1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/exception.hpp>
#include <uhd/utils/log.hpp>
#include <uhdlib/rfnoc/chdr_ctrl_xport.hpp>
#include <uhdlib/rfnoc/chdr_packet_writer.hpp>
#include <uhdlib/rfnoc/mgmt_portal.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <boost/format.hpp>
#include <chrono>
#include <cmath>
#include <map>
#include <mutex>
#include <queue>
#include <string>
#include <thread>
#include <tuple>
#include <vector>
namespace uhd { namespace rfnoc { namespace mgmt {
using namespace chdr;
using namespace transport;
constexpr bool ALLOW_DAISY_CHAINING = true;
// Unused values are left in as comments for reference.
constexpr uint16_t REG_EPID_SELF = 0x00; // RW
constexpr uint16_t REG_RESET_AND_FLUSH = 0x04; // W
constexpr uint16_t REG_OSTRM_CTRL_STATUS = 0x08; // RW
constexpr uint16_t REG_OSTRM_DST_EPID = 0x0C; // W
constexpr uint16_t REG_OSTRM_FC_FREQ_BYTES_LO = 0x10; // W
constexpr uint16_t REG_OSTRM_FC_FREQ_BYTES_HI = 0x14; // W
constexpr uint16_t REG_OSTRM_FC_FREQ_PKTS = 0x18; // W
constexpr uint16_t REG_OSTRM_FC_HEADROOM = 0x1C; // W
constexpr uint16_t REG_OSTRM_BUFF_CAP_BYTES_LO = 0x20; // R
constexpr uint16_t REG_OSTRM_BUFF_CAP_BYTES_HI = 0x24; // R
constexpr uint16_t REG_OSTRM_BUFF_CAP_PKTS = 0x28; // R
// constexpr uint16_t REG_OSTRM_SEQ_ERR_CNT = 0x2C; // R
// constexpr uint16_t REG_OSTRM_DATA_ERR_CNT = 0x30; // R
// constexpr uint16_t REG_OSTRM_ROUTE_ERR_CNT = 0x34; // R
constexpr uint16_t REG_ISTRM_CTRL_STATUS = 0x38; // RW
constexpr uint32_t RESET_AND_FLUSH_OSTRM = (1 << 0);
constexpr uint32_t RESET_AND_FLUSH_ISTRM = (1 << 1);
// constexpr uint32_t RESET_AND_FLUSH_CTRL = (1 << 2);
constexpr uint32_t RESET_AND_FLUSH_ALL = 0x7;
#ifdef UHD_BIG_ENDIAN
constexpr endianness_t HOST_ENDIANNESS = ENDIANNESS_BIG;
#else
constexpr endianness_t HOST_ENDIANNESS = ENDIANNESS_LITTLE;
#endif
constexpr uint32_t BUILD_CTRL_STATUS_WORD(bool cfg_start,
bool xport_lossy,
sw_buff_t pyld_buff_fmt,
sw_buff_t mdata_buff_fmt,
bool byte_swap)
{
return (cfg_start ? 1 : 0) | (xport_lossy ? 2 : 0)
| (static_cast<uint32_t>(pyld_buff_fmt) << 2)
| (static_cast<uint32_t>(mdata_buff_fmt) << 4) | (byte_swap ? (1 << 6) : 0);
}
constexpr uint32_t STRM_STATUS_FC_ENABLED = 0x80000000;
constexpr uint32_t STRM_STATUS_SETUP_ERR = 0x40000000;
constexpr uint32_t STRM_STATUS_SETUP_PENDING = 0x20000000;
//! The type of a node in the data-flow graph
enum class node_type {
//! Invalid type. The FPGA will never have a node with type = 0
NODE_TYPE_INVALID = 0,
//! CHDR Crossbar
NODE_TYPE_XBAR = 1,
//! Stream Endpoint
NODE_TYPE_STRM_EP = 2,
//! Transport
NODE_TYPE_XPORT = 3
};
//! A unique identifier for a node
struct node_id_t
{
//! A unique ID for device that houses this node
device_id_t device_id = NULL_DEVICE_ID;
//! The type of this node
node_type type = node_type::NODE_TYPE_INVALID;
//! The instance number of this node in the device
sep_inst_t inst = 0;
//! Extended info about node (not used for comparisons)
// The value depends on the node type. For example, this includes number of
// ports on a crossbar, data/ctrl capability for SEPs, or transport subtype
// for transport adapters.
// It contains up to 18 bits of information.
uint32_t extended_info = 0;
// ctors and operators
node_id_t() = default;
node_id_t(const node_id_t& rhs) = default;
node_id_t(device_id_t device_id_, node_type type_, sep_inst_t inst_)
: device_id(device_id_), type(type_), inst(inst_), extended_info(0)
{
}
node_id_t(device_id_t device_id_,
node_type type_,
sep_inst_t inst_,
uint32_t extended_info_)
: device_id(device_id_), type(type_), inst(inst_), extended_info(extended_info_)
{
}
node_id_t(const sep_addr_t& sep_addr)
: device_id(sep_addr.first)
, type(node_type::NODE_TYPE_STRM_EP)
, inst(sep_addr.second)
, extended_info(0)
{
}
inline uint64_t unique_id() const
{
return (static_cast<uint64_t>(inst) + (static_cast<uint64_t>(device_id) << 16)
+ (static_cast<uint64_t>(type) << 32));
}
inline std::string to_string() const
{
static const std::map<node_type, std::string> NODE_STR = {
{node_type::NODE_TYPE_INVALID, "unknown"},
{node_type::NODE_TYPE_XBAR, "xbar"},
{node_type::NODE_TYPE_STRM_EP, "sep"},
{node_type::NODE_TYPE_XPORT, "xport"}};
return str(
boost::format("device:%d/%s:%d") % device_id % NODE_STR.at(type) % inst);
}
inline friend bool operator<(const node_id_t& lhs, const node_id_t& rhs)
{
return (lhs.unique_id() < rhs.unique_id());
}
inline friend bool operator==(const node_id_t& lhs, const node_id_t& rhs)
{
return (lhs.unique_id() == rhs.unique_id());
}
inline friend bool operator!=(const node_id_t& lhs, const node_id_t& rhs)
{
return (lhs.unique_id() != rhs.unique_id());
}
inline node_id_t& operator=(const node_id_t&) = default;
};
//! The local destination to take at the current node to reach the next node
// - If negative, then no specific action necessary
// - If non-negative, then route (select destination) to the value
using next_dest_t = int32_t;
//! An address that allows locating a node in a data-flow network starting from
// a specific stream endpoint. The address is a collection (vector) of nodes and
// the respective routing decisions to get to the final node.
