aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/rfnoc/graph.cpp
blob: a26ed33fc7c531903731563e33c3398586d2af66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include <uhd/exception.hpp>
#include <uhd/utils/log.hpp>
#include <uhdlib/rfnoc/graph.hpp>
#include <uhdlib/rfnoc/node_accessor.hpp>
#include <boost/graph/filtered_graph.hpp>
#include <boost/graph/topological_sort.hpp>
#include <limits>
#include <utility>

using namespace uhd::rfnoc;
using namespace uhd::rfnoc::detail;

namespace {

const std::string LOG_ID                 = "RFNOC::GRAPH::DETAIL";
constexpr unsigned MAX_ACTION_ITERATIONS = 200;

/*! Helper function to pretty-print edge info
 */
std::string print_edge(
    graph_t::node_ref_t src, graph_t::node_ref_t dst, graph_t::graph_edge_t edge_info)
{
    return src->get_unique_id() + ":" + std::to_string(edge_info.src_port) + " -> "
           + dst->get_unique_id() + ":" + std::to_string(edge_info.dst_port);
}

/*! Return a list of dirty properties from a node
 */
auto get_dirty_props(graph_t::node_ref_t node_ref)
{
    using namespace uhd::rfnoc;
    node_accessor_t node_accessor{};
    return node_accessor.filter_props(node_ref, [](property_base_t* prop) {
        return prop->is_dirty()
               && prop->get_src_info().type != res_source_info::FRAMEWORK;
    });
}

} // namespace

/*! Graph-filtering predicate to find dirty nodes only
 */
struct graph_t::DirtyNodePredicate
{
    DirtyNodePredicate() {} // Default ctor is required
    DirtyNodePredicate(graph_t::rfnoc_graph_t& graph) : _graph(&graph) {}

    template <typename Vertex>
    bool operator()(const Vertex& v) const
    {
        return !get_dirty_props(boost::get(graph_t::vertex_property_t(), *_graph, v))
                    .empty();
    }

private:
    // Don't make any attribute const, because default assignment operator
    // is also required
    graph_t::rfnoc_graph_t* _graph;
};

/******************************************************************************
 * Public API calls
 *****************************************************************************/
void graph_t::connect(node_ref_t src_node, node_ref_t dst_node, graph_edge_t edge_info)
{
    std::lock_guard<std::recursive_mutex> l(_graph_mutex);

    node_accessor_t node_accessor{};
    UHD_LOG_TRACE(LOG_ID,
        "Connecting block " << src_node->get_unique_id() << ":" << edge_info.src_port
                            << " -> " << dst_node->get_unique_id() << ":"
                            << edge_info.dst_port);

    // Correctly populate edge_info
    edge_info.src_blockid = src_node->get_unique_id();
    edge_info.dst_blockid = dst_node->get_unique_id();

    // Add nodes to graph, if not already in there:
    _add_node(src_node);
    _add_node(dst_node);
    // Find vertex descriptors
    auto src_vertex_desc = _node_map.at(src_node);
    auto dst_vertex_desc = _node_map.at(dst_node);

    // Set resolver callbacks:
    node_accessor.set_resolve_all_callback(src_node, [this, src_vertex_desc]() {
        this->resolve_all_properties(resolve_context::NODE_PROP, src_vertex_desc);
    });
    node_accessor.set_resolve_all_callback(dst_node, [this, dst_vertex_desc]() {
        this->resolve_all_properties(resolve_context::NODE_PROP, dst_vertex_desc);
    });
    // Set post action callbacks:
    node_accessor.set_post_action_callback(
        src_node, [this, src_node](const res_source_info& src, action_info::sptr action) {
            this->enqueue_action(src_node, src, action);
        });
    node_accessor.set_post_action_callback(
        dst_node, [this, dst_node](const res_source_info& src, action_info::sptr action) {
            this->enqueue_action(dst_node, src, action);
        });

