1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/exception.hpp>
#include <uhd/rfnoc/mb_controller.hpp>
#include <uhd/utils/log.hpp>
#include <uhdlib/rfnoc/radio_control_impl.hpp>
#include <uhdlib/utils/compat_check.hpp>
#include <map>
#include <tuple>
using namespace uhd::rfnoc;
namespace {
inline uint32_t get_addr(const uint32_t base_addr, const size_t chan)
{
return radio_control_impl::regmap::RADIO_BASE_ADDR + base_addr
+ radio_control_impl::regmap::REG_CHAN_OFFSET * chan;
}
const std::string DEFAULT_GAIN_PROFILE("default");
} // namespace
const std::string radio_control::ALL_LOS = "all";
const std::string radio_control::ALL_GAINS = "";
const size_t radio_control::ALL_CHANS = size_t(~0);
const uint16_t radio_control_impl::MAJOR_COMPAT = 0;
const uint16_t radio_control_impl::MINOR_COMPAT = 0;
const uint32_t radio_control_impl::regmap::REG_COMPAT_NUM;
const uint32_t radio_control_impl::regmap::REG_RADIO_WIDTH;
const uint32_t radio_control_impl::regmap::RADIO_BASE_ADDR;
const uint32_t radio_control_impl::regmap::REG_CHAN_OFFSET;
const uint32_t radio_control_impl::regmap::RADIO_ADDR_W;
const uint32_t radio_control_impl::regmap::REG_LOOPBACK_EN;
const uint32_t radio_control_impl::regmap::REG_RX_STATUS;
const uint32_t radio_control_impl::regmap::REG_RX_CMD;
const uint32_t radio_control_impl::regmap::REG_RX_CMD_NUM_WORDS_LO;
const uint32_t radio_control_impl::regmap::REG_RX_CMD_NUM_WORDS_HI;
const uint32_t radio_control_impl::regmap::REG_RX_CMD_TIME_LO;
const uint32_t radio_control_impl::regmap::REG_RX_CMD_TIME_HI;
const uint32_t radio_control_impl::regmap::REG_RX_MAX_WORDS_PER_PKT;
const uint32_t radio_control_impl::regmap::REG_RX_ERR_PORT;
const uint32_t radio_control_impl::regmap::REG_RX_ERR_REM_PORT;
const uint32_t radio_control_impl::regmap::REG_RX_ERR_REM_EPID;
const uint32_t radio_control_impl::regmap::REG_RX_ERR_ADDR;
const uint32_t radio_control_impl::regmap::REG_TX_IDLE_VALUE;
const uint32_t radio_control_impl::regmap::REG_TX_ERROR_POLICY;
const uint32_t radio_control_impl::regmap::REG_TX_ERR_PORT;
const uint32_t radio_control_impl::regmap::REG_TX_ERR_REM_PORT;
const uint32_t radio_control_impl::regmap::REG_TX_ERR_REM_EPID;
const uint32_t radio_control_impl::regmap::REG_TX_ERR_ADDR;
const uint32_t radio_control_impl::regmap::RX_CMD_STOP;
const uint32_t radio_control_impl::regmap::RX_CMD_FINITE;
const uint32_t radio_control_impl::regmap::RX_CMD_CONTINUOUS;
const uint32_t radio_control_impl::regmap::RX_CMD_TIMED_POS;
const uhd::fs_path radio_control_impl::DB_PATH("dboard");
const uhd::fs_path radio_control_impl::FE_PATH("frontends");
static constexpr double OVERRUN_RESTART_DELAY = 0.05;
/****************************************************************************
* Structors
***************************************************************************/
radio_control_impl::radio_control_impl(make_args_ptr make_args)
: radio_control(std::move(make_args))
, _fpga_compat(regs().peek32(regmap::REG_COMPAT_NUM))
, _radio_width(regs().peek32(regmap::REG_RADIO_WIDTH))
, _samp_width(_radio_width >> 16)
, _spc(_radio_width & 0xFFFF)
, _last_stream_cmd(
get_num_output_ports(), uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS)
{
uhd::assert_fpga_compat(MAJOR_COMPAT,
MINOR_COMPAT,
_fpga_compat,
get_unique_id(),
get_unique_id(),
false /* Let it slide if minors mismatch */
);
RFNOC_LOG_TRACE(
"Loading radio with SPC=" << _spc << ", num_inputs=" << get_num_input_ports()
<< ", num_outputs=" << get_num_output_ports());
set_prop_forwarding_policy(forwarding_policy_t::DROP);
set_action_forwarding_policy(forwarding_policy_t::DROP);
register_action_handler(ACTION_KEY_STREAM_CMD,
[this](const res_source_info& src, action_info::sptr action) {
stream_cmd_action_info::sptr stream_cmd_action =
std::dynamic_pointer_cast<stream_cmd_action_info>(action);