using node_addr_t = std::vector<std::pair<node_id_t, next_dest_t>>;
std::string to_string(const node_addr_t& node_addr)
{
if (!node_addr.empty()) {
std::string str("");
for (const auto& hop : node_addr) {
str += hop.first.to_string() + std::string(",") + std::to_string(hop.second)
+ std::string("->");
}
return str;
} else {
return std::string("<empty>");
}
}
// Empty dtor for stream_manager
mgmt_portal::~mgmt_portal() {}
//---------------------------------------------------------------
// Management Portal Implementation
//---------------------------------------------------------------
class mgmt_portal_impl : public mgmt_portal
{
public:
mgmt_portal_impl(chdr_ctrl_xport& xport,
const chdr::chdr_packet_factory& pkt_factory,
sep_addr_t my_sep_addr)
: _protover(pkt_factory.get_protover())
, _chdr_w(pkt_factory.get_chdr_w())
, _endianness(pkt_factory.get_endianness())
, _my_node_id(my_sep_addr.first, node_type::NODE_TYPE_STRM_EP, xport.get_epid())
, _send_seqnum(0)
, _send_pkt(pkt_factory.make_mgmt())
, _recv_pkt(pkt_factory.make_mgmt())
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
_discover_topology(xport);
UHD_LOG_DEBUG("RFNOC::MGMT",
"The following endpoints are reachable from " << _my_node_id.to_string());
for (const auto& ep : _discovered_ep_set) {
UHD_LOG_DEBUG("RFNOC::MGMT", "* " << ep.first << ":" << ep.second);
}
}
~mgmt_portal_impl() override {}
const std::set<sep_addr_t>& get_reachable_endpoints() const override
{
return _discovered_ep_set;
}
void initialize_endpoint(
chdr_ctrl_xport& xport, const sep_addr_t& addr, const sep_id_t& epid) override
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
auto my_epid = xport.get_epid();
// Create a node ID from lookup info
node_id_t lookup_node(addr.first, node_type::NODE_TYPE_STRM_EP, addr.second);
if (_node_addr_map.count(lookup_node) == 0) {
throw uhd::lookup_error(
"initialize_endpoint(): Cannot reach node with specified address.");
}
const node_addr_t& node_addr = _node_addr_map.at(lookup_node);
// Build a management transaction to first get to the node
mgmt_payload cfg_xact;
cfg_xact.set_header(my_epid, _protover, _chdr_w);
_traverse_to_node(cfg_xact, node_addr);
mgmt_hop_t cfg_hop;
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(REG_RESET_AND_FLUSH, RESET_AND_FLUSH_ALL)));
cfg_hop.add_op(mgmt_op_t(
mgmt_op_t::MGMT_OP_CFG_WR_REQ, mgmt_op_t::cfg_payload(REG_EPID_SELF, epid)));
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_RETURN));
cfg_xact.add_hop(cfg_hop);
// Send the transaction and receive a response.
// We don't care about the contents of the response.
_send_recv_mgmt_transaction(xport, cfg_xact);
register_endpoint(addr, epid);
}
void register_endpoint(const sep_addr_t& addr, const sep_id_t& epid) override
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
if (is_endpoint_registered(epid)) {
return;
}
// Create a node ID from lookup info
node_id_t lookup_node(addr.first, node_type::NODE_TYPE_STRM_EP, addr.second);
if (_node_addr_map.count(lookup_node) == 0) {
throw uhd::lookup_error(
"initialize_endpoint(): Cannot reach node with specified address.");
}
// Add/update the entry in the stream endpoint ID map
_epid_addr_map[epid] = addr;
UHD_LOG_DEBUG("RFNOC::MGMT",
(boost::format("Bound stream endpoint with Addr=(%d,%d) to EPID=%d")
% addr.first % addr.second % epid));
UHD_LOG_TRACE("RFNOC::MGMT",
(boost::format(
"Stream endpoint with EPID=%d can be reached by taking the path: %s")
% epid % to_string(_node_addr_map.at(lookup_node))));
}
bool is_endpoint_registered(const sep_id_t& epid) const override
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
return (_epid_addr_map.count(epid) > 0);
}
sep_info_t get_endpoint_info(const sep_id_t& epid) const override
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
// Lookup the destination node address using the endpoint ID
if (_epid_addr_map.count(epid) == 0) {
throw uhd::lookup_error(
"get_endpoint_info(): Could not find a stream with specified ID.");
}
node_id_t lookup_node(_epid_addr_map.at(epid));
// If a node is in _epid_addr_map then it must be in _node_addr_map
UHD_ASSERT_THROW(_node_addr_map.count(lookup_node) > 0);
// Why is key_node different from lookup_node?