    // Check if edge exists
    auto out_edge_range = boost::out_edges(src_vertex_desc, _graph);
    for (auto edge_it = out_edge_range.first; edge_it != out_edge_range.second;
         ++edge_it) {
        auto existing_edge_info = boost::get(edge_property_t(), _graph, *edge_it);

        // if exact edge exists, do nothing and return
        if (existing_edge_info == edge_info) {
            UHD_LOG_INFO(LOG_ID,
                "Ignoring repeated call to connect "
                    << edge_info.src_blockid << ":" << edge_info.src_port << " -> "
                    << edge_info.dst_blockid << ":" << edge_info.dst_port);
            return;
        }

        // if there is already an edge for the source block and port
        if (existing_edge_info.src_port == edge_info.src_port
            && existing_edge_info.src_blockid == edge_info.src_blockid) {
            // if same destination block and port
            if (existing_edge_info.dst_port == edge_info.dst_port
                && existing_edge_info.dst_blockid == edge_info.dst_blockid) {
                // attempt to modify edge properties - throw an error
                UHD_LOG_ERROR(LOG_ID,
                    "Caught attempt to modify properties of edge "
                        << existing_edge_info.src_blockid << ":"
                        << existing_edge_info.src_port << " -> "
                        << existing_edge_info.dst_blockid << ":"
                        << existing_edge_info.dst_port);
                throw uhd::rfnoc_error("Caught attempt to modify properties of edge!");
            } else {
                // Attempt to reconnect already connected source block and port
                UHD_LOG_ERROR(LOG_ID,
                    "Attempting to reconnect output port "
                        << existing_edge_info.src_blockid << ":"
                        << existing_edge_info.src_port);
                throw uhd::rfnoc_error("Attempting to reconnect output port!");
            }
        }
    }
    auto in_edge_range = boost::in_edges(dst_vertex_desc, _graph);
    for (auto edge_it = in_edge_range.first; edge_it != in_edge_range.second; ++edge_it) {
        auto existing_edge_info = boost::get(edge_property_t(), _graph, *edge_it);
        if (edge_info.dst_blockid == existing_edge_info.dst_blockid
            && edge_info.dst_port == existing_edge_info.dst_port) {
            UHD_LOG_ERROR(LOG_ID,
                "Attempting to reconnect input port " << existing_edge_info.dst_blockid
                                                      << ":"
                                                      << existing_edge_info.dst_port);
            throw uhd::rfnoc_error("Attempting to reconnect input port!");
        }
    }

    // Create edge
    auto edge_descriptor =
        boost::add_edge(src_vertex_desc, dst_vertex_desc, edge_info, _graph);
    UHD_ASSERT_THROW(edge_descriptor.second);

    // Now make sure we didn't add an unintended cycle
    try {
        _get_topo_sorted_nodes();
    } catch (const uhd::rfnoc_error&) {
        UHD_LOG_ERROR(LOG_ID,
            "Adding edge " << src_node->get_unique_id() << ":" << edge_info.src_port
                           << " -> " << dst_node->get_unique_id() << ":"
                           << edge_info.dst_port
                           << " without disabling property_propagation_active will lead "
                              "to unresolvable graph!");
        boost::remove_edge(edge_descriptor.first, _graph);
        throw uhd::rfnoc_error(
            "Adding edge without disabling property_propagation_active will lead "
            "to unresolvable graph!");
    }
}

void graph_t::disconnect(node_ref_t src_node, node_ref_t dst_node, graph_edge_t edge_info)
{
    std::lock_guard<std::recursive_mutex> l(_graph_mutex);

    // Find vertex descriptor
    if (_node_map.count(src_node) == 0 && _node_map.count(dst_node) == 0) {
        return;
    }

    auto src_vertex_desc = _node_map.at(src_node);
    auto dst_vertex_desc = _node_map.at(dst_node);

    edge_info.src_blockid = src_node->get_unique_id();
    edge_info.dst_blockid = dst_node->get_unique_id();

    boost::remove_out_edge_if(src_vertex_desc,
        [this, edge_info](rfnoc_graph_t::edge_descriptor edge_desc) {
            return (edge_info == boost::get(edge_property_t(), this->_graph, edge_desc));
        },
        _graph);

    if (boost::degree(src_vertex_desc, _graph) == 0) {
        _remove_node(src_node);
    }

