1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
//
// Copyright 2016-2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include "dsp_core_utils.hpp"
#include <uhd/rfnoc/duc_block_ctrl.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/convert.hpp>
#include <uhd/types/ranges.hpp>
#include <uhdlib/utils/compat_check.hpp>
#include <uhdlib/utils/math.hpp>
#include <uhdlib/utils/narrow.hpp>
#include <boost/math/special_functions/round.hpp>
#include <cmath>
using namespace uhd::rfnoc;
class duc_block_ctrl_impl : public duc_block_ctrl
{
public:
UHD_RFNOC_BLOCK_CONSTRUCTOR(duc_block_ctrl)
, _fpga_compat(user_reg_read64(RB_REG_COMPAT_NUM))
, _num_halfbands(uhd::narrow_cast<size_t>(
user_reg_read64(RB_REG_NUM_HALFBANDS)))
, _cic_max_interp(uhd::narrow_cast<size_t>(
user_reg_read64(RB_REG_CIC_MAX_INTERP)))
{
UHD_LOG_DEBUG(unique_id(),
"Loading DUC with " << get_num_halfbands() << " halfbands and "
"max CIC interpolation " << get_cic_max_interp()
);
uhd::assert_fpga_compat(
MAJOR_COMP, MINOR_COMP,
_fpga_compat,
"DUC", "DUC",
false /* Let it slide if minors mismatch */
);
// Argument/prop tree hooks
for (size_t chan = 0; chan < get_input_ports().size(); chan++) {
const double default_freq = get_arg<double>("freq", chan);
_tree->access<double>(get_arg_path("freq/value", chan))
.set_coercer([this, chan](const double value){
return this->set_freq(value, chan);
})
.set(default_freq);
;
const double default_input_rate =
get_arg<double>("input_rate", chan);
_tree->access<double>(get_arg_path("input_rate/value", chan))
.set_coercer([this, chan](const double value){
return this->set_input_rate(value, chan);
})
.set(default_input_rate)
;
_tree->access<double>(get_arg_path("output_rate/value", chan))
.add_coerced_subscriber([this, chan](const double rate){
this->set_output_rate(rate, chan);
})
;
// Legacy properties (for backward compat w/ multi_usrp)
const uhd::fs_path dsp_base_path = _root_path / "legacy_api" / chan;
// Legacy properties
_tree->create<double>(dsp_base_path / "rate/value")
.set_coercer([this, chan](const double value){
return this->_tree->access<double>(
this->get_arg_path("input_rate/value", chan)
).set(value).get();
})
.set_publisher([this, chan](){
return this->_tree->access<double>(
this->get_arg_path("input_rate/value", chan)
).get();
})
;
_tree->create<uhd::meta_range_t>(dsp_base_path / "rate/range")
.set_publisher([this](){
return get_input_rates();
})
;
_tree->create<double>(dsp_base_path / "freq/value")
.set_coercer([this, chan](const double value){
return this->_tree->access<double>(
this->get_arg_path("freq/value", chan)
).set(value).get();
})
.set_publisher([this, chan](){
return this->_tree->access<double>(
this->get_arg_path("freq/value", chan)
).get();
})
;
_tree->create<uhd::meta_range_t>(dsp_base_path / "freq/range")
.set_publisher([this](){
return get_freq_range();
})
;
_tree->access<uhd::time_spec_t>("time/cmd")
.add_coerced_subscriber([this, chan](const uhd::time_spec_t time_spec){
this->set_command_time(time_spec, chan);
})
;
if (_tree->exists("tick_rate")) {
const double tick_rate =
_tree->access<double>("tick_rate").get();
set_command_tick_rate(tick_rate, chan);
_tree->access<double>("tick_rate")
.add_coerced_subscriber([this, chan](const double rate){
this->set_command_tick_rate(rate, chan);
})
;
}
// Rate 1:1 by default
sr_write("N", 1, chan);
sr_write("M", 1, chan);
sr_write("CONFIG", 1, chan); // Enable clear EOB
}
} // end ctor
virtual ~duc_block_ctrl_impl() {}
double get_input_scale_factor(size_t port=ANY_PORT)
{
port = (port == ANY_PORT) ? 0 : port;
if (not (_tx_streamer_active.count(port) and _tx_streamer_active.at(port))) {
return SCALE_UNDEFINED;
}
return get_arg<double>("scalar_correction", port);
}
double get_input_samp_rate(size_t port=ANY_PORT)
{
port = (port == ANY_PORT) ? 0 : port;
// Wait, what? If this seems out of place to you, you're right. However,
// we need a function call that is called when the graph is complete,
// but streaming is not yet set up.
