk_mac"] == arg["dpdk_mac"]) {
/* Copy user args for discovered NICs */
nic.update(arg, false);
break;
}
}
/* Now combine user args with conf file */
auto conf = uhd::prefs::get_dpdk_nic_args(nic);
/* Update config, and remove ports that aren't fully configured */
if (conf.has_key("dpdk_ipv4")) {
nics[i] = conf;
/* Update queue count, to generate a large enough mempool */
queue_count += conf.cast<uint16_t>("dpdk_num_queues", rte_lcore_count());
} else {
nics[i] = device_addr_t();
}
}
RTE_ETH_FOREACH_DEV(i)
{
auto& conf = nics.at(i);
if (conf.has_key("dpdk_ipv4")) {
// Allocating enough buffers for all DMA queues for each CPU socket
// - This is a bit inefficient for larger systems, since NICs may not
// all be on one socket
auto cpu_socket = rte_eth_dev_socket_id(i);
auto rx_pool = _get_rx_pktbuf_pool(cpu_socket, _num_mbufs * queue_count);
auto tx_pool = _get_tx_pktbuf_pool(cpu_socket, _num_mbufs * queue_count);
UHD_LOG_TRACE("DPDK",
"Initializing NIC(" << i << "):" << std::endl
<< conf.to_pp_string());
_ports[i] = dpdk_port::make(i,
_mtu,
conf.cast<uint16_t>("dpdk_num_queues", rte_lcore_count()),
_num_mbufs,
rx_pool,
tx_pool,
conf["dpdk_ipv4"]);
}
}
UHD_LOG_TRACE("DPDK", "Waiting for links to come up...");
rte_delay_ms(1000);
for (auto& port : _ports) {
struct rte_eth_link link;
auto portid = port.second->get_port_id();
rte_eth_link_get(portid, &link);
unsigned int link_status = link.link_status;
unsigned int link_speed = link.link_speed;
UHD_LOGGER_TRACE("DPDK") << boost::format("Port %u UP: %d, %u Mbps\n")
% portid % link_status % link_speed;
}
UHD_LOG_TRACE("DPDK", "Init DONE!");
_init_done = true;
}
}
dpdk_port* dpdk_ctx::get_port(port_id_t port) const
{
assert(is_init_done());
if (_ports.count(port) == 0) {
return nullptr;
}
return _ports.at(port).get();
}
dpdk_port* dpdk_ctx::get_port(struct ether_addr mac_addr) const
{
assert(is_init_done());
for (const auto& port : _ports) {
struct ether_addr port_mac_addr;
rte_eth_macaddr_get(port.first, &port_mac_addr);
for (int j = 0; j < 6; j++) {
if (mac_addr.addr_bytes[j] != port_mac_addr.addr_bytes[j]) {
break;
}
if (j == 5) {
return port.second.get();
}
}
}
return nullptr;
}
int dpdk_ctx::get_port_count(void)
{
assert(is_init_done());
return _ports.size();
}
int dpdk_ctx::get_port_queue_count(port_id_t portid)
{
assert(is_init_done());
return _ports.at(portid)->get_queue_count();
}
int dpdk_ctx::get_port_link_status(port_id_t portid) const
{
struct rte_eth_link link;
rte_eth_link_get_nowait(portid, &link);
return link.link_status;
}
int dpdk_ctx::get_route(const std::string& addr) const
{
const uint32_t dst_ipv4 = (uint32_t)inet_addr(addr.c_str());
for (const auto& port : _ports) {
if (get_port_link_status(port.first) < 1)
continue;
uint32_t src_ipv4 = port.second->get_ipv4();
uint32_t netmask = port.second->get_netmask();
if ((src_ipv4 & netmask) == (dst_ipv4 & netmask)) {
return (int)port.first;
}
}
return -ENODEV;
}
bool dpdk_ctx::is_init_done(void) const
{
return _init_done.load();
}
struct rte_mempool* dpdk_ctx::_get_rx_pktbuf_pool(
unsigned int cpu_socket, size_t num_bufs)
{
if (!_rx_pktbuf_pools.at(cpu_socket)) {
const int mbuf_size = _mtu + RTE_PKTMBUF_HEADROOM;
char name[32];
snprintf(name, sizeof(name), "rx_mbuf_pool_%u", cpu_socket);
_rx_pktbuf_pools[cpu_socket] = rte_pktmbuf_pool_create(
name, num_bufs, _mbuf_cache_size, 0, mbuf_size, SOCKET_ID_ANY);
if (!_rx_pktbuf_pools.at(cpu_socket)) {
UHD_LOG_ERROR("DPDK", "Could not allocate RX pktbuf pool");
throw uhd::runtime_error("DPDK: Could not allocate RX pktbuf pool");
}
}
return _rx_pktbuf_pools.at(cpu_socket);
}
struct rte_mempool* dpdk_ctx::_get_tx_pktbuf_pool(
unsigned int cpu_socket, size_t num_bufs)
{
if (!_tx_pktbuf_pools.at(cpu_socket)) {
const int mbuf_size = _mtu + RTE_PKTMBUF_HEADROOM;
char name[32];
snprintf(name, sizeof(name), "tx_mbuf_pool_%u", cpu_socket);
_tx_pktbuf_pools[cpu_socket] = rte_pktmbuf_pool_create(
name, num_bufs, _mbuf_cache_size, 0, mbuf_size, SOCKET_ID_ANY);
if (!_tx_pktbuf_pools.at(cpu_socket)) {
UHD_LOG_ERROR("DPDK", "Could not allocate TX pktbuf pool");
throw uhd::runtime_error("DPDK: Could not allocate TX pktbuf pool");
}
}
return _tx_pktbuf_pools.at(cpu_socket);
}
}}} // namespace uhd::transport::dpdk
|