    // Re-look up the vertex descriptor for dst_node, as the act of removing
    // src_node may have modified it
    dst_vertex_desc = _node_map.at(dst_node);
    if (boost::degree(dst_vertex_desc, _graph) == 0) {
        _remove_node(dst_node);
    }
}

void graph_t::remove(node_ref_t node)
{
    std::lock_guard<std::recursive_mutex> l(_graph_mutex);
    _remove_node(node);
}

void graph_t::commit()
{
    std::lock_guard<std::recursive_mutex> l(_graph_mutex);
    if (_release_count) {
        _release_count--;
    }
    if (_release_count == 0) {
        _check_topology();
        resolve_all_properties(resolve_context::INIT, *boost::vertices(_graph).first);
    }
}

void graph_t::release()
{
    std::lock_guard<std::recursive_mutex> l(_graph_mutex);
    UHD_LOG_TRACE(LOG_ID, "graph::release() => " << _release_count);
    _release_count++;
}

void graph_t::shutdown()
{
    std::lock_guard<std::recursive_mutex> l(_graph_mutex);
    UHD_LOG_TRACE(LOG_ID, "graph::shutdown()");
    _shutdown      = true;
    _release_count = std::numeric_limits<size_t>::max();
}

std::vector<graph_t::graph_edge_t> graph_t::enumerate_edges()
{
    auto e_iterators = boost::edges(_graph);
    std::vector<graph_edge_t> result;
    for (auto e_it = e_iterators.first; e_it != e_iterators.second; ++e_it) {
        graph_edge_t edge_info = boost::get(edge_property_t(), _graph, *e_it);
        // This is probably the dumbest way to make sure that the in- and out-
        // edges don't both get stashed, but it works for now
        if (std::find(result.begin(), result.end(), edge_info) == result.end()) {
            result.push_back(boost::get(edge_property_t(), _graph, *e_it));
        }
    }
    return result;
}

/******************************************************************************
 * Private methods to be called by friends
 *****************************************************************************/
void graph_t::resolve_all_properties(
    resolve_context context, rfnoc_graph_t::vertex_descriptor initial_node)
{
    if (boost::num_vertices(_graph) == 0) {
        return;
    }

    node_accessor_t node_accessor{};
    // We can't release during property propagation, so we lock this entire
    // method to make sure that a) different threads can't interfere with each
    // other, and b) that we don't release the graph while this method is still
    // running.
    std::lock_guard<std::recursive_mutex> l(_graph_mutex);
    if (_shutdown) {
        return;
    }
    if (_release_count) {
        node_ref_t current_node = boost::get(vertex_property_t(), _graph, initial_node);
        UHD_LOG_TRACE(LOG_ID,
            "Only resolving node " << current_node->get_unique_id()
                                   << ", graph is not committed!");
        // On current node, call local resolution.
        node_accessor.resolve_props(current_node);
        // Now mark all properties on this node as clean
        node_accessor.clean_props(current_node);
        return;
    }

    // First, find the node on which we'll start.
    auto initial_dirty_nodes = _find_dirty_nodes();
    if (initial_dirty_nodes.size() > 1) {
        UHD_LOGGER_WARNING(LOG_ID)
            << "Found " << initial_dirty_nodes.size()
            << " dirty nodes in initial search (expected one or zero). "
               "Property propagation may resolve this.";
        for (auto& vertex : initial_dirty_nodes) {
            node_ref_t node = boost::get(vertex_property_t(), _graph, vertex);
            UHD_LOG_WARNING(LOG_ID, "Dirty: " << node->get_unique_id());
        }
    }

    // Now get all nodes in topologically sorted order, and the appropriate
    // iterators.
    auto topo_sorted_nodes = _get_topo_sorted_nodes();
    auto node_it           = topo_sorted_nodes.begin();
    auto begin_it          = topo_sorted_nodes.begin();
    auto end_it            = topo_sorted_nodes.end();
    while (*node_it != initial_node) {
        // We know *node_it must be == initial_node at some point, because
        // otherwise, initial_dirty_nodes would have been empty
        node_it++;
    }

