1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
//
// Copyright 2016 Ettus Research
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
#include "dsp_core_utils.hpp"
#include <uhd/rfnoc/ddc_block_ctrl.hpp>
#include <uhd/utils/msg.hpp>
#include <uhd/convert.hpp>
#include <uhd/types/ranges.hpp>
#include <boost/math/special_functions/round.hpp>
#include <cmath>
using namespace uhd::rