1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/rfnoc/defaults.hpp>
#include <uhdlib/rfnoc/node_accessor.hpp>
#include <uhdlib/rfnoc/rfnoc_rx_streamer.hpp>
#include <atomic>
#include <thread>
using namespace std::chrono_literals;
;
using namespace uhd;
using namespace uhd::rfnoc;
const std::string STREAMER_ID = "RxStreamer";
static std::atomic<uint64_t> streamer_inst_ctr;
rfnoc_rx_streamer::rfnoc_rx_streamer(const size_t num_chans,
const uhd::stream_args_t stream_args,
disconnect_fn_t disconnect_cb)
: rx_streamer_impl<chdr_rx_data_xport>(num_chans, stream_args)
, _unique_id(STREAMER_ID + "#" + std::to_string(streamer_inst_ctr++))
, _stream_args(stream_args)
, _disconnect_cb(disconnect_cb)
{
set_overrun_handler([this]() { this->_handle_overrun(); });
// No block to which to forward properties or actions
set_prop_forwarding_policy(forwarding_policy_t::DROP);
set_action_forwarding_policy(forwarding_policy_t::DROP);
register_action_handler(ACTION_KEY_RX_EVENT,
[this](const res_source_info& src, action_info::sptr action) {
rx_event_action_info::sptr rx_event_action =
std::dynamic_pointer_cast<rx_event_action_info>(action);
if (!rx_event_action) {
RFNOC_LOG_WARNING("Received invalid RX event action!");
return;
}
_handle_rx_event_action(src, rx_event_action);
});
register_action_handler(ACTION_KEY_STREAM_CMD,
[this](const res_source_info& src, action_info::sptr action) {
stream_cmd_action_info::sptr stream_cmd_action =
std::dynamic_pointer_cast<stream_cmd_action_info>(action);
if (!stream_cmd_action) {
RFNOC_LOG_WARNING("Received invalid stream command action!");
return;
}
_handle_stream_cmd_action(src, stream_cmd_action);
});
// Initialize properties
_scaling_in.reserve(num_chans);
_samp_rate_in.reserve(num_chans);
_tick_rate_in.reserve(num_chans);
_type_in.reserve(num_chans);
_mtu_in.reserve(num_chans);
_atomic_item_size_in.reserve(num_chans);
for (size_t i = 0; i < num_chans; i++) {
_register_props(i, stream_args.otw_format);
}
for (size_t i = 0; i < num_chans; i++) {
prop_ptrs_t mtu_resolver_out;
for (auto& mtu_prop : _mtu_in) {
mtu_resolver_out.insert(&mtu_prop);
}
add_property_resolver({&_mtu_in[i]},
std::move(mtu_resolver_out),
[&mtu_in = _mtu_in[i], i, this]() {
const auto UHD_UNUSED(ii) = i;
RFNOC_LOG_TRACE("Calling resolver for `mtu_in'@" << i);
if (mtu_in.is_valid()) {
const size_t mtu =
std::min(mtu_in.get(), rx_streamer_impl::get_mtu());
// Set the same MTU value for all chans
for (auto& prop : this->_mtu_in) {
prop.set(mtu);
}
if (mtu < rx_streamer_impl::get_mtu()) {
rx_streamer_impl::set_mtu(mtu);
}
}
});
}
node_accessor_t node_accessor{};
node_accessor.init_props(this);
}
rfnoc_rx_streamer::~rfnoc_rx_streamer()
{
if (_disconnect_cb) {
_disconnect_cb(_unique_id);
}
}
std::string rfnoc_rx_streamer::get_unique_id() const
{
return _unique_id;
}
size_t rfnoc_rx_streamer::get_num_input_ports() const
{
return get_num_channels();
}
size_t rfnoc_rx_streamer::get_num_output_ports() const
{
return 0;
}
void rfnoc_rx_streamer::issue_stream_cmd(const stream_cmd_t& stream_cmd)
{
if (get_num_channels() > 1 and stream_cmd.stream_now
and stream_cmd.stream_mode != stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS) {
throw uhd::runtime_error(
"Invalid recv stream command - stream now on multiple channels in a "
"single streamer will fail to time align.");