if (!stream_cmd_action) {
RFNOC_LOG_WARNING("Received invalid stream command action!");
return;
}
RFNOC_LOG_TRACE(
"Received stream command: " << stream_cmd_action->stream_cmd.stream_mode
<< " to " << src.to_string());
if (src.type != res_source_info::OUTPUT_EDGE) {
RFNOC_LOG_WARNING(
"Received stream command, but not to output port! Ignoring.");
return;
}
const size_t port = src.instance;
if (port > get_num_output_ports()) {
RFNOC_LOG_WARNING("Received stream command to invalid output port!");
return;
}
issue_stream_cmd(stream_cmd_action->stream_cmd, port);
});
register_action_handler(ACTION_KEY_RX_RESTART_REQ,
[this](const res_source_info& src, action_info::sptr /*action*/) {
RFNOC_LOG_TRACE("Received restart request command to " << src.to_string());
if (src.type != res_source_info::OUTPUT_EDGE) {
RFNOC_LOG_WARNING(
"Received stream command, but not to output port! Ignoring.");
return;
}
auto stream_cmd_action = stream_cmd_action_info::make(
uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
stream_cmd_action->stream_cmd.stream_now = false;
stream_cmd_action->stream_cmd.time_spec =
get_mb_controller()->get_timekeeper(0)->get_time_now()
+ uhd::time_spec_t(OVERRUN_RESTART_DELAY);
const size_t port = src.instance;
if (port > get_num_output_ports()) {
RFNOC_LOG_WARNING("Received stream command to invalid output port!");
return;
}
post_action({res_source_info::OUTPUT_EDGE, port}, stream_cmd_action);
});
// Register spp properties and resolvers
_spp_prop.reserve(get_num_output_ports());
_samp_rate_in.reserve(get_num_input_ports());
_samp_rate_out.reserve(get_num_output_ports());
_type_in.reserve(get_num_input_ports());
_type_out.reserve(get_num_output_ports());
for (size_t chan = 0; chan < get_num_output_ports(); ++chan) {
_spp_prop.push_back(
property_t<int>(PROP_KEY_SPP, DEFAULT_SPP, {res_source_info::USER, chan}));
_samp_rate_in.push_back(property_t<double>(
PROP_KEY_SAMP_RATE, get_tick_rate(), {res_source_info::INPUT_EDGE, chan}));
_samp_rate_out.push_back(property_t<double>(
PROP_KEY_SAMP_RATE, get_tick_rate(), {res_source_info::OUTPUT_EDGE, chan}));
_type_in.push_back(property_t<io_type_t>(
PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::INPUT_EDGE, chan}));
_type_out.push_back(property_t<io_type_t>(
PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::OUTPUT_EDGE, chan}));
register_property(&_spp_prop.back(), [this, chan, &spp = _spp_prop.back()]() {
const uint32_t words_per_pkt = spp.get();
RFNOC_LOG_TRACE(
"Setting words_per_pkt to " << words_per_pkt << " on chan " << chan);
regs().poke32(
get_addr(regmap::REG_RX_MAX_WORDS_PER_PKT, chan), words_per_pkt);
});
register_property(&_samp_rate_in.back());
register_property(&_samp_rate_out.back());
register_property(&_type_in.back());
register_property(&_type_out.back());
add_property_resolver(
{&_spp_prop.back(), get_mtu_prop_ref({res_source_info::OUTPUT_EDGE, chan})},
{&_spp_prop.back()},
[this, chan, &spp = _spp_prop.back()]() {
RFNOC_LOG_TRACE("Calling resolver for spp@" << chan);
// MTU is max payload size, header with timestamp is already
// accounted for
const int mtu =
static_cast<int>(get_mtu({res_source_info::OUTPUT_EDGE, chan}));
const int mtu_samps = mtu / (_samp_width / 8);
const int max_spp_per_mtu = mtu_samps - (mtu_samps % _spc);
if (spp.get() > max_spp_per_mtu) {
RFNOC_LOG_WARNING("spp value " << spp.get() << " exceeds MTU of "
<< mtu << "! Coercing to "
<< max_spp_per_mtu);
spp = max_spp_per_mtu;
}
if (spp.get() % _spc) {
spp = spp.get() - (spp.get() % _spc);
RFNOC_LOG_WARNING(
"spp must be a multiple of the block bus width! Coercing to "
<< spp.get());
}
if (spp.get() <= 0) {
spp = DEFAULT_SPP;
RFNOC_LOG_WARNING(
"spp must be greater than zero! Coercing to " << spp.get());
}
});
// Note: The following resolver calls coerce_rate(), which is virtual.