    // Start iterating over nodes
    bool forward_dir   = true;
    int num_iterations = 0;
    // If all edge properties were known at the beginning, a single iteration
    // would suffice. However, usually during the first time the property
    // propagation is run, blocks create new (dynamic) edge properties that
    // default to dirty. If we had a way of knowing when that happens, we could
    // dynamically increase the number of iterations during the loop. For now,
    // we simply hard-code the number of iterations to 2 so that we catch that
    // case without any additional complications.
    constexpr int MAX_NUM_ITERATIONS = 2;
    while (true) {
        node_ref_t current_node = boost::get(vertex_property_t(), _graph, *node_it);
        UHD_LOG_TRACE(
            LOG_ID, "Now resolving next node: " << current_node->get_unique_id());

        // On current node, call local resolution. This may cause other
        // properties to become dirty.
        try {
            node_accessor.resolve_props(current_node);
        } catch (const uhd::resolve_error& ex) {
            UHD_LOG_ERROR(LOG_ID, current_node->get_unique_id() + ": " + ex.what());
            throw;
        }

        //  Forward all edge props in all directions from current node. We make
        //  sure to skip properties if the edge is flagged as
        //  !property_propagation_active
        _forward_edge_props(*node_it);

        // Now mark all properties on this node as clean
        node_accessor.clean_props(current_node);

        // If the property resolution was triggered by a node updating one of
        // its properties, we can stop anytime there are no more dirty nodes.
        if (context == resolve_context::NODE_PROP && _find_dirty_nodes().empty()) {
            UHD_LOG_TRACE(LOG_ID,
                "Terminating graph resolution early during iteration " << num_iterations);
            break;
        }

        // The rest of the code in this loop is to figure out who's the next
        // node. First, increment (or decrement) iterator:
        if (forward_dir) {
            node_it++;
            // If we're at the end, flip the direction
            if (node_it == end_it) {
                forward_dir = false;
                // Back off from the sentinel:
                node_it--;
            }
        }
        if (!forward_dir) {
            if (topo_sorted_nodes.size() > 1) {
                node_it--;
                // If we're back at the front, flip direction
                if (node_it == begin_it) {
                    forward_dir = true;
                }
            } else {
                forward_dir = true;
            }
        }
        // If we're going forward, and the next node is the initial node,
        // we've gone full circle (one full iteration).
        if (forward_dir && (*node_it == initial_node)) {
            num_iterations++;
            if (num_iterations == MAX_NUM_ITERATIONS || _find_dirty_nodes().empty()) {
                UHD_LOG_TRACE(LOG_ID,
                    "Terminating graph resolution after iteration " << num_iterations);
                break;
            }
        }
    }

    // Post-iteration sanity checks:
    // First, we make sure that there are no dirty properties left. If there are,
    // that means our algorithm couldn't converge and we have a problem.
    auto remaining_dirty_nodes = _find_dirty_nodes();
    if (!remaining_dirty_nodes.empty()) {
        UHD_LOG_ERROR(LOG_ID, "The following properties could not be resolved:");
        for (auto& vertex : remaining_dirty_nodes) {
            node_ref_t node           = boost::get(vertex_property_t(), _graph, vertex);
            const std::string node_id = node->get_unique_id();
            auto dirty_props          = get_dirty_props(node);
            for (auto& prop : dirty_props) {
                UHD_LOG_ERROR(LOG_ID,
                    "Dirty: " << node_id << "[" << prop->get_src_info().to_string() << " "
                              << prop->get_id() << "]");
            }
        }
        throw uhd::resolve_error("Could not resolve properties.");
    }

