aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/simple_device.cpp
blob: 62a38cb798a9e2de32a91cbed3fac88e77ec0d87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
//
// Copyright 2010 Ettus Research LLC
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program.  If not, see <http://www.gnu.org/licenses/>.
//

#include <uhd/simple_device.hpp>
#include <uhd/device.hpp>
#include <uhd/utils.hpp>
#include <uhd/props.hpp>
#include <boost/algorithm/string.hpp>
#include <boost/algorithm/string/trim.hpp>
#include <boost/foreach.hpp>
#include <boost/format.hpp>
#include <stdexcept>

using namespace uhd;

tune_result_t::tune_result_t(void){
    /* NOP */
}

/***********************************************************************
 * Tune Helper Function
 **********************************************************************/
static tune_result_t tune(
    double target_freq,
    double lo_offset,
    wax::obj subdev,
    wax::obj dxc,
    bool is_tx
){
    wax::obj subdev_freq_proxy = subdev[SUBDEV_PROP_FREQ];
    bool subdev_quadrature = subdev[SUBDEV_PROP_QUADRATURE].as<bool>();
    bool subdev_spectrum_inverted = subdev[SUBDEV_PROP_SPECTRUM_INVERTED].as<bool>();
    wax::obj dxc_freq_proxy = dxc[std::string("freq")];
    double dxc_sample_rate = dxc[std::string("rate")].as<double>();

    // Ask the d'board to tune as closely as it can to target_freq+lo_offset
    double target_inter_freq = target_freq + lo_offset;
    subdev_freq_proxy = target_inter_freq;
    double actual_inter_freq = subdev_freq_proxy.as<double>();

    // Calculate the DDC setting that will downconvert the baseband from the
    // daughterboard to our target frequency.
    double delta_freq = target_freq - actual_inter_freq;
    double delta_sign = std::signum(delta_freq);
    delta_freq *= delta_sign;
    delta_freq = fmod(delta_freq, dxc_sample_rate);
    bool inverted = delta_freq > dxc_sample_rate/2.0;
    double target_dxc_freq = inverted? (delta_freq - dxc_sample_rate) : (-delta_freq);
    target_dxc_freq *= delta_sign;

    // If the spectrum is inverted, and the daughterboard doesn't do
    // quadrature downconversion, we can fix the inversion by flipping the
    // sign of the dxc_freq...  (This only happens using the basic_rx board)
    if (subdev_spectrum_inverted){
        inverted = not inverted;
    }
    if (inverted and not subdev_quadrature){
        target_dxc_freq *= -1.0;
        inverted = not inverted;
    }
    // down conversion versus up conversion, fight!
    // your mother is ugly and your going down...
    target_dxc_freq *= (is_tx)? -1.0 : +1.0;

    dxc_freq_proxy = target_dxc_freq;
    double actual_dxc_freq = dxc_freq_proxy.as<double>();

    //return some kind of tune result tuple/struct
    tune_result_t tune_result;
    tune_result.target_inter_freq = target_inter_freq;
    tune_result.actual_inter_freq = actual_inter_freq;
    tune_result.target_dxc_freq = target_dxc_freq;
    tune_result.actual_dxc_freq = actual_dxc_freq;
    tune_result.spectrum_inverted = inverted;
    return tune_result;
}

/***********************************************************************
 * Helper Functions
 **********************************************************************/
static std::string trim(const std::string &in){
    return boost::algorithm::trim_copy(in);
}

device_addr_t args_to_device_addr(const std::string &args){
    device_addr_t addr;

    //split the args at the semi-colons
    std::vector<std::string> pairs;
    boost::split(pairs, args, boost::is_any_of(";"));
    BOOST_FOREACH(std::string pair, pairs){
        if (trim(pair) == "") continue;

        //split the key value pairs at the equals
        std::vector<std::string> key_val;
        boost::split(key_val, pair, boost::is_any_of("="));
        if (key_val.size() != 2) throw std::runtime_error("invalid args string: "+args);
        addr[trim(key_val[0])] = trim(key_val[1]);
    }

    return addr;
}

static std::vector<double> get_xx_rates(wax::obj decerps, wax::obj rate){
    std::vector<double> rates;
    BOOST_FOREACH(size_t decerp, decerps.as<std::vector<size_t> >()){
        rates.push_back(rate.as<double>()/decerp);
    }
    return rates;
}

/***********************************************************************
 * Simple Device Implementation
 **********************************************************************/
class simple_device_impl : public simple_device{
public:
    simple_device_impl(const device_addr_t &addr){
        _dev = device::make(addr);
        _mboard = (*_dev)[DEVICE_PROP_MBOARD];
        _rx_ddc = _mboard[named_prop_t(MBOARD_PROP_RX_DSP, "ddc0")];
        _tx_duc = _mboard[named_prop_t(MBOARD_PROP_TX_DSP, "duc0")];
        _rx_subdev = _mboard[MBOARD_PROP_RX_DBOARD][DBOARD_PROP_SUBDEV];
        _tx_subdev = _mboard[MBOARD_PROP_TX_DBOARD][DBOARD_PROP_SUBDEV];
    }

    ~simple_device_impl(void){
        /* NOP */
    }

    device::sptr get_device(void){
        return _dev;
    }

    std::string get_name(void){
        return _mboard[MBOARD_PROP_NAME].as<std::string>();
    }