// At run time, it will use the implementation by the child class.
add_property_resolver({&_samp_rate_in.back(), &_samp_rate_out.back()},
{&_samp_rate_in.back(), &_samp_rate_out.back()},
[this,
chan,
&samp_rate_in = _samp_rate_in.at(chan),
&samp_rate_out = _samp_rate_out.at(chan)]() {
RFNOC_LOG_TRACE("Calling resolver for samp_rate@" << chan);
samp_rate_in = coerce_rate(samp_rate_in.get());
samp_rate_out = samp_rate_in.get();
});
// Resolvers for type: These are constants
add_property_resolver({&_type_in.back()},
{&_type_in.back()},
[& type_in = _type_in.back()]() { type_in.set(IO_TYPE_SC16); });
add_property_resolver({&_type_out.back()},
{&_type_out.back()},
[& type_out = _type_out.back()]() { type_out.set(IO_TYPE_SC16); });
}
// Enable async messages coming from the radio
const uint32_t xbar_port = 1; // FIXME: Find a better way to figure this out
RFNOC_LOG_TRACE("Sending async messages to EPID "
<< regs().get_src_epid() << ", remote port " << regs().get_port_num()
<< ", xbar port " << xbar_port);
for (size_t tx_chan = 0; tx_chan < get_num_output_ports(); tx_chan++) {
// Set the EPID and port of our regs() object (all async messages go to
// the same location)
regs().poke32(
get_addr(regmap::REG_TX_ERR_REM_EPID, tx_chan), regs().get_src_epid());
regs().poke32(
get_addr(regmap::REG_TX_ERR_REM_PORT, tx_chan), regs().get_port_num());
// Set the crossbar port for the async packet routing
regs().poke32(get_addr(regmap::REG_TX_ERR_PORT, tx_chan), xbar_port);
// Set the async message address
regs().poke32(get_addr(regmap::REG_TX_ERR_ADDR, tx_chan),
regmap::SWREG_TX_ERR + regmap::SWREG_CHAN_OFFSET * tx_chan);
}
for (size_t rx_chan = 0; rx_chan < get_num_input_ports(); rx_chan++) {
// Set the EPID and port of our regs() object (all async messages go to
// the same location)
regs().poke32(
get_addr(regmap::REG_RX_ERR_REM_EPID, rx_chan), regs().get_src_epid());
regs().poke32(
get_addr(regmap::REG_RX_ERR_REM_PORT, rx_chan), regs().get_port_num());
// Set the crossbar port for the async packet routing
regs().poke32(get_addr(regmap::REG_RX_ERR_PORT, rx_chan), xbar_port);
// Set the async message address
regs().poke32(get_addr(regmap::REG_RX_ERR_ADDR, rx_chan),
regmap::SWREG_RX_ERR + regmap::SWREG_CHAN_OFFSET * rx_chan);
}
// Now register a function to receive the async messages
regs().register_async_msg_validator(
[this](uint32_t addr, const std::vector<uint32_t>& data) {
return this->async_message_validator(addr, data);
});
regs().register_async_msg_handler([this](uint32_t addr,
const std::vector<uint32_t>& data,
boost::optional<uint64_t> timestamp) {
this->async_message_handler(addr, data, timestamp);
});
} /* ctor */
/******************************************************************************
* Rate-Related API Calls
*****************************************************************************/
double radio_control_impl::set_rate(const double rate)
{
std::lock_guard<std::mutex> l(_cache_mutex);
_rate = rate;
return rate;
// FIXME:
////_tick_rate = rate;
////_time64->set_tick_rate(_tick_rate);
////_time64->self_test();
//// set_command_tick_rate(rate);
}
double radio_control_impl::get_rate() const
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _rate;
}
uhd::meta_range_t radio_control_impl::get_rate_range() const
{
RFNOC_LOG_TRACE("Using default implementation of get_rx_rate_range()");
uhd::meta_range_t result;
result.push_back(get_rate());
return result;
}
/****************************************************************************
* RF API
***************************************************************************/
void radio_control_impl::set_tx_antenna(const std::string& ant, const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
_tx_antenna[chan] = ant;
}
void radio_control_impl::set_rx_antenna(const std::string& ant, const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
_rx_antenna[chan] = ant;
}
double radio_control_impl::set_tx_frequency(const double freq, const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _tx_freq[chan] = freq;
}
void radio_control_impl::set_tx_tune_args(const uhd::device_addr_t&, const size_t)
{
RFNOC_LOG_TRACE("tune_args not supported by this radio.");
}