    // Second, go through edges marked !property_propagation_active and make
    // sure that they match up
    BackEdgePredicate back_edge_filter(_graph);
    auto e_iterators =
        boost::edges(boost::filtered_graph<rfnoc_graph_t, BackEdgePredicate>(
            _graph, back_edge_filter));
    bool back_edges_valid = true;
    for (auto e_it = e_iterators.first; e_it != e_iterators.second; ++e_it) {
        back_edges_valid = back_edges_valid && _assert_edge_props_consistent(*e_it);
    }
    if (!back_edges_valid) {
        throw uhd::resolve_error(
            "Error during property resultion: Back-edges inconsistent!");
    }
}

void graph_t::enqueue_action(
    node_ref_t src_node, res_source_info src_edge, action_info::sptr action)
{
    // We can't release during action handling, so we lock this entire
    // method to make sure that we don't release the graph while this method is
    // still running.
    // It also prevents a different thread from throwing in their own actions.
    std::lock_guard<std::recursive_mutex> release_lock(_graph_mutex);
    if (_shutdown) {
        return;
    }
    if (_release_count) {
        UHD_LOG_WARNING(LOG_ID,
            "Action propagation is not enabled, graph is not committed! Will not "
            "propagate action `"
                << action->key << "'");
        return;
    }

    // Check if we're already in the middle of handling actions. In that case,
    // we're already in the loop below, and then all we want to do is to enqueue
    // this action tuple. The first call to enqueue_action() within this thread
    // context will have handling_ongoing == false.
    const bool handling_ongoing = _action_handling_ongoing.test_and_set();
    // In any case, stash the new action at the end of the action queue
    _action_queue.emplace_back(std::make_tuple(src_node, src_edge, action));
    if (handling_ongoing) {
        UHD_LOG_TRACE(LOG_ID,
            "Action handling ongoing, deferring delivery of " << action->key << "#"
                                                              << action->id);
        return;
    }

    unsigned iteration_count = 0;
    while (!_action_queue.empty()) {
        if (iteration_count++ == MAX_ACTION_ITERATIONS) {
            throw uhd::runtime_error("Terminating action handling: Reached "
                                     "recursion limit!");
        }

        // Unpack next action
        auto& next_action                  = _action_queue.front();
        node_ref_t action_src_node         = std::get<0>(next_action);
        res_source_info action_src_port    = std::get<1>(next_action);
        action_info::sptr next_action_sptr = std::get<2>(next_action);
        _action_queue.pop_front();

        // Find the node that is supposed to receive this action, and if we find
        // something, then send the action. If the source port's type is USER,
        // that means the action is meant for us.
        node_ref_t recipient_node;
        res_source_info recipient_port(action_src_port);

        if (action_src_port.type == res_source_info::USER) {
            recipient_node = action_src_node;
            recipient_port = action_src_port;
        } else {
            auto recipient_info =
                _find_neighbour(_node_map.at(action_src_node), action_src_port);
            recipient_node = recipient_info.first;
            if (recipient_node == nullptr) {
                UHD_LOG_WARNING(LOG_ID,
                    "Cannot forward action "
                        << action->key << " from " << src_node->get_unique_id() << ":"
                        << src_edge.to_string() << ", no neighbour found!");
                continue;
            }
            recipient_port = {res_source_info::invert_edge(action_src_port.type),
                action_src_port.type == res_source_info::INPUT_EDGE
                    ? recipient_info.second.src_port
                    : recipient_info.second.dst_port};
        }
        // The following call can cause other nodes to add more actions to
        // the end of _action_queue!
        UHD_LOG_TRACE(LOG_ID,
            "Now delivering action "
                << next_action_sptr->key << "#" << next_action_sptr->id << " to "
                << recipient_node->get_unique_id() << "@" << recipient_port.to_string());
        node_accessor_t{}.send_action(recipient_node, recipient_port, next_action_sptr);
    }
    UHD_LOG_TRACE(LOG_ID, "Delivered all actions, terminating action handling.");

    // Release the action handling flag
    _action_handling_ongoing.clear();
    // Now, the _graph_mutex is released, and someone else can start sending
    // actions.
}