if (_tree->exists("tick_rate")) {
const double tick_rate = _tree->access<double>("tick_rate").get();
set_command_tick_rate(tick_rate, port);
}
if (not (_tx_streamer_active.count(port) and _tx_streamer_active.at(port))) {
return RATE_UNDEFINED;
}
return get_arg<double>("input_rate", port);
}
double get_output_samp_rate(size_t port=ANY_PORT)
{
port = (port == ANY_PORT) ? 0 : port;
if (not (_tx_streamer_active.count(port) and _tx_streamer_active.at(port))) {
return RATE_UNDEFINED;
}
return get_arg<double>("output_rate", port == ANY_PORT ? 0 : port);
}
void issue_stream_cmd(
const uhd::stream_cmd_t &stream_cmd_,
const size_t chan
) {
UHD_RFNOC_BLOCK_TRACE() << "duc_block_ctrl_base::issue_stream_cmd()" ;
uhd::stream_cmd_t stream_cmd = stream_cmd_;
if (stream_cmd.stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE or
stream_cmd.stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE) {
size_t interpolation = get_arg<double>("output_rate", chan) / get_arg<double>("input_rate", chan);
stream_cmd.num_samps *= interpolation;
}
for(const node_ctrl_base::node_map_pair_t upstream_node: list_upstream_nodes()) {
source_node_ctrl::sptr this_upstream_block_ctrl =
boost::dynamic_pointer_cast<source_node_ctrl>(upstream_node.second.lock());
this_upstream_block_ctrl->issue_stream_cmd(stream_cmd, chan);
}
}
private:
static constexpr size_t MAJOR_COMP = 1;
static constexpr size_t MINOR_COMP = 0;
static constexpr size_t RB_REG_COMPAT_NUM = 0;
static constexpr size_t RB_REG_NUM_HALFBANDS = 1;
static constexpr size_t RB_REG_CIC_MAX_INTERP = 2;
const uint64_t _fpga_compat;
const size_t _num_halfbands;
const size_t _cic_max_interp;
//! Set the CORDIC frequency shift the signal to \p requested_freq
double set_freq(const double requested_freq, const size_t chan)
{
const double output_rate = get_arg<double>("output_rate");
double actual_freq;
int32_t freq_word;
get_freq_and_freq_word(requested_freq, output_rate, actual_freq, freq_word);
// Xilinx CORDIC uses a different format for the phase increment, hence the divide-by-four:
sr_write("CORDIC_FREQ", uint32_t(freq_word/4), chan);
return actual_freq;
}
//! Return a range of valid frequencies the CORDIC can tune to
uhd::meta_range_t get_freq_range(void)
{
const double output_rate = get_arg<double>("output_rate");
return uhd::meta_range_t(
-output_rate/2,
+output_rate/2,
output_rate/std::pow(2.0, 32)
);
}
uhd::meta_range_t get_input_rates(void)
{
uhd::meta_range_t range;
const double output_rate = get_arg<double>("output_rate");
for (int hb = _num_halfbands; hb >= 0; hb--) {
const size_t interp_offset = _cic_max_interp<<(hb-1);
for(size_t interp = _cic_max_interp; interp > 0; interp--) {
const size_t hb_cic_interp = interp*(1<<hb);
if(hb == 0 || hb_cic_interp > interp_offset) {
range.push_back(uhd::range_t(output_rate/hb_cic_interp));
}
}
}
return range;
}
double set_input_rate(const int requested_rate, const size_t chan)
{
const double output_rate = get_arg<double>("output_rate", chan);
const size_t interp_rate = boost::math::iround(output_rate/get_input_rates().clip(requested_rate, true));
size_t interp = interp_rate;