double radio_control_impl::set_rx_frequency(const double freq, const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _rx_freq[chan] = freq;
}
void radio_control_impl::set_rx_tune_args(const uhd::device_addr_t&, const size_t)
{
RFNOC_LOG_TRACE("tune_args not supported by this radio.");
}
std::vector<std::string> radio_control_impl::get_tx_gain_names(const size_t) const
{
return {ALL_GAINS};
}
std::vector<std::string> radio_control_impl::get_rx_gain_names(const size_t) const
{
return {ALL_GAINS};
}
uhd::gain_range_t radio_control_impl::get_tx_gain_range(const size_t chan) const
{
RFNOC_LOG_DEBUG("Using default implementation of get_tx_gain_range()");
uhd::gain_range_t result;
std::lock_guard<std::mutex> l(_cache_mutex);
result.push_back(_rx_gain.at(chan));
return result;
}
uhd::gain_range_t radio_control_impl::get_tx_gain_range(
const std::string& name, const size_t chan) const
{
if (name != ALL_GAINS) {
throw uhd::value_error(
std::string("get_tx_gain_range(): Unknown gain name `") + name + "'!");
}
return get_tx_gain_range(chan);
}
uhd::gain_range_t radio_control_impl::get_rx_gain_range(const size_t chan) const
{
RFNOC_LOG_DEBUG("Using default implementation of get_rx_gain_range()");
uhd::gain_range_t result;
std::lock_guard<std::mutex> l(_cache_mutex);
result.push_back(_rx_gain.at(chan));
return result;
}
uhd::gain_range_t radio_control_impl::get_rx_gain_range(
const std::string& name, const size_t chan) const
{
if (name != ALL_GAINS) {
throw uhd::value_error(
std::string("get_rx_gain_range(): Unknown gain name `") + name + "'!");
}
return get_rx_gain_range(chan);
}
double radio_control_impl::set_tx_gain(const double gain, const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
_tx_gain[chan] = gain;
return gain;
}
double radio_control_impl::set_tx_gain(
const double gain, const std::string& name, const size_t chan)
{
if (name != ALL_GAINS) {
throw uhd::key_error(
std::string("set_tx_gain(): Gain name `") + name + "' is not defined!");
}
return set_tx_gain(gain, chan);
}
double radio_control_impl::set_rx_gain(const double gain, const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
_rx_gain[chan] = gain;
return gain;
}
double radio_control_impl::set_rx_gain(
const double gain, const std::string& name, const size_t chan)
{
if (name != ALL_GAINS) {
throw uhd::key_error(
std::string("set_rx_gain(): Gain name `") + name + "' is not defined!");
}
return set_rx_gain(gain, chan);
}
void radio_control_impl::set_rx_agc(const bool, const size_t)
{
throw uhd::not_implemented_error("set_rx_agc() is not supported on this radio!");
}
void radio_control_impl::set_tx_gain_profile(const std::string& profile, const size_t)
{
if (profile != DEFAULT_GAIN_PROFILE) {
throw uhd::value_error(
std::string("set_tx_gain_profile(): Unknown gain profile: `") + profile
+ "'");
}
}
void radio_control_impl::set_rx_gain_profile(const std::string& profile, const size_t)
{
if (profile != DEFAULT_GAIN_PROFILE) {
throw uhd::value_error(
std::string("set_rx_gain_profile(): Unknown gain profile: `") + profile
+ "'");
}
}
std::vector<std::string> radio_control_impl::get_tx_gain_profile_names(const size_t) const
{
return {DEFAULT_GAIN_PROFILE};
}
std::vector<std::string> radio_control_impl::get_rx_gain_profile_names(const size_t) const
{
return {DEFAULT_GAIN_PROFILE};
}
std::string radio_control_impl::get_tx_gain_profile(const size_t) const
{
return DEFAULT_GAIN_PROFILE;
}
std::string radio_control_impl::get_rx_gain_profile(const size_t) const
{
return DEFAULT_GAIN_PROFILE;
}
double radio_control_impl::set_tx_bandwidth(const double bandwidth, const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _tx_bandwidth[chan] = bandwidth;
}
double radio_control_impl::set_rx_bandwidth(const double bandwidth, const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _rx_bandwidth[chan] = bandwidth;
}
std::string radio_control_impl::get_tx_antenna(const size_t chan) const
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _tx_antenna.at(chan);
}
std::string radio_control_impl::get_rx_antenna(const size_t chan) const
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _rx_antenna.at(chan);
}
std::vector<std::string> radio_control_impl::get_tx_antennas(const size_t chan) const
{