/******************************************************************************
 * Private methods
 *****************************************************************************/
graph_t::vertex_list_t graph_t::_find_dirty_nodes()
{
    // Create a view on the graph that doesn't include the back-edges
    DirtyNodePredicate vertex_filter(_graph);
    boost::filtered_graph<rfnoc_graph_t, boost::keep_all, DirtyNodePredicate> fg(
        _graph, boost::keep_all(), vertex_filter);

    auto v_iterators = boost::vertices(fg);
    return vertex_list_t(v_iterators.first, v_iterators.second);
}

graph_t::vertex_list_t graph_t::_get_topo_sorted_nodes()
{
    // Create a view on the graph that doesn't include the back-edges
    ForwardEdgePredicate edge_filter(_graph);
    boost::filtered_graph<rfnoc_graph_t, ForwardEdgePredicate> fg(_graph, edge_filter);

    // Topo-sort and return
    vertex_list_t sorted_nodes;
    try {
        boost::topological_sort(fg, std::front_inserter(sorted_nodes));
    } catch (boost::not_a_dag&) {
        throw uhd::rfnoc_error("Cannot resolve graph because it has at least one cycle!");
    }
    return sorted_nodes;
}

void graph_t::_add_node(node_ref_t new_node)
{
    if (_node_map.count(new_node)) {
        return;
    }

    _node_map.emplace(new_node, boost::add_vertex(new_node, _graph));
}

void graph_t::_remove_node(node_ref_t node)
{
    if (_node_map.count(node)) {
        auto vertex_desc = _node_map.at(node);

        // Remove all edges
        boost::clear_vertex(vertex_desc, _graph);

        // Remove the vertex
        boost::remove_vertex(vertex_desc, _graph);
        _node_map.erase(node);

        // Removing the vertex changes the vertex descriptors,
        // so update the node map
        auto vertex_range = boost::vertices(_graph);
        for (auto vertex_it = vertex_range.first; vertex_it != vertex_range.second;
             vertex_it++) {
            auto node       = boost::get(vertex_property_t(), _graph, *vertex_it);
            _node_map[node] = *vertex_it;
        }
    }
}


void graph_t::_forward_edge_props(graph_t::rfnoc_graph_t::vertex_descriptor origin)
{
    node_accessor_t node_accessor{};
    node_ref_t origin_node = boost::get(vertex_property_t(), _graph, origin);

    auto edge_props = node_accessor.filter_props(origin_node, [](property_base_t* prop) {
        return (prop->get_src_info().type == res_source_info::INPUT_EDGE
                || prop->get_src_info().type == res_source_info::OUTPUT_EDGE);
    });
    UHD_LOG_TRACE(LOG_ID,
        "Forwarding up to " << edge_props.size() << " edge properties from node "
                            << origin_node->get_unique_id());

    for (auto prop : edge_props) {
        auto neighbour_node_info = _find_neighbour(origin, prop->get_src_info());
        if (neighbour_node_info.first != nullptr
            && neighbour_node_info.second.property_propagation_active) {
            const size_t neighbour_port = prop->get_src_info().type
                                                  == res_source_info::INPUT_EDGE
                                              ? neighbour_node_info.second.src_port
                                              : neighbour_node_info.second.dst_port;
            node_accessor.forward_edge_property(
                neighbour_node_info.first, neighbour_port, prop);
        }
    }
}

bool graph_t::_assert_edge_props_consistent(rfnoc_graph_t::edge_descriptor edge)
{
    node_ref_t src_node =
        boost::get(vertex_property_t(), _graph, boost::source(edge, _graph));
    node_ref_t dst_node =
        boost::get(vertex_property_t(), _graph, boost::target(edge, _graph));
    graph_edge_t edge_info = boost::get(edge_property_t(), _graph, edge);

    // Helper function to get properties as maps
    auto get_prop_map = [](const size_t port,
                            res_source_info::source_t edge_type,
                            node_ref_t node) {
        node_accessor_t node_accessor{};
        // Create a set of all properties
        auto props_set = node_accessor.filter_props(
            node, [port, edge_type, node](property_base_t* prop) {
                return prop->get_src_info().instance == port
                       && prop->get_src_info().type == edge_type;
            });
        std::unordered_map<std::string, property_base_t*> prop_map;
        for (auto prop_it = props_set.begin(); prop_it != props_set.end(); ++prop_it) {
            prop_map.emplace((*prop_it)->get_id(), *prop_it);
        }

        return prop_map;
    };