}
auto cmd = stream_cmd_action_info::make(stream_cmd.stream_mode);
cmd->stream_cmd = stream_cmd;
for (size_t i = 0; i < get_num_channels(); i++) {
const res_source_info info(res_source_info::INPUT_EDGE, i);
post_action(info, cmd);
}
}
const uhd::stream_args_t& rfnoc_rx_streamer::get_stream_args() const
{
return _stream_args;
}
bool rfnoc_rx_streamer::check_topology(const std::vector<size_t>& connected_inputs,
const std::vector<size_t>& connected_outputs)
{
// Check that all channels are connected
if (connected_inputs.size() != get_num_input_ports()) {
return false;
}
// Call base class to check that connections are valid
return node_t::check_topology(connected_inputs, connected_outputs);
}
void rfnoc_rx_streamer::_handle_overrun()
{
if (_overrun_handling_mode) {
RFNOC_LOG_TRACE("Requesting restart from overrun-reporting node...");
post_action({res_source_info::INPUT_EDGE, _overrun_channel},
action_info::make(ACTION_KEY_RX_RESTART_REQ));
}
}
void rfnoc_rx_streamer::connect_channel(
const size_t channel, chdr_rx_data_xport::uptr xport)
{
UHD_ASSERT_THROW(channel < _mtu_in.size());
// Stash away the MTU before we lose access to xports
const size_t mtu = xport->get_mtu();
rx_streamer_impl<chdr_rx_data_xport>::connect_channel(channel, std::move(xport));
// Update MTU property based on xport limits. We need to do this after
// connect_channel(), because that's where the chdr_rx_data_xport object
// learns its header size.
set_property<size_t>(PROP_KEY_MTU, mtu, {res_source_info::INPUT_EDGE, channel});
}
void rfnoc_rx_streamer::_register_props(const size_t chan, const std::string& otw_format)
{
// Create actual properties and store them
_scaling_in.push_back(
property_t<double>(PROP_KEY_SCALING, {res_source_info::INPUT_EDGE, chan}));
_samp_rate_in.push_back(
property_t<double>(PROP_KEY_SAMP_RATE, {res_source_info::INPUT_EDGE, chan}));
_tick_rate_in.push_back(
property_t<double>(PROP_KEY_TICK_RATE, {res_source_info::INPUT_EDGE, chan}));
_type_in.emplace_back(property_t<std::string>(
PROP_KEY_TYPE, otw_format, {res_source_info::INPUT_EDGE, chan}));
_mtu_in.emplace_back(
property_t<size_t>(PROP_KEY_MTU, get_mtu(), {res_source_info::INPUT_EDGE, chan}));
_atomic_item_size_in.emplace_back(
property_t<size_t>(PROP_KEY_ATOMIC_ITEM_SIZE, 1, {res_source_info::INPUT_EDGE, chan}));
// Give us some shorthands for the rest of this function
property_t<double>* scaling_in = &_scaling_in.back();
property_t<double>* samp_rate_in = &_samp_rate_in.back();
property_t<double>* tick_rate_in = &_tick_rate_in.back();
property_t<std::string>* type_in = &_type_in.back();
property_t<size_t>* mtu_in = &_mtu_in.back();
property_t<size_t>* atomic_item_size_in = &_atomic_item_size_in.back();
// Register them
register_property(scaling_in);
register_property(samp_rate_in);
register_property(tick_rate_in);
register_property(type_in);
register_property(mtu_in);
register_property(atomic_item_size_in);
// Add resolvers
add_property_resolver({scaling_in}, {}, [& scaling_in = *scaling_in, chan, this]() {
RFNOC_LOG_TRACE("Calling resolver for `scaling_in'@" << chan);
if (scaling_in.is_valid()) {
this->set_scale_factor(chan, scaling_in.get() / 32767.0);
}
});
add_property_resolver(
{samp_rate_in}, {}, [&samp_rate_in = *samp_rate_in, chan, this]() {
const auto UHD_UNUSED(log_chan) = chan;