// Because it has additional extended info (look at operator< def)
const node_id_t& key_node = _node_addr_map.find(lookup_node)->first;
// Build a return val
sep_info_t retval;
retval.has_ctrl = (key_node.extended_info >> 0) & 0x1;
retval.has_data = (key_node.extended_info >> 1) & 0x1;
retval.num_input_ports = retval.has_data ? ((key_node.extended_info >> 2) & 0x3F)
: 0;
retval.num_output_ports = retval.has_data ? ((key_node.extended_info >> 8) & 0x3F)
: 0;
retval.reports_strm_errs = (key_node.extended_info >> 14) & 0x1;
retval.addr = _epid_addr_map.at(epid);
return retval;
}
void setup_local_route(chdr_ctrl_xport& xport, const sep_id_t& dst_epid) override
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
auto my_epid = xport.get_epid();
// Look up the physical stream endpoint address using the endpoint ID
// node_addr contains the route to the host SEP to the destination SEP
const node_addr_t& node_addr = _lookup_sep_node_addr(dst_epid);
// Initialize all nodes between host and destination SEP. This will
// program all nodes to do the reverse routing (how to send packets to
// my_epid, i.e. back to the host).
node_addr_t route_addr = node_addr_t();
route_addr.push_back(std::make_pair(_my_node_id, next_dest_t(-1)));
for (const auto& addr_pair : node_addr) {
mgmt_payload init_req_xact;
_traverse_to_node(init_req_xact, route_addr);
_push_node_init_hop(init_req_xact, addr_pair.first, my_epid);
// Send the transaction and receive a response.
// We don't care about the contents of the response.
_send_recv_mgmt_transaction(xport, init_req_xact);
route_addr.push_back(addr_pair);
}
// Build a management transaction to configure all the nodes in the path going to
// dst_epid
mgmt_payload cfg_xact;
cfg_xact.set_header(my_epid, _protover, _chdr_w);
for (const auto& addr_pair : node_addr) {
const node_id_t& curr_node = addr_pair.first;
const next_dest_t& curr_dest = addr_pair.second;
mgmt_hop_t curr_cfg_hop;
switch (curr_node.type) {
case node_type::NODE_TYPE_XBAR: {
// Configure the routing table to route all packets going to dst_epid
// to the port with index next_dest_t
curr_cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(dst_epid, curr_dest)));
curr_cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_SEL_DEST,
mgmt_op_t::sel_dest_payload(static_cast<uint16_t>(curr_dest))));
} break;
case node_type::NODE_TYPE_XPORT: {
uint8_t node_subtype =
static_cast<uint8_t>(curr_node.extended_info & 0xFF);
// Run a hop configuration function for custom transports
if (_rtcfg_cfg_fns.count(node_subtype)) {
_rtcfg_cfg_fns.at(node_subtype)(curr_node.device_id,
curr_node.inst,
node_subtype,
curr_cfg_hop);
} else {
curr_cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_NOP));
}
} break;
case node_type::NODE_TYPE_STRM_EP: {
// Stream endpoints are not involved in routing, so do nothing
} break;
default: {
UHD_THROW_INVALID_CODE_PATH();
} break;
}
// Add this hop to the trancation only if it's not empty
if (curr_cfg_hop.get_num_ops() > 0) {
cfg_xact.add_hop(curr_cfg_hop);
}
}
// If we follow this route then we should end up at a stream endpoint
// so add an extra hop and return the packet back with the node info.
// We will sanity check it later
mgmt_hop_t discover_hop;
discover_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_INFO_REQ));
discover_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_RETURN));
cfg_xact.add_hop(discover_hop);
// Send the transaction and validate that we saw a stream endpoint
const mgmt_payload sep_info_xact = _send_recv_mgmt_transaction(xport, cfg_xact);
const node_id_t sep_node = _pop_node_discovery_hop(sep_info_xact);
if (sep_node.type != node_type::NODE_TYPE_STRM_EP) {
throw uhd::routing_error(
"Route setup failed. Could not confirm terminal stream endpoint");
}
UHD_LOG_DEBUG("RFNOC::MGMT",
(boost::format("Established a route from EPID=%d (SW) to EPID=%d")
% xport.get_epid() % dst_epid));
UHD_LOG_TRACE("RFNOC::MGMT",
(boost::format("The destination for EPID=%d has been added to all routers in "
"the path: %s")
% dst_epid % to_string(node_addr)));
}
bool can_remote_route(
const sep_addr_t& dst_addr, const sep_addr_t& src_addr) const override
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
if ((_discovered_ep_set.count(dst_addr) == 0)
|| (_discovered_ep_set.count(src_addr) == 0)) {
// Can't route to/from something if we don't know about it
return false;
}
UHD_ASSERT_THROW(_node_addr_map.count(node_id_t(dst_addr)) > 0);
UHD_ASSERT_THROW(_node_addr_map.count(node_id_t(src_addr)) > 0);
// Lookup the src and dst node address using the endpoint ID
const node_addr_t& dst_node_addr = _node_addr_map.at(node_id_t(dst_addr));
const node_addr_t& src_node_addr = _node_addr_map.at(node_id_t(src_addr));
// Find a common parent (could be faster than n^2 but meh, this is easier)
// Note: This is *not* finding the fastest path from dst_addr to src_addr.