    // Create two maps ID -> prop_ptr, so we have an easier time comparing them
    auto src_prop_map =
        get_prop_map(edge_info.src_port, res_source_info::OUTPUT_EDGE, src_node);
    auto dst_prop_map =
        get_prop_map(edge_info.dst_port, res_source_info::INPUT_EDGE, dst_node);

    // Now iterate through all properties, and make sure they match
    bool props_match = true;
    for (auto src_prop_it = src_prop_map.begin(); src_prop_it != src_prop_map.end();
         ++src_prop_it) {
        auto src_prop = src_prop_it->second;
        auto dst_prop = dst_prop_map.at(src_prop->get_id());
        if (!src_prop->equal(dst_prop)) {
            UHD_LOG_ERROR(LOG_ID,
                "Edge property " << src_prop->get_id() << " inconsistent on edge "
                                 << print_edge(src_node, dst_node, edge_info));
            props_match = false;
        }
    }

    return props_match;
}

void graph_t::_check_topology()
{
    node_accessor_t node_accessor{};
    bool topo_ok     = true;
    auto v_iterators = boost::vertices(_graph);
    for (auto it = v_iterators.first; it != v_iterators.second; ++it) {
        node_ref_t node = boost::get(vertex_property_t(), _graph, *it);
        std::vector<size_t> connected_inputs;
        std::vector<size_t> connected_outputs;
        auto ie_iters = boost::in_edges(*it, _graph);
        for (auto it = ie_iters.first; it != ie_iters.second; ++it) {
            graph_edge_t edge_info = boost::get(edge_property_t(), _graph, *it);
            connected_inputs.push_back(edge_info.dst_port);
        }
        auto oe_iters = boost::out_edges(*it, _graph);
        for (auto it = oe_iters.first; it != oe_iters.second; ++it) {
            graph_edge_t edge_info = boost::get(edge_property_t(), _graph, *it);
            connected_outputs.push_back(edge_info.src_port);
        }

        if (!node_accessor.check_topology(node, connected_inputs, connected_outputs)) {
            UHD_LOG_ERROR(LOG_ID,
                "Node " << node->get_unique_id()
                        << "cannot handle its current topology! ("
                        << connected_inputs.size() << "inputs, "
                        << connected_outputs.size() << " outputs)");
            topo_ok = false;
        }
    }

    if (!topo_ok) {
        throw uhd::runtime_error("Graph topology is not valid!");
    }
}

std::pair<graph_t::node_ref_t, graph_t::graph_edge_t> graph_t::_find_neighbour(
    rfnoc_graph_t::vertex_descriptor origin, res_source_info port_info)
{
    if (port_info.type == res_source_info::INPUT_EDGE) {
        auto it_range = boost::in_edges(origin, _graph);
        for (auto it = it_range.first; it != it_range.second; ++it) {
            graph_edge_t edge_info = boost::get(edge_property_t(), _graph, *it);
            if (edge_info.dst_port == port_info.instance) {
                return {
                    boost::get(vertex_property_t(), _graph, boost::source(*it, _graph)),
                    edge_info};
            }
        }
        return {nullptr, {}};
    }
    if (port_info.type == res_source_info::OUTPUT_EDGE) {
        auto it_range = boost::out_edges(origin, _graph);
        for (auto it = it_range.first; it != it_range.second; ++it) {
            graph_edge_t edge_info = boost::get(edge_property_t(), _graph, *it);
            if (edge_info.src_port == port_info.instance) {
                return {
                    boost::get(vertex_property_t(), _graph, boost::target(*it, _graph)),
                    edge_info};
            }
        }
        return {nullptr, {}};
    }

    UHD_THROW_INVALID_CODE_PATH();
}