1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
|
//
// Copyright 2020 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/convert.hpp>
#include <uhd/exception.hpp>
#include <uhd/rfnoc/defaults.hpp>
#include <uhd/rfnoc/multichan_register_iface.hpp>
#include <uhd/rfnoc/property.hpp>
#include <uhd/rfnoc/registry.hpp>
#include <uhd/rfnoc/siggen_block_control.hpp>
#include <uhd/utils/math.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <limits>
#include <string>
using namespace uhd::rfnoc;
// Register offsets
const uint32_t siggen_block_control::REG_BLOCK_SIZE = 1 << 5;
const uint32_t siggen_block_control::REG_ENABLE_OFFSET = 0x00;
const uint32_t siggen_block_control::REG_SPP_OFFSET = 0x04;
const uint32_t siggen_block_control::REG_WAVEFORM_OFFSET = 0x08;
const uint32_t siggen_block_control::REG_GAIN_OFFSET = 0x0C;
const uint32_t siggen_block_control::REG_CONSTANT_OFFSET = 0x10;
const uint32_t siggen_block_control::REG_PHASE_INC_OFFSET = 0x14;
const uint32_t siggen_block_control::REG_CARTESIAN_OFFSET = 0x18;
// User property names
const char* const PROP_KEY_ENABLE = "enable";
const char* const PROP_KEY_WAVEFORM = "waveform";
const char* const PROP_KEY_AMPLITUDE = "amplitude";
const char* const PROP_KEY_CONSTANT_I = "constant_i";
const char* const PROP_KEY_CONSTANT_Q = "constant_q";
const char* const PROP_KEY_SINE_PHASE_INC = "sine_phase_increment";
namespace {
template <class T>
const T clamp(const double v)
{
constexpr T min_t = std::numeric_limits<T>::min();
constexpr T max_t = std::numeric_limits<T>::max();
return (v < min_t) ? min_t : (v > max_t) ? max_t : T(v);
}
} // namespace
class siggen_block_control_impl : public siggen_block_control
{
public:
RFNOC_BLOCK_CONSTRUCTOR(siggen_block_control),
_siggen_reg_iface(*this, 0, REG_BLOCK_SIZE)
{
_register_props();
}
void set_enable(const bool enable, const size_t port)
{
set_property<bool>(PROP_KEY_ENABLE, enable, port);
}
bool get_enable(const size_t port) const
{
return _prop_enable.at(port).get();
}
void set_waveform(const siggen_waveform waveform, const size_t port)
{
set_property<int>(PROP_KEY_WAVEFORM, static_cast<int>(waveform), port);
}
siggen_waveform get_waveform(const size_t port) const
{
return static_cast<siggen_waveform>(_prop_waveform.at(port).get());
}
void set_amplitude(const double amplitude, const size_t port)
{
set_property<double>(PROP_KEY_AMPLITUDE, amplitude, port);
}
double get_amplitude(const size_t port) const
{
return _prop_amplitude.at(port).get();
}
void set_constant(const std::complex<double> constant, const size_t port)
{
set_property<double>(PROP_KEY_CONSTANT_I, constant.real(), port);
set_property<double>(PROP_KEY_CONSTANT_Q, constant.imag(), port);
}
std::complex<double> get_constant(const size_t port) const
{
return std::complex<double>(
_prop_constant_i.at(port).get(), _prop_constant_q.at(port).get());
}
void set_sine_phase_increment(const double phase_inc, const size_t port)
{
set_property<double>(PROP_KEY_SINE_PHASE_INC, phase_inc, port);
}
double get_sine_phase_increment(const size_t port) const
{
return _prop_phase_inc.at(port).get();
}
void set_samples_per_packet(const size_t spp, const size_t port)
{
set_property<int>(PROP_KEY_SPP, uhd::narrow_cast<int>(spp), port);
}
size_t get_samples_per_packet(const size_t port) const
{
return _prop_spp.at(port).get();
}
/**************************************************************************
* Initialization
*************************************************************************/
private:
void _register_props()
{
const size_t num_outputs = get_num_output_ports();
_prop_enable.reserve(num_outputs);
_prop_waveform.reserve(num_outputs);
_prop_amplitude.reserve(num_outputs);
_prop_constant_i.reserve(num_outputs);
_prop_constant_q.reserve(num_outputs);
_prop_phase_inc.reserve(num_outputs);