// This using the existing routes we have, and finding a route through
// a common parent that also needs to be a crossbar.
for (const auto& dnode : dst_node_addr) {
for (const auto& snode : src_node_addr) {
if (dnode.first == snode.first
&& dnode.first.type == node_type::NODE_TYPE_XBAR) {
return true;
}
}
}
return false;
}
void setup_remote_route(chdr_ctrl_xport& xport,
const sep_id_t& dst_epid,
const sep_id_t& src_epid) override
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
if (not is_endpoint_registered(dst_epid)) {
throw uhd::routing_error("Route setup failed. The destination endpoint was "
"not bound to an EPID and registered");
}
if (not is_endpoint_registered(src_epid)) {
throw uhd::routing_error("Route setup failed. The source endpoint was "
"not bound to an EPID and registered");
}
if (not can_remote_route(
_epid_addr_map.at(dst_epid), _epid_addr_map.at(src_epid))) {
throw uhd::routing_error("Route setup failed. The endpoints don't share a "
"common crossbar parent.");
}
// If we setup local routes from this host to both the source and destination
// endpoints then the routing algorithm will guarantee that packet between src and
// dst will have a path between them as long as they share a common parent
// (crossbar). The assumption is verified above. It is also guaranteed that the
// path between them will be the shortest one. It is possible that we are
// configuring more crossbars than necessary but we do this for simplicity. If
// there is a need to optimize for routing table fullness, we can do a software
// graph traversal here, find the closest common parent (crossbar) for the two
// nodes and only configure the nodes downstream of that.
setup_local_route(xport, dst_epid);
setup_local_route(xport, src_epid);
UHD_LOG_DEBUG("RFNOC::MGMT",
(boost::format(
"The two routes above now enable a route from EPID=%d to EPID=%s")
% src_epid % dst_epid));
}
void config_local_rx_stream_start(chdr_ctrl_xport& xport,
const sep_id_t& epid,
const bool lossy_xport,
const sw_buff_t pyld_buff_fmt,
const sw_buff_t mdata_buff_fmt,
const stream_buff_params_t& fc_freq,
const stream_buff_params_t& fc_headroom,
const bool reset = false) override
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
auto my_epid = xport.get_epid();
// The discovery process has already setup a route from the
// destination to us. No additional action is necessary.
const node_addr_t& node_addr = _lookup_sep_node_addr(epid);
// Build a management transaction to first get to the node
mgmt_payload cfg_xact;
cfg_xact.set_header(my_epid, _protover, _chdr_w);
_traverse_to_node(cfg_xact, node_addr);
mgmt_hop_t cfg_hop;
// Assert reset if requested
if (reset) {
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(REG_RESET_AND_FLUSH, RESET_AND_FLUSH_OSTRM)));
}
// Set destination of the stream to us (this endpoint)
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(REG_OSTRM_DST_EPID, my_epid)));
// Configure flow control parameters
_push_ostrm_flow_control_config(lossy_xport,
pyld_buff_fmt,
mdata_buff_fmt,
_endianness != HOST_ENDIANNESS,
fc_freq,
fc_headroom,
cfg_hop);
// Return the packet back to us
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_RETURN));
// Send the transaction and receive a response.
// We don't care about the contents of the response.
cfg_xact.add_hop(cfg_hop);
_send_recv_mgmt_transaction(xport, cfg_xact);
UHD_LOG_DEBUG("RFNOC::MGMT",
(boost::format("Initiated RX stream setup for EPID=%d") % epid));
}
stream_buff_params_t config_local_rx_stream_commit(chdr_ctrl_xport& xport,
const sep_id_t& epid,
const double timeout = 0.2,
const bool fc_enabled = true) override
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
// Wait for stream configuration to finish on the HW side
const node_addr_t& node_addr = _lookup_sep_node_addr(epid);
_validate_stream_setup(xport, node_addr, timeout, fc_enabled);
UHD_LOG_DEBUG("RFNOC::MGMT",
(boost::format("Finished RX stream setup for EPID=%d") % epid));
// Return discovered buffer parameters
return std::get<1>(_get_ostrm_status(xport, node_addr));
}
void config_local_tx_stream(chdr_ctrl_xport& xport,
const sep_id_t& epid,
const sw_buff_t pyld_buff_fmt,
const sw_buff_t mdata_buff_fmt,
const bool reset = false) override
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
auto my_epid = xport.get_epid();
// First setup a route between to the endpoint
setup_local_route(xport, epid);
const node_addr_t& node_addr = _lookup_sep_node_addr(epid);
// Build a management transaction to first get to the node
mgmt_payload cfg_xact;
cfg_xact.set_header(my_epid, _protover, _chdr_w);
_traverse_to_node(cfg_xact, node_addr);
mgmt_hop_t cfg_hop;
// Assert reset if requested
if (reset) {
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(REG_RESET_AND_FLUSH, RESET_AND_FLUSH_ISTRM)));
}
// Configure buffer types
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(REG_ISTRM_CTRL_STATUS,
BUILD_CTRL_STATUS_WORD(false,
false,
pyld_buff_fmt,
mdata_buff_fmt,
_endianness != HOST_ENDIANNESS))));
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_RETURN));
cfg_xact.add_hop(cfg_hop);
// Send the transaction and receive a response.
// We don't care about the contents of the response.