RFNOC_LOG_DEBUG("get_tx_antennas(): Using default implementation.");
std::lock_guard<std::mutex> l(_cache_mutex);
return {_tx_antenna.at(chan)};
}
std::vector<std::string> radio_control_impl::get_rx_antennas(const size_t chan) const
{
RFNOC_LOG_DEBUG("get_rx_antennas(): Using default implementation.");
std::lock_guard<std::mutex> l(_cache_mutex);
return {_rx_antenna.at(chan)};
}
double radio_control_impl::get_tx_frequency(const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _tx_freq.at(chan);
}
double radio_control_impl::get_rx_frequency(const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _rx_freq.at(chan);
}
uhd::freq_range_t radio_control_impl::get_tx_frequency_range(const size_t) const
{
RFNOC_LOG_WARNING(
"get_tx_frequency_range() not implemented! Returning current rate only.");
uhd::freq_range_t result;
result.push_back(get_rate());
return result;
}
uhd::freq_range_t radio_control_impl::get_rx_frequency_range(const size_t) const
{
RFNOC_LOG_WARNING(
"get_rx_frequency_range() not implemented! Returning current rate only.");
uhd::freq_range_t result;
result.push_back(get_rate());
return result;
}
double radio_control_impl::get_tx_gain(const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _tx_gain.at(chan);
}
double radio_control_impl::get_rx_gain(const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _rx_gain.at(chan);
}
double radio_control_impl::get_tx_gain(const std::string& name, const size_t chan)
{
if (name != ALL_GAINS) {
throw uhd::value_error(
std::string("get_tx_gain(): Unknown gain name `") + name + "'");
}
return get_tx_gain(chan);
}
double radio_control_impl::get_rx_gain(const std::string& name, const size_t chan)
{
if (name != ALL_GAINS) {
throw uhd::value_error(
std::string("get_rx_gain(): Unknown gain name `") + name + "'");
}
return get_rx_gain(chan);
}
double radio_control_impl::get_tx_bandwidth(const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _tx_bandwidth.at(chan);
}
double radio_control_impl::get_rx_bandwidth(const size_t chan)
{
std::lock_guard<std::mutex> l(_cache_mutex);
return _rx_bandwidth.at(chan);
}
uhd::meta_range_t radio_control_impl::get_tx_bandwidth_range(size_t chan) const
{
RFNOC_LOG_DEBUG("get_tx_bandwidth_range(): Using default implementation.");
uhd::meta_range_t result;
std::lock_guard<std::mutex> l(_cache_mutex);
result.push_back(_rx_bandwidth.at(chan));
return result;
}
uhd::meta_range_t radio_control_impl::get_rx_bandwidth_range(size_t chan) const
{
RFNOC_LOG_DEBUG("get_tx_bandwidth_range(): Using default implementation.");
uhd::meta_range_t result;
std::lock_guard<std::mutex> l(_cache_mutex);
result.push_back(_rx_bandwidth.at(chan));
return result;
}
/******************************************************************************
* LO Default API
*****************************************************************************/
std::vector<std::string> radio_control_impl::get_rx_lo_names(const size_t) const
{
return {};
}
std::vector<std::string> radio_control_impl::get_rx_lo_sources(
const std::string&, const size_t) const
{
return {"internal"};
}
uhd::freq_range_t radio_control_impl::get_rx_lo_freq_range(
const std::string&, const size_t) const
{
return uhd::freq_range_t();
}
void radio_control_impl::set_rx_lo_source(
const std::string&, const std::string&, const size_t)
{
throw uhd::not_implemented_error("set_rx_lo_source is not supported on this radio");
}
const std::string radio_control_impl::get_rx_lo_source(const std::string&, const size_t)
{
return "internal";
}
void radio_control_impl::set_rx_lo_export_enabled(bool, const std::string&, const size_t)
{
throw uhd::not_implemented_error(
"set_rx_lo_export_enabled is not supported on this radio");
}
bool radio_control_impl::get_rx_lo_export_enabled(const std::string&, const size_t) const
{
return false;
}
double radio_control_impl::set_rx_lo_freq(double, const std::string&, const size_t)
{
throw uhd::not_implemented_error("set_rx_lo_freq is not supported on this radio");
}
double radio_control_impl::get_rx_lo_freq(const std::string&, const size_t chan)
{
return get_rx_frequency(chan);
}
std::vector<std::string> radio_control_impl::get_tx_lo_names(const size_t) const
{
return {};
}
std::vector<std::string> radio_control_impl::get_tx_lo_sources(