RFNOC_LOG_TRACE("Calling resolver for `samp_rate_in'@" << chan);
if (samp_rate_in.is_valid()) {
this->set_samp_rate(samp_rate_in.get());
}
});
add_property_resolver(
{tick_rate_in}, {}, [&tick_rate_in = *tick_rate_in, chan, this]() {
const auto UHD_UNUSED(log_chan) = chan;
RFNOC_LOG_TRACE("Calling resolver for `tick_rate_in'@" << chan);
if (tick_rate_in.is_valid()) {
this->set_tick_rate(tick_rate_in.get());
}
});
add_property_resolver(
{atomic_item_size_in, mtu_in}, {}, [&ais = *atomic_item_size_in, chan, this]() {
const auto UHD_UNUSED(log_chan) = chan;
RFNOC_LOG_TRACE("Calling resolver for `atomic_item_size'@" << chan);
if (ais.is_valid()) {
const auto spp = this->rx_streamer_impl::get_max_num_samps();
if (spp < ais.get()) {
throw uhd::value_error("samples per package must not be smaller than atomic item size");
}
const auto misalignment = spp % ais.get();
RFNOC_LOG_TRACE("Check atomic item size " << ais.get() << " divides spp " << spp);
if (misalignment > 0) {
RFNOC_LOG_TRACE("Reduce spp by " << misalignment << " to align with atomic item size");
this->rx_streamer_impl::set_max_num_samps(spp - misalignment);
}
}
});
}
void rfnoc_rx_streamer::_handle_rx_event_action(
const res_source_info& src, rx_event_action_info::sptr rx_event_action)
{
UHD_ASSERT_THROW(src.type == res_source_info::INPUT_EDGE);
if (rx_event_action->error_code == uhd::rx_metadata_t::ERROR_CODE_OVERFLOW) {
RFNOC_LOG_DEBUG("Received overrun message on port " << src.instance);
if (_overrun_handling_mode.exchange(true)) {
RFNOC_LOG_TRACE("Ignoring duplicate overrun message.");
return;
}
_overrun_channel = src.instance;
RFNOC_LOG_TRACE(
"Switching to overrun-handling mode: Stopping all upstream producers...");
auto stop_action =
stream_cmd_action_info::make(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
// Reminder: Delivery of all of these actions is deferred until this
// action handler is complete.
for (size_t i = 0; i < get_num_input_ports(); ++i) {
post_action({res_source_info::INPUT_EDGE, i}, stop_action);
}
if (!rx_event_action->args.cast<bool>("cont_mode", false)) {
// If we don't need to restart, that's all we need to do. Clear this
// flag before setting the stopped due to overrun status below to
// avoid a potential race condition with the overrun handler.
_overrun_handling_mode = false;
}
// Tell the streamer to flag an overrun to the user after the data that
// was buffered prior to the overrun is read.
set_stopped_due_to_overrun();
} else if (rx_event_action->error_code
== uhd::rx_metadata_t::ERROR_CODE_LATE_COMMAND) {
RFNOC_LOG_DEBUG("Received late command message on port " << src.instance);
set_stopped_due_to_late_command();
}
}
void rfnoc_rx_streamer::_handle_stream_cmd_action(
const res_source_info& src, stream_cmd_action_info::sptr stream_cmd_action)
{
RFNOC_LOG_TRACE("Received stream command on " << src.to_string());
UHD_ASSERT_THROW(src.type == res_source_info::INPUT_EDGE);
auto start_action =
stream_cmd_action_info::make(stream_cmd_action->stream_cmd.stream_mode);
start_action->stream_cmd = stream_cmd_action->stream_cmd;
for (size_t i = 0; i < get_num_input_ports(); ++i) {
post_action({res_source_info::INPUT_EDGE, i}, start_action);
}
if (_overrun_handling_mode.exchange(false)) {
RFNOC_LOG_TRACE("Leaving overrun handling mode.");
}
}
|