_send_recv_mgmt_transaction(xport, cfg_xact);
UHD_LOG_DEBUG("RFNOC::MGMT",
(boost::format("Finished TX stream setup for EPID=%d") % epid));
}
stream_buff_params_t config_remote_stream(chdr_ctrl_xport& xport,
const sep_id_t& dst_epid,
const sep_id_t& src_epid,
const bool lossy_xport,
const stream_buff_params_t& fc_freq,
const stream_buff_params_t& fc_headroom,
const bool reset = false,
const double timeout = 0.2) override
{
std::lock_guard<std::recursive_mutex> lock(_mutex);
auto my_epid = xport.get_epid();
const bool fc_enabled = (fc_freq.bytes != 0) || (fc_freq.packets != 0);
// First setup a route between the two endpoints
setup_remote_route(xport, dst_epid, src_epid);
const node_addr_t& dst_node_addr = _lookup_sep_node_addr(dst_epid);
const node_addr_t& src_node_addr = _lookup_sep_node_addr(src_epid);
// If requested, send transactions to reset and flush endpoints
if (reset) {
// Reset source and destination (in that order)
for (size_t i = 0; i < 2; i++) {
mgmt_payload rst_xact;
rst_xact.set_header(my_epid, _protover, _chdr_w);
_traverse_to_node(rst_xact, (i == 0) ? src_node_addr : dst_node_addr);
mgmt_hop_t rst_hop;
rst_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(REG_RESET_AND_FLUSH,
(i == 0) ? RESET_AND_FLUSH_OSTRM : RESET_AND_FLUSH_ISTRM)));
rst_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_RETURN));
rst_xact.add_hop(rst_hop);
_send_recv_mgmt_transaction(xport, rst_xact);
}
}
// Build a management transaction to configure the source node
{
mgmt_payload cfg_xact;
cfg_xact.set_header(my_epid, _protover, _chdr_w);
_traverse_to_node(cfg_xact, src_node_addr);
mgmt_hop_t cfg_hop;
// Set destination of the stream to dst_epid
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(REG_OSTRM_DST_EPID, dst_epid)));
// Configure flow control parameters
_push_ostrm_flow_control_config(
lossy_xport, BUFF_U64, BUFF_U64, false, fc_freq, fc_headroom, cfg_hop);
// Return the packet back to us
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_RETURN));
// Send the transaction and receive a response.
// We don't care about the contents of the response.
cfg_xact.add_hop(cfg_hop);
_send_recv_mgmt_transaction(xport, cfg_xact);
}
// Build a management transaction to configure the destination node
{
mgmt_payload cfg_xact;
cfg_xact.set_header(my_epid, _protover, _chdr_w);
_traverse_to_node(cfg_xact, dst_node_addr);
mgmt_hop_t cfg_hop;
// Configure buffer types
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(REG_ISTRM_CTRL_STATUS,
BUILD_CTRL_STATUS_WORD(false, false, BUFF_U64, BUFF_U64, false))));
// Return the packet back to us
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_RETURN));
// Send the transaction and receive a response.
// We don't care about the contents of the response.
cfg_xact.add_hop(cfg_hop);
_send_recv_mgmt_transaction(xport, cfg_xact);
}
// Wait for stream configuration to finish on the HW side
_validate_stream_setup(xport, src_node_addr, timeout, fc_enabled);
UHD_LOG_DEBUG("RFNOC::MGMT",
(boost::format("Setup a stream from EPID=%d to EPID=%d") % src_epid
% dst_epid));
// Return discovered buffer parameters
return std::get<1>(_get_ostrm_status(xport, src_node_addr));
}
void register_xport_hop_cfg_fns(uint8_t xport_subtype,
xport_cfg_fn_t init_hop_cfg_fn,
xport_cfg_fn_t rtcfg_hop_cfg_fn) override
{
_init_cfg_fns[xport_subtype] = init_hop_cfg_fn;
_rtcfg_cfg_fns[xport_subtype] = rtcfg_hop_cfg_fn;
}
private: // Functions
// Discover all nodes that are reachable from this software stream endpoint
void _discover_topology(chdr_ctrl_xport& xport)
{
// Initialize a queue of pending paths. We will use this for a breadth-first
// traversal of the dataflow graph. The queue consists of a previously discovered
// node and the next destination to take from that node.
std::queue<std::pair<node_id_t, next_dest_t>> pending_paths;
auto my_epid = xport.get_epid();
// Add ourselves to the the pending queue to kick off the search
UHD_LOG_DEBUG("RFNOC::MGMT",
"Starting topology discovery from " << _my_node_id.to_string());
bool is_first_path = true;
pending_paths.push(std::make_pair(_my_node_id, next_dest_t(-1)));
while (not pending_paths.empty()) {
// Pop the next path to discover from the pending queue
const auto& next_path = pending_paths.front();
pending_paths.pop();
// We need to build a node_addr_t to allow us to get to next_path
// To do so we first lookup how to get to next_path.first. This location has
// already been discovered so we should just be able to look it up in
// _node_addr_map. The only exception for that is when we are just starting
// out, in which case our previous node is "us".
node_addr_t next_addr = is_first_path ? node_addr_t()
: _node_addr_map.at(next_path.first);
// Once we know how to get to the base node, then add the next destination
next_addr.push_back(next_path);
is_first_path = false;
// Build a management transaction to first get to our destination so that we
// can ask it to identify itself
mgmt_payload route_xact;
route_xact.set_header(my_epid, _protover, _chdr_w);
_traverse_to_node(route_xact, next_addr);
// Discover downstream node (we ask the node to identify itself)
mgmt_payload disc_req_xact(route_xact);
// Push a node discovery hop
mgmt_hop_t disc_hop;
disc_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_INFO_REQ));
disc_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_RETURN));
disc_req_xact.add_hop(disc_hop);
node_id_t new_node;
try {
// Send the discovery transaction
const mgmt_payload disc_resp_xact =
_send_recv_mgmt_transaction(xport, disc_req_xact);
new_node = _pop_node_discovery_hop(disc_resp_xact);
} catch (uhd::io_error& io_err) {
// We received an IO error. This could happen if we have a legitimate
// error or if there is no node to discover downstream. We can't tell for
// sure why but we can guess. If the next_path for this node is -1 then we
// expect something to be here, in which case we treat this as a
// legitimate error. In all other cases we assume that there was nothing
// to discover downstream.
if (next_path.second < 0) {
throw io_err;
} else {
// Move to the next pending path
UHD_LOG_TRACE("RFNOC::MGMT",
"Nothing connected on " << next_path.first.to_string() << "->"
<< next_path.second
<< ". Ignoring that path.");
continue;
}
}
// We found a node!