const std::string&, const size_t)
{
return {"internal"};
}
uhd::freq_range_t radio_control_impl::get_tx_lo_freq_range(
const std::string&, const size_t)
{
return uhd::freq_range_t();
}
void radio_control_impl::set_tx_lo_source(
const std::string&, const std::string&, const size_t)
{
throw uhd::not_implemented_error("set_tx_lo_source is not supported on this radio");
}
const std::string radio_control_impl::get_tx_lo_source(const std::string&, const size_t)
{
return "internal";
}
void radio_control_impl::set_tx_lo_export_enabled(
const bool, const std::string&, const size_t)
{
throw uhd::not_implemented_error(
"set_tx_lo_export_enabled is not supported on this radio");
}
bool radio_control_impl::get_tx_lo_export_enabled(const std::string&, const size_t)
{
return false;
}
double radio_control_impl::set_tx_lo_freq(const double, const std::string&, const size_t)
{
throw uhd::not_implemented_error("set_tx_lo_freq is not supported on this radio");
}
double radio_control_impl::get_tx_lo_freq(const std::string&, const size_t chan)
{
return get_tx_frequency(chan);
}
/******************************************************************************
* Calibration-Related API Calls
*****************************************************************************/
void radio_control_impl::set_tx_dc_offset(const std::complex<double>&, size_t)
{
throw uhd::not_implemented_error("set_tx_dc_offset() is not supported on this radio");
}
uhd::meta_range_t radio_control_impl::get_tx_dc_offset_range(size_t) const
{
return uhd::meta_range_t(0, 0);
}
void radio_control_impl::set_tx_iq_balance(const std::complex<double>&, size_t)
{
throw uhd::not_implemented_error(
"set_tx_iq_balance() is not supported on this radio");
}
void radio_control_impl::set_rx_dc_offset(const bool enb, size_t)
{
RFNOC_LOG_DEBUG("set_rx_dc_offset() has no effect on this radio");
if (enb) {
throw uhd::not_implemented_error(
"set_rx_dc_offset() is not supported on this radio");
}
}
void radio_control_impl::set_rx_dc_offset(const std::complex<double>&, size_t)
{
throw uhd::not_implemented_error("set_rx_dc_offset() is not supported on this radio");
}
uhd::meta_range_t radio_control_impl::get_rx_dc_offset_range(size_t) const
{
return uhd::meta_range_t(0, 0);
}
void radio_control_impl::set_rx_iq_balance(const bool enb, size_t)
{
RFNOC_LOG_DEBUG("set_rx_iq_balance() has no effect on this radio");
if (enb) {
throw uhd::not_implemented_error(
"set_rx_iq_balance() is not supported on this radio");
}
}
void radio_control_impl::set_rx_iq_balance(const std::complex<double>&, size_t)
{
throw uhd::not_implemented_error(
"set_rx_iq_balance() is not supported on this radio");
}
/******************************************************************************
* GPIO Controls
*****************************************************************************/
std::vector<std::string> radio_control_impl::get_gpio_banks() const
{
return {};
}
void radio_control_impl::set_gpio_attr(
const std::string&, const std::string&, const uint32_t)
{
throw uhd::not_implemented_error("set_gpio_attr() not implemented on this radio!");
}
uint32_t radio_control_impl::get_gpio_attr(const std::string&, const std::string&)
{
throw uhd::not_implemented_error("get_gpio_attr() not implemented on this radio!");
}
/**************************************************************************
* Sensor API
*************************************************************************/
std::vector<std::string> radio_control_impl::get_rx_sensor_names(size_t) const
{
return {};
}
uhd::sensor_value_t radio_control_impl::get_rx_sensor(const std::string& name, size_t)
{
throw uhd::key_error(std::string("Unknown RX sensor: ") + name);
}
std::vector<std::string> radio_control_impl::get_tx_sensor_names(size_t) const
{
return {};
}
uhd::sensor_value_t radio_control_impl::get_tx_sensor(const std::string& name, size_t)
{
throw uhd::key_error(std::string("Unknown TX sensor: ") + name);
}
/**************************************************************************
* EEPROM API
*************************************************************************/
void radio_control_impl::set_db_eeprom(const uhd::eeprom_map_t&)
{
throw uhd::not_implemented_error("set_db_eeprom() not implemented for this radio!");