    /*******************************************************************
     * Streaming
     ******************************************************************/
    void set_streaming(bool enb){
        _rx_ddc[std::string("enabled")] = enb;
    }

    bool get_streaming(void){
        return _rx_ddc[std::string("enabled")].as<bool>();
    }

    /*******************************************************************
     * RX methods
     ******************************************************************/
    void set_rx_rate(double rate){
        double samp_rate = _rx_ddc[std::string("rate")].as<double>();
        assert_has(get_rx_rates(), rate, "simple device rx rate");
        _rx_ddc[std::string("decim")] = size_t(samp_rate/rate);
    }

    double get_rx_rate(void){
        double samp_rate = _rx_ddc[std::string("rate")].as<double>();
        size_t decim = _rx_ddc[std::string("decim")].as<size_t>();
        return samp_rate/decim;
    }

    std::vector<double> get_rx_rates(void){
        return get_xx_rates(_rx_ddc[std::string("decims")], _rx_ddc[std::string("rate")]);
    }

    tune_result_t set_rx_freq(double target_freq){
        double lo_offset = 0.0;
        //if the local oscillator will be in the passband, use an offset
        if (_rx_subdev[SUBDEV_PROP_LO_INTERFERES].as<bool>()){
            lo_offset = get_rx_rate()*2.0;
        }
        return tune(target_freq, lo_offset, _rx_subdev, _rx_ddc, false/* not tx */);
    }

    std::vector<double> get_rx_freq_range(void){
        std::vector<double> range(2);
        boost::tie(range[0], range[1]) = \
            _rx_subdev[SUBDEV_PROP_FREQ_RANGE].as<freq_range_t>();
        return range;
    }

    void set_rx_gain(float gain){
        _rx_subdev[SUBDEV_PROP_GAIN] = gain;
    }

    float get_rx_gain(void){
        return _rx_subdev[SUBDEV_PROP_GAIN].as<gain_t>();
    }

    std::vector<float> get_rx_gain_range(void){
        std::vector<float> range(3);
        boost::tie(range[0], range[1], range[2]) = \
            _rx_subdev[SUBDEV_PROP_GAIN_RANGE].as<gain_range_t>();
        return range;
    }

    void set_rx_antenna(const std::string &ant){
        _rx_subdev[SUBDEV_PROP_ANTENNA] = ant;
    }

    std::string get_rx_antenna(void){
        return _rx_subdev[SUBDEV_PROP_ANTENNA].as<std::string>();
    }

    std::vector<std::string> get_rx_antennas(void){
        return _rx_subdev[SUBDEV_PROP_ANTENNA_NAMES].as<std::vector<std::string> >();
    }

    /*******************************************************************
     * TX methods
     ******************************************************************/
    void set_tx_rate(double rate){
        double samp_rate = _tx_duc[std::string("rate")].as<double>();
        assert_has(get_tx_rates(), rate, "simple device tx rate");
        _tx_duc[std::string("interp")] = size_t(samp_rate/rate);
    }

    double get_tx_rate(void){
        double samp_rate = _tx_duc[std::string("rate")].as<double>();
        size_t interp = _tx_duc[std::string("interp")].as<size_t>();
        return samp_rate/interp;
    }

    std::vector<double> get_tx_rates(void){
        return get_xx_rates(_tx_duc[std::string("interps")], _tx_duc[std::string("rate")]);
    }

    tune_result_t set_tx_freq(double target_freq){
        double lo_offset = 0.0;
        //if the local oscillator will be in the passband, use an offset
        if (_tx_subdev[SUBDEV_PROP_LO_INTERFERES].as<bool>()){
            lo_offset = get_tx_rate()*2.0;
        }
        return tune(target_freq, lo_offset, _tx_subdev, _tx_duc, true/* is tx */);
    }

    std::vector<double> get_tx_freq_range(void){
        std::vector<double> range(2);
        boost::tie(range[0], range[1]) = \
            _tx_subdev[SUBDEV_PROP_FREQ_RANGE].as<freq_range_t>();
        return range;
    }

    void set_tx_gain(float gain){
        _tx_subdev[SUBDEV_PROP_GAIN] = gain;
    }

    float get_tx_gain(void){
        return _tx_subdev[SUBDEV_PROP_GAIN].as<gain_t>();
    }

    std::vector<float> get_tx_gain_range(void){
        std::vector<float> range(3);
        boost::tie(range[0], range[1], range[2]) = \
            _tx_subdev[SUBDEV_PROP_GAIN_RANGE].as<gain_range_t>();
        return range;
    }

    void set_tx_antenna(const std::string &ant){
        _tx_subdev[SUBDEV_PROP_ANTENNA] = ant;
    }

    std::string get_tx_antenna(void){
        return _tx_subdev[SUBDEV_PROP_ANTENNA].as<std::string>();
    }

    std::vector<std::string> get_tx_antennas(void){
        return _tx_subdev[SUBDEV_PROP_ANTENNA_NAMES].as<std::vector<std::string> >();
    }

private:
    device::sptr _dev;
    wax::obj _mboard;
    wax::obj _rx_ddc;
    wax::obj _tx_duc;
    wax::obj _rx_subdev;
    wax::obj _tx_subdev;
};

/***********************************************************************
 * The Make Function
 **********************************************************************/
simple_device::sptr simple_device::make(const std::string &args){
    return sptr(new simple_device_impl(args_to_device_addr(args)));
}