// First check if we have already seen this node in the past. If not, we have
// to add it to our internal data structures. If we have already seen it then
// we just skip it. It is OK to skip the node because we are doing a BFS,
// which means that the first time a node is discovered during the traversal,
// the distance from this EP to that node will be the shortest path. The core
// design philosophy for RFNoC is that the data will always take the shortest
// path, because we make the assumption that a shorter path *always* has
// better QoS compared to a longer one. If this assumption is not true, we
// have to handle ordering by QoS for which we need to modify this search a
// bit and provide QoS preferences in the API. That may be a future feature.
if (_node_addr_map.count(new_node) > 0) {
UHD_LOG_DEBUG("RFNOC::MGMT",
"Re-discovered node " << new_node.to_string() << ". Skipping it");
} else {
UHD_LOG_DEBUG("RFNOC::MGMT", "Discovered node " << new_node.to_string());
_node_addr_map[new_node] = next_addr;
// Initialize the node (first time config)
mgmt_payload init_req_xact(route_xact);
_push_node_init_hop(init_req_xact, new_node, my_epid);
// Send the transaction and receive a response.
// We don't care about the contents of the response.
_send_recv_mgmt_transaction(xport, init_req_xact);
UHD_LOG_DEBUG("RFNOC::MGMT", "Initialized node " << new_node.to_string());
// If the new node is a stream endpoint then we are done traversing this
// path. If not, then check all ports downstream of the new node and add
// them to pending_paths for further traversal
switch (new_node.type) {
case node_type::NODE_TYPE_XBAR: {
// Total ports on this crossbar
size_t nports =
static_cast<size_t>(new_node.extended_info & 0xFF);
// Total transport ports on this crossbar (the first nports_xport
// ports are transport ports)
size_t nports_xport =
static_cast<size_t>((new_node.extended_info >> 8) & 0xFF);
// When we allow daisy chaining, we need to recursively check
// other transports
size_t start_port = ALLOW_DAISY_CHAINING ? 0 : nports_xport;
for (size_t i = start_port; i < nports; i++) {
// Skip the current port because it's the input
if (i != static_cast<size_t>(new_node.inst)) {
// If there is a single downstream port then do nothing
pending_paths.push(std::make_pair(
new_node, static_cast<next_dest_t>(i)));
}
}
UHD_LOG_TRACE("RFNOC::MGMT",
"* " << new_node.to_string() << " has " << nports
<< " ports, " << nports_xport
<< " transports and we are hooked up on port "
<< new_node.inst);
} break;
case node_type::NODE_TYPE_STRM_EP: {
// Stop searching when we find a stream endpoint
// Add the endpoint to the discovered endpoint vector
_discovered_ep_set.insert(
sep_addr_t(new_node.device_id, new_node.inst));
} break;
case node_type::NODE_TYPE_XPORT: {
// A transport has only one output. We don't need to take
// any action to reach
pending_paths.push(std::make_pair(new_node, -1));
} break;
default: {
UHD_THROW_INVALID_CODE_PATH();
break;
}
}
}
}
}
// Add hops to the management transaction to reach the specified node
void _traverse_to_node(mgmt_payload& transaction, const node_addr_t& node_addr)
{
for (const auto& addr_pair : node_addr) {
const node_id_t& curr_node = addr_pair.first;
const next_dest_t& curr_dest = addr_pair.second;
if (curr_node.type != node_type::NODE_TYPE_STRM_EP) {
// If a node is a crossbar, then it must have a non-negative destination
UHD_ASSERT_THROW(
(curr_node.type != node_type::NODE_TYPE_XBAR || curr_dest >= 0));
_push_advance_hop(transaction, curr_dest);
} else {
// This is a stream endpoint. Nothing needs to be done to advance
// here. The behavior of this operation is identical whether or
// not the stream endpoint is in software or not.
}
}
}
// Add a hop to the transaction simply to get to the next node
void _push_advance_hop(mgmt_payload& transaction, const next_dest_t& next_dst)
{
if (next_dst >= 0) {
mgmt_hop_t sel_dest_hop;
sel_dest_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_SEL_DEST,
mgmt_op_t::sel_dest_payload(static_cast<uint16_t>(next_dst))));
transaction.add_hop(sel_dest_hop);
} else {
mgmt_hop_t nop_hop;
nop_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_NOP));
transaction.add_hop(nop_hop);
}
}
// Add operations to a hop to configure flow control for an output stream
void _push_ostrm_flow_control_config(const bool lossy_xport,
const sw_buff_t pyld_buff_fmt,
const sw_buff_t mdata_buff_fmt,
const bool byte_swap,
const stream_buff_params_t& fc_freq,
const stream_buff_params_t& fc_headroom,
mgmt_hop_t& hop)
{
// Validate flow control parameters
if (fc_freq.bytes > MAX_FC_FREQ_BYTES || fc_freq.packets > MAX_FC_FREQ_PKTS) {
throw uhd::value_error("Flow control frequency parameters out of bounds");
}
if (fc_headroom.bytes > MAX_FC_HEADROOM_BYTES
|| fc_headroom.packets > MAX_FC_HEADROOM_PKTS) {
throw uhd::value_error("Flow control headroom parameters out of bounds");
}
// Add flow control parameters to hop
hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(REG_OSTRM_FC_FREQ_BYTES_LO,
static_cast<uint32_t>(fc_freq.bytes & uint64_t(0xFFFFFFFF)))));
hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(
REG_OSTRM_FC_FREQ_BYTES_HI, static_cast<uint32_t>(fc_freq.bytes >> 32))));
hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(
REG_OSTRM_FC_FREQ_PKTS, static_cast<uint32_t>(fc_freq.packets))));
const uint32_t headroom_reg =
(static_cast<uint32_t>(fc_headroom.bytes) & 0xFFFF)
| ((static_cast<uint32_t>(fc_headroom.packets) & 0xFF) << 16);
hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(REG_OSTRM_FC_HEADROOM, headroom_reg)));
// Configure buffer types and lossy_xport, then start configuration
hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(REG_OSTRM_CTRL_STATUS,
BUILD_CTRL_STATUS_WORD(
true, lossy_xport, pyld_buff_fmt, mdata_buff_fmt, byte_swap))));
}
// Send/recv a management transaction that will get the output stream status
std::tuple<uint32_t, stream_buff_params_t> _get_ostrm_status(
chdr_ctrl_xport& xport, const node_addr_t& node_addr)
{
auto my_epid = xport.get_epid();
// Build a management transaction to first get to the node
mgmt_payload status_xact;
status_xact.set_header(my_epid, _protover, _chdr_w);
_traverse_to_node(status_xact, node_addr);
// Read all the status registers
mgmt_hop_t cfg_hop;
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_RD_REQ,
mgmt_op_t::cfg_payload(REG_OSTRM_CTRL_STATUS)));
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_RD_REQ,
mgmt_op_t::cfg_payload(REG_OSTRM_BUFF_CAP_BYTES_LO)));
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_RD_REQ,
mgmt_op_t::cfg_payload(REG_OSTRM_BUFF_CAP_BYTES_HI)));
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_RD_REQ,
mgmt_op_t::cfg_payload(REG_OSTRM_BUFF_CAP_PKTS)));
cfg_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_RETURN));
status_xact.add_hop(cfg_hop);
// Send the transaction, receive a response and validate it
const mgmt_payload resp_xact = _send_recv_mgmt_transaction(xport, status_xact);
if (resp_xact.get_num_hops() != 1) {
throw uhd::op_failed("Management operation failed. Incorrect format (hops).");
}
const mgmt_hop_t& rhop = resp_xact.get_hop(0);
if (rhop.get_num_ops() < 2
|| rhop.get_op(0).get_op_code() != mgmt_op_t::MGMT_OP_NOP) {
throw uhd::op_failed(
"Management operation failed. Incorrect format (operations).");
}
for (size_t i = 1; i < rhop.get_num_ops(); i++) {
if (rhop.get_op(i).get_op_code() != mgmt_op_t::MGMT_OP_CFG_RD_RESP) {
throw uhd::op_failed(
"Management operation failed. Incorrect format (operations).");
}
}
// Extract peek data from transaction
mgmt_op_t::cfg_payload status_pl = rhop.get_op(1).get_op_payload();
mgmt_op_t::cfg_payload cap_bytes_lo = rhop.get_op(2).get_op_payload();
mgmt_op_t::cfg_payload cap_bytes_hi = rhop.get_op(3).get_op_payload();
mgmt_op_t::cfg_payload cap_pkts = rhop.get_op(4).get_op_payload();
stream_buff_params_t buff_params;
buff_params.bytes = static_cast<uint64_t>(cap_bytes_lo.data)
| (static_cast<uint64_t>(cap_bytes_hi.data) << 32);
buff_params.packets = static_cast<uint32_t>(cap_pkts.data);
return std::make_tuple(status_pl.data, buff_params);
}
// Make sure that stream setup is complete and successful, else throw exception
void _validate_stream_setup(chdr_ctrl_xport& xport,
const node_addr_t& node_addr,
const double timeout,
const bool fc_enabled)
{
// Get the status of the output stream
uint32_t ostrm_status = 0;
double sleep_s = 0.001;
for (size_t i = 0; i < size_t(std::ceil(timeout / sleep_s)); i++) {
ostrm_status = std::get<0>(_get_ostrm_status(xport, node_addr));
if ((ostrm_status & STRM_STATUS_SETUP_PENDING) != 0) {
// Wait and retry
std::this_thread::sleep_for(std::chrono::milliseconds(static_cast<int64_t>(sleep_s * 1000)));
} else {
// Configuration is done
break;
}
}
if ((ostrm_status & STRM_STATUS_SETUP_PENDING) != 0) {
throw uhd::op_timeout("config_stream: Operation timed out");
}
if ((ostrm_status & STRM_STATUS_SETUP_ERR) != 0) {
throw uhd::op_failed("config_stream: Setup failure");
}
if (fc_enabled != bool(ostrm_status & STRM_STATUS_FC_ENABLED)) {
throw uhd::op_failed("config_stream: Flow control negotiation failed");
}
}
// Pop a node discovery response from a transaction and parse it
const node_id_t _pop_node_discovery_hop(const mgmt_payload& transaction)
{
if (transaction.get_num_hops() != 1) {
throw uhd::op_failed("Management operation failed. Incorrect format (hops).");
}
const mgmt_hop_t& rhop = transaction.get_hop(0);
if (rhop.get_num_ops() < 2) {
throw uhd::op_failed(
"Management operation failed. Incorrect number of operations.");
}
const mgmt_op_t& nop_resp = rhop.get_op(0);
const mgmt_op_t& info_resp = rhop.get_op(1);
if (nop_resp.get_op_code() != mgmt_op_t::MGMT_OP_NOP
|| info_resp.get_op_code() != mgmt_op_t::MGMT_OP_INFO_RESP) {
throw uhd::op_failed(
"Management operation failed. Incorrect format (operations).");
}
mgmt_op_t::node_info_payload resp_pl(info_resp.get_op_payload());
return std::move(node_id_t(resp_pl.device_id,
static_cast<node_type>(resp_pl.node_type),
resp_pl.node_inst,
resp_pl.ext_info));
}
// Push a hop onto a transaction to initialize the current node
void _push_node_init_hop(
mgmt_payload& transaction, const node_id_t& node, const sep_id_t& my_epid)