}
uhd::eeprom_map_t radio_control_impl::get_db_eeprom()
{
return {};
}
/****************************************************************************
* Streaming API
***************************************************************************/
void radio_control_impl::issue_stream_cmd(
const uhd::stream_cmd_t& stream_cmd, const size_t chan)
{
// std::lock_guard<std::mutex> lock(_mutex);
RFNOC_LOG_TRACE("radio_control_impl::issue_stream_cmd(chan="
<< chan << ", mode=" << char(stream_cmd.stream_mode) << ")");
_last_stream_cmd[chan] = stream_cmd;
// calculate the command word
const std::unordered_map<stream_cmd_t::stream_mode_t, uint32_t, std::hash<size_t>>
stream_mode_to_cmd_word{
{stream_cmd_t::STREAM_MODE_START_CONTINUOUS, regmap::RX_CMD_CONTINUOUS},
{stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS, regmap::RX_CMD_STOP},
{stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE, regmap::RX_CMD_FINITE},
{stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE, regmap::RX_CMD_FINITE}};
const uint32_t cmd_bits = stream_mode_to_cmd_word.at(stream_cmd.stream_mode);
const uint32_t cmd_word =
cmd_bits
| (uint32_t((stream_cmd.stream_now) ? 0 : 1) << regmap::RX_CMD_TIMED_POS);
if (cmd_bits == regmap::RX_CMD_FINITE) {
if (stream_cmd.num_samps == 0) {
throw uhd::value_error("When requesting a finite number of samples, the "
"number of samples must be greater than zero.");
}
// FIXME: The num words might be different from num_samps, check the
// radio width
const uint64_t num_words = stream_cmd.num_samps;
constexpr uint64_t max_num_words = 0x00FFFFFFFFFFFF; // 48 bits
if (num_words > max_num_words) {
RFNOC_LOG_ERROR("Requesting too many samples in a single burst! "
"Requested "
+ std::to_string(stream_cmd.num_samps)
+ ", maximum "
"is "
+ std::to_string(max_num_words) + "."); // FIXME
RFNOC_LOG_INFO(
"Note that a decimation block will increase the number of samples "
"per burst by the decimation factor. Your application may have "
"requested fewer samples.");
throw uhd::value_error("Requested too many samples in a single burst.");
}
regs().poke32(
get_addr(regmap::REG_RX_CMD_NUM_WORDS_HI, chan), uint32_t(num_words >> 32));
regs().poke32(get_addr(regmap::REG_RX_CMD_NUM_WORDS_LO, chan),
uint32_t(num_words & 0xFFFFFFFF));
}
if (!stream_cmd.stream_now) {
const uint64_t ticks = stream_cmd.time_spec.to_ticks(get_tick_rate());
regs().poke32(get_addr(regmap::REG_RX_CMD_TIME_HI, chan), uint32_t(ticks >> 32));
regs().poke32(get_addr(regmap::REG_RX_CMD_TIME_LO, chan), uint32_t(ticks >> 0));
}
regs().poke32(get_addr(regmap::REG_RX_CMD, chan), cmd_word);
}
void radio_control_impl::enable_rx_timestamps(const bool enable, const size_t chan)
{
regs().poke32(get_addr(regmap::REG_RX_HAS_TIME, chan), enable ? 0x1 : 0x0);
}
/******************************************************************************
* Private methods
*****************************************************************************/
bool radio_control_impl::async_message_validator(
uint32_t addr, const std::vector<uint32_t>& data)
{
if (data.empty()) {
return false;
}
// For these calculations, see below
const uint32_t addr_base = (addr >= regmap::SWREG_RX_ERR) ? regmap::SWREG_RX_ERR
: regmap::SWREG_TX_ERR;
const uint32_t chan = (addr - addr_base) / regmap::SWREG_CHAN_OFFSET;
const uint32_t addr_offset = addr % regmap::SWREG_CHAN_OFFSET;
const uint32_t code = data[0];
if (addr_offset > 0) {
return false;
}
if (addr_base == regmap::SWREG_RX_ERR) {
if (chan > get_num_output_ports()) {
return false;
}
switch (code) {
case err_codes::ERR_RX_OVERRUN:
return true;
case err_codes::ERR_RX_LATE_CMD:
return true;
default:
return false;
}
}
if (addr_base == regmap::SWREG_TX_ERR) {
if (chan > get_num_input_ports()) {
return false;
}
switch (code) {
case err_codes::ERR_TX_UNDERRUN:
return true;
case err_codes::ERR_TX_LATE_DATA:
return true;
case err_codes::EVENT_TX_BURST_ACK:
return true;
default:
return false;
}
}
return false;
}
void radio_control_impl::async_message_handler(
uint32_t addr, const std::vector<uint32_t>& data, boost::optional<uint64_t> timestamp)
{
if (data.empty()) {
RFNOC_LOG_WARNING(
str(boost::format("Received async message with invalid length %d!")