uint32_t hb_enable = 0;
while ((interp % 2 == 0) and hb_enable < _num_halfbands) {
hb_enable++;
interp /= 2;
}
UHD_ASSERT_THROW(hb_enable <= _num_halfbands);
UHD_ASSERT_THROW(interp > 0 and interp <= _cic_max_interp);
// What we can't cover with halfbands, we do with the CIC
sr_write("INTERP_WORD", (hb_enable << 8) | (interp & 0xff), chan);
// Rate change = M/N
sr_write("N", 1, chan);
sr_write("M", std::pow(2.0, double(hb_enable)) * (interp & 0xff), chan);
if (interp > 1 and hb_enable == 0) {
UHD_LOGGER_WARNING("RFNOC") << boost::format(
"The requested interpolation is odd; the user should expect passband CIC rolloff.\n"
"Select an even interpolation to ensure that a halfband filter is enabled.\n"
"interpolation = dsp_rate/samp_rate -> %d = (%f MHz)/(%f MHz)\n"
) % interp_rate % (output_rate/1e6) % (requested_rate/1e6);
}
// Calculate algorithmic gain of CIC for a given interpolation
// For Ettus CIC R=interp, M=1, N=4. Gain = (R * M) ^ (N - 1)
const int CIC_N = 4;
const double rate_pow = std::pow(double(interp & 0xff), CIC_N - 1);
// Experimentally determined value to scale the output to [-1, 1]
// This must also encompass the CORDIC gain
static const double CONSTANT_GAIN = 1.1644;
const double scaling_adjustment =
std::pow(2, uhd::math::ceil_log2(rate_pow))/(CONSTANT_GAIN*rate_pow);
update_scalar(scaling_adjustment, chan);
return output_rate/interp_rate;
}
//! Set frequency and interpolation again
void set_output_rate(const double /* rate */, const size_t chan)
{
const double desired_freq = _tree->access<double>(get_arg_path("freq", chan) / "value").get_desired();
set_arg<double>("freq", desired_freq, chan);
const double desired_input_rate = _tree->access<double>(get_arg_path("input_rate", chan) / "value").get_desired();
set_arg<double>("input_rate", desired_input_rate, chan);
}
// Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account
// gain compensation blocks already hardcoded in place in DUC (that provide simple 1/2^n gain compensation).
// Further more factor in OTW format which adds further gain factor to weight output samples correctly.
void update_scalar(const double scalar, const size_t chan)
{
const double target_scalar = (1 << 15) * scalar;
const int32_t actual_scalar = boost::math::iround(target_scalar);
// Calculate the error introduced by using integer representation for the scalar
const double scalar_correction =
actual_scalar / target_scalar * (double(1 << 15) - 1.0) // Rounding error, normalized to 1.0
* get_arg<double>("fullscale"); // Scaling requested by host
set_arg<double>("scalar_correction", scalar_correction, chan);
// Write DUC with scaling correction for CIC and CORDIC that maximizes dynamic range in 32/16/12/8bits.
sr_write("SCALE_IQ", actual_scalar, chan);
}
//! Get cached value of FPGA compat number
uint64_t get_fpga_compat() const
{
return _fpga_compat;
}
//Get cached value of _num_halfbands
size_t get_num_halfbands() const
{
return _num_halfbands;
}
//Get cached value of _cic_max_decim readback
size_t get_cic_max_interp() const
{
return _cic_max_interp;
}
};
UHD_RFNOC_BLOCK_REGISTER(duc_block_ctrl, "DUC");
|