{
mgmt_hop_t init_hop;
switch (node.type) {
case node_type::NODE_TYPE_XBAR: {
// Configure the routing table to route all packets going to my_epid back
// to the port where the packet is entering
// The address for the transaction is the EPID and the data is the port #
init_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_CFG_WR_REQ,
mgmt_op_t::cfg_payload(my_epid, node.inst)));
} break;
case node_type::NODE_TYPE_STRM_EP: {
// Do nothing
init_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_NOP));
} break;
case node_type::NODE_TYPE_XPORT: {
uint8_t node_subtype = static_cast<uint8_t>(node.extended_info & 0xFF);
// Run a hop configuration function for custom transports
if (_init_cfg_fns.count(node_subtype)) {
_init_cfg_fns.at(node_subtype)(
node.device_id, node.inst, node_subtype, init_hop);
} else {
// For a generic transport, just advertise the transaction to the
// outside world. The generic xport adapter will do the rest
init_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_ADVERTISE));
}
} break;
default: {
UHD_THROW_INVALID_CODE_PATH();
} break;
}
init_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_RETURN));
transaction.add_hop(init_hop);
}
// Lookup the full address of a stream endpoint node given the EPID
const node_addr_t& _lookup_sep_node_addr(const sep_id_t& epid)
{
// Lookup the destination node address using the endpoint ID
if (_epid_addr_map.count(epid) == 0) {
throw uhd::lookup_error(
"Could not find a stream endpoint with the requested ID.");
}
node_id_t sep_node(_epid_addr_map.at(epid));
// If a node is in _epid_addr_map then it must be in _node_addr_map
UHD_ASSERT_THROW(_node_addr_map.count(sep_node) > 0);
return _node_addr_map.at(sep_node);
}
// Send the specified management transaction to the device
void _send_mgmt_transaction(
chdr_ctrl_xport& xport, const mgmt_payload& payload, double timeout = 0.1)
{
chdr_header header;
header.set_pkt_type(PKT_TYPE_MGMT);
header.set_num_mdata(0);
header.set_seq_num(static_cast<uint16_t>(_send_seqnum++));
header.set_length(uhd::narrow_cast<uint16_t>(payload.get_size_bytes() + (chdr_w_to_bits(_chdr_w) / 8)));
header.set_dst_epid(0);
auto send_buff = xport.get_send_buff(static_cast<int32_t>(timeout * 1000));
if (not send_buff) {
UHD_LOG_ERROR(
"RFNOC::MGMT", "Timed out getting send buff for management transaction");
throw uhd::io_error("Timed out getting send buff for management transaction");
}
_send_pkt->refresh(send_buff->data(), header, payload);
send_buff->set_packet_size(header.get_length());
xport.release_send_buff(std::move(send_buff));
}
// Send the specified management transaction to the device and receive a response
const mgmt_payload _send_recv_mgmt_transaction(
chdr_ctrl_xport& xport, const mgmt_payload& transaction, double timeout = 0.1)
{
auto my_epid = xport.get_epid();
mgmt_payload send(transaction);
send.set_header(my_epid, _protover, _chdr_w);
// If we are expecting to receive a response then we have to add an additional
// NO-OP hop for the receive endpoint. All responses will be appended to this hop.
mgmt_hop_t nop_hop;
nop_hop.add_op(mgmt_op_t(mgmt_op_t::MGMT_OP_NOP));
send.add_hop(nop_hop);
// Send the transaction over the wire
_send_mgmt_transaction(xport, send);
auto mgmt_buff = xport.get_mgmt_buff(static_cast<int32_t>(timeout * 1000));
if (not mgmt_buff) {
throw uhd::io_error("Timed out getting recv buff for management transaction");
}
_recv_pkt->refresh(mgmt_buff->data());
mgmt_payload recv;
recv.set_header(my_epid, _protover, _chdr_w);
_recv_pkt->fill_payload(recv);
xport.release_mgmt_buff(std::move(mgmt_buff));
return recv;
}
private: // Members
// The software RFNoC protocol version
const uint16_t _protover;
// CHDR Width for this design/application
const chdr_w_t _chdr_w;
// Endianness for the transport
const endianness_t _endianness;
// The node ID for this software endpoint
const node_id_t _my_node_id;
// A table that maps a node_id_t to a node_addr_t. This map allows looking up the
// address of a node given the node ID. There may be multiple ways to get to the
// node but we only store the shortest path here.
std::map<node_id_t, node_addr_t> _node_addr_map;
// A list of all discovered endpoints
std::set<sep_addr_t> _discovered_ep_set;
// A table that maps a stream endpoint ID to the physical address of the stream
// endpoint. This is a cache of the values from the epid_allocator
std::map<sep_id_t, sep_addr_t> _epid_addr_map;
// Send/recv transports
size_t _send_seqnum;
// Management packet containers
chdr_mgmt_packet::uptr _send_pkt;
chdr_mgmt_packet::cuptr _recv_pkt;
// Hop configuration function maps
std::map<uint8_t, xport_cfg_fn_t> _init_cfg_fns;
std::map<uint8_t, xport_cfg_fn_t> _rtcfg_cfg_fns;
// Mutex that protects all state in this class
mutable std::recursive_mutex _mutex;
}; // namespace mgmt
mgmt_portal::uptr mgmt_portal::make(chdr_ctrl_xport& xport,
const chdr::chdr_packet_factory& pkt_factory,
sep_addr_t my_sep_addr)
{
return std::make_unique<mgmt_portal_impl>(xport, pkt_factory, my_sep_addr);
}
}}} // namespace uhd::rfnoc::mgmt
|