% data.size()));
return;
}
if (data.size() > 1) {
RFNOC_LOG_WARNING(
str(boost::format("Received async message with extra data, length %d!")
% data.size()));
}
// Reminder: The address is calculated as:
// BASE + 64 * chan + addr_offset
// BASE == 0x0000 for RX, 0x1000 for TX
const uint32_t addr_base = (addr >= regmap::SWREG_RX_ERR) ? regmap::SWREG_RX_ERR
: regmap::SWREG_TX_ERR;
const uint32_t chan = (addr - addr_base) / regmap::SWREG_CHAN_OFFSET;
// Note: addr_offset is always going to be zero for now, because we only
// have one "register" that gets hit for either RX or TX, but we'll keep it
// in case we add other regs in the future
const uint32_t addr_offset = addr % regmap::SWREG_CHAN_OFFSET;
const uint32_t code = data[0];
RFNOC_LOG_TRACE(
str(boost::format("Received async message to addr 0x%08X, data length %d words, "
"%s channel %d, addr_offset %d, has timestamp %d")
% addr % data.size() % (addr_base == regmap::SWREG_TX_ERR ? "TX" : "RX")
% chan % addr_offset % int(bool(timestamp))));
if (timestamp) {
RFNOC_LOG_TRACE(
str(boost::format("Async message timestamp: %ul") % timestamp.get()));
}
switch (addr_base + addr_offset) {
case regmap::SWREG_TX_ERR: {
if (chan > get_num_input_ports()) {
RFNOC_LOG_WARNING(
"Cannot process TX-related async message to invalid chan " << chan);
return;
}
switch (code) {
case err_codes::ERR_TX_UNDERRUN: {
auto tx_event_action = tx_event_action_info::make(
uhd::async_metadata_t::EVENT_CODE_UNDERFLOW, timestamp);
post_action(res_source_info{res_source_info::INPUT_EDGE, chan},
tx_event_action);
UHD_LOG_FASTPATH("U");
RFNOC_LOG_TRACE("Posting underrun event action message.");
break;
}
case err_codes::ERR_TX_LATE_DATA: {
auto tx_event_action = tx_event_action_info::make(
uhd::async_metadata_t::EVENT_CODE_TIME_ERROR, timestamp);
post_action(res_source_info{res_source_info::INPUT_EDGE, chan},
tx_event_action);
UHD_LOG_FASTPATH("L");
RFNOC_LOG_TRACE("Posting late data event action message.");
break;
}
case err_codes::EVENT_TX_BURST_ACK: {
auto tx_event_action = tx_event_action_info::make(
uhd::async_metadata_t::EVENT_CODE_BURST_ACK, timestamp);
post_action(res_source_info{res_source_info::INPUT_EDGE, chan},
tx_event_action);
RFNOC_LOG_TRACE("Posting burst ack event action message.");
break;
}
}
break;
}
case regmap::SWREG_RX_ERR: {
if (chan > get_num_input_ports()) {
RFNOC_LOG_WARNING(
"Cannot process RX-related async message to invalid chan " << chan);
return;
}
switch (code) {
case err_codes::ERR_RX_OVERRUN: {
UHD_LOG_FASTPATH("O");
auto rx_event_action = rx_event_action_info::make(
uhd::rx_metadata_t::ERROR_CODE_OVERFLOW);
const bool cont_mode = _last_stream_cmd.at(chan).stream_mode
== stream_cmd_t::STREAM_MODE_START_CONTINUOUS;
rx_event_action->args["cont_mode"] = std::to_string(cont_mode);
RFNOC_LOG_TRACE("Posting overrun event action message.");
post_action(res_source_info{res_source_info::OUTPUT_EDGE, chan},
rx_event_action);
break;
}
case err_codes::ERR_RX_LATE_CMD:
UHD_LOG_FASTPATH("L");
auto rx_event_action = rx_event_action_info::make(
uhd::rx_metadata_t::ERROR_CODE_LATE_COMMAND);
RFNOC_LOG_TRACE("Posting RX late command message.");
post_action(res_source_info{res_source_info::OUTPUT_EDGE, chan},
rx_event_action);
break;
}
break;
}
default:
RFNOC_LOG_WARNING(str(
boost::format("Received async message to invalid addr 0x%08X!") % addr));
}
}
|