_prop_spp.reserve(num_outputs);
_prop_type_out.reserve(num_outputs);
for (size_t port = 0; port < num_outputs; port++) {
// register edge properties
_prop_type_out.emplace_back(property_t<std::string>{
PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::OUTPUT_EDGE, port}});
register_property(&_prop_type_out.back());
// register user properties
_prop_enable.emplace_back(
property_t<bool>{PROP_KEY_ENABLE, false, {res_source_info::USER, port}});
_prop_waveform.emplace_back(property_t<int>{PROP_KEY_WAVEFORM,
static_cast<int>(siggen_waveform::CONSTANT),
{res_source_info::USER, port}});
_prop_amplitude.emplace_back(property_t<double>{
PROP_KEY_AMPLITUDE, 1.0, {res_source_info::USER, port}});
_prop_constant_i.emplace_back(property_t<double>{
PROP_KEY_CONSTANT_I, 1.0, {res_source_info::USER, port}});
_prop_constant_q.emplace_back(property_t<double>{
PROP_KEY_CONSTANT_Q, 1.0, {res_source_info::USER, port}});
_prop_phase_inc.emplace_back(property_t<double>{
PROP_KEY_SINE_PHASE_INC, 1.0, {res_source_info::USER, port}});
_prop_spp.emplace_back(property_t<int>{
PROP_KEY_SPP, DEFAULT_SPP, {res_source_info::USER, port}});
register_property(&_prop_enable.back(), [this, port]() {
_siggen_reg_iface.poke32(REG_ENABLE_OFFSET,
uint32_t(_prop_enable.at(port).get() ? 1 : 0),
port);
});
register_property(&_prop_waveform.back());
register_property(&_prop_amplitude.back());
register_property(&_prop_constant_i.back(), [this, port]() {
const double constant_i = _prop_constant_i.at(port).get();
if (constant_i < -1.0 || constant_i > 1.0) {
throw uhd::value_error("Constant real value must be in [-1.0, 1.0]");
}
_set_constant_register(port);
});
register_property(&_prop_constant_q.back(), [this, port]() {
const double constant_q = _prop_constant_q.at(port).get();
if (constant_q < -1.0 || constant_q > 1.0) {
throw uhd::value_error(
"Constant imaginary value must be in [-1.0, 1.0]");
}
_set_constant_register(port);
});
register_property(&_prop_phase_inc.back(), [this, port]() {
const double phase_inc = _prop_phase_inc.at(port).get();
if (phase_inc < (-uhd::math::PI) || phase_inc > (uhd::math::PI)) {
throw uhd::value_error(
"Phase increment value must be in [-pi, pi]");
}
const int16_t phase_inc_scaled_rads_fp =
clamp<int16_t>((phase_inc / uhd::math::PI) * 8192.0);
_siggen_reg_iface.poke32(
REG_PHASE_INC_OFFSET, phase_inc_scaled_rads_fp & 0xffff, port);
});
register_property(&_prop_spp.back(), [this, port]() {
const uint32_t spp = _prop_spp.at(port).get();
RFNOC_LOG_TRACE(
"Setting samples per packet to " << spp << " on port " << port);
_siggen_reg_iface.poke32(REG_SPP_OFFSET, spp, port);
});
add_property_resolver({&_prop_waveform.back(), &_prop_amplitude.back()},
{&_prop_amplitude.back()},
[this, port]() {
// Range check the waveform and amplitude properties.
// If either are out of range, throw an exception and
// do not set any registers.
const int waveform_val = _prop_waveform.at(port).get();
const int low_limit = static_cast<int>(siggen_waveform::CONSTANT);
const int high_limit = static_cast<int>(siggen_waveform::NOISE);
if (waveform_val < low_limit || waveform_val > high_limit) {
throw uhd::value_error("Waveform value must be in ["
+ std::to_string(low_limit) + ", "
+ std::to_string(high_limit) + "]");
}
const double amplitude = _prop_amplitude.at(port).get();
if (amplitude < 0.0 || amplitude > 1.0) {
throw uhd::value_error("Amplitude value must be in [0.0, 1.0]");
}
// Set the waveform register appropriately.
_siggen_reg_iface.poke32(REG_WAVEFORM_OFFSET, waveform_val, port);
// Now set the other registers based on the waveform and
// the desired amplitude.
siggen_waveform waveform = static_cast<siggen_waveform>(waveform_val);
switch (waveform) {
case siggen_waveform::CONSTANT:
// The amplitude is fixed at 1 in constant mode.
_prop_amplitude.at(port).set(1.0);
_set_gain_register(1.0, port);
break;
case siggen_waveform::SINE_WAVE: {
// Set the phasor to the appropriate amplitude value and
// fix the gain to 1.
// The CORDIC IP scales the value written to the Cartesian
// coordinate register (i.e., the phasor that is rotated to
// generate the sinusoid) by this value, so we pre-scale the
// input value before writing. See the comment in the
// rfnoc_block_siggen_regs.vh header file for the derivation
// of this value.
constexpr double cordic_scale_value = 1.164435344782938;
_set_cartesian_register(amplitude / cordic_scale_value, port);
_set_gain_register(1.0, port);
break;
}
case siggen_waveform::NOISE:
// Use the gain register to set the gain of the random noise
// signal.
_set_gain_register(amplitude, port);
break;
}
});
add_property_resolver(
{&_prop_spp.back(),
get_mtu_prop_ref({res_source_info::OUTPUT_EDGE, port})},
{&_prop_spp.back()},
[this, port]() {
// MTU is max payload size, header with timestamp is already
// accounted for
int spp = _prop_spp.at(port).get();
const int mtu =
static_cast<int>(get_mtu({res_source_info::OUTPUT_EDGE, port}));
const int mtu_samps =
mtu
/ uhd::convert::get_bytes_per_item(_prop_type_out.at(port).get());
if (spp > mtu_samps) {
RFNOC_LOG_WARNING("spp value " << spp << " exceeds MTU of " << mtu
<< "! Coercing to " << mtu_samps);
spp = mtu_samps;
}
if (spp <= 0) {
spp = DEFAULT_SPP;
RFNOC_LOG_WARNING(
"spp must be greater than zero! Coercing to " << spp);
}
_prop_spp.at(port).set(spp);
});
// add resolver for type
add_property_resolver({&_prop_type_out.back()},
{&_prop_type_out.back()},
[this, port]() { _prop_type_out.at(port).set(IO_TYPE_SC16); });
}
}
void _set_constant_register(const size_t port)
{
const int16_t constant_i_fp =
clamp<int16_t>(_prop_constant_i.at(port).get() * 32768.0);
const int16_t constant_q_fp =
clamp<int16_t>(_prop_constant_q.at(port).get() * 32768.0);
const uint32_t constant_reg_value = (uint32_t(constant_i_fp) << 16)
| (uint32_t(constant_q_fp) & 0xffff);
_siggen_reg_iface.poke32(REG_CONSTANT_OFFSET, constant_reg_value, port);
}
void _set_gain_register(const double gain, const size_t port)
{
const int16_t gain_fp = clamp<int16_t>(gain * 32768.0);
_siggen_reg_iface.poke32(REG_GAIN_OFFSET, gain_fp, port);
}
void _set_cartesian_register(const double amplitude, const size_t port)
{
// The rotator that rotates the phasor to generate the sinusoidal
// data has an initial phase offset which is impossible to predict.
// Thus, the Cartesian parameter is largely immaterial, as long as
// the phasor's amplitude matchines with the client has specified.
// For simplicity, the Cartesian parameter is chosen to have a real
// (X) component of 0.0 and an imaginary (Y) component of the desired
// amplitude.
const int16_t cartesian_i_fp = clamp<int16_t>(amplitude * 32767.0);
// Bits 31:16 represent the imaginary component (the pre-scaled
// fixed point amplitude), while bits 15:0 represents the real
// component (which are zeroed).
const uint32_t cartesian_reg_value = (uint32_t(cartesian_i_fp) << 16);
_siggen_reg_iface.poke32(REG_CARTESIAN_OFFSET, cartesian_reg_value, port);
}
/**************************************************************************
* Attributes
*************************************************************************/
std::vector<property_t<bool>> _prop_enable;
std::vector<property_t<int>> _prop_waveform;
std::vector<property_t<double>> _prop_amplitude;
std::vector<property_t<double>> _prop_constant_i;
std::vector<property_t<double>> _prop_constant_q;
std::vector<property_t<double>> _prop_phase_inc;
std::vector<property_t<int>> _prop_spp;
std::vector<property_t<std::string>> _prop_type_out;
/**************************************************************************
* Register interface
*************************************************************************/
multichan_register_iface _siggen_reg_iface;
};
UHD_RFNOC_BLOCK_REGISTER_DIRECT(
siggen_block_control, SIGGEN_BLOCK, "SigGen", CLOCK_KEY_GRAPH, "bus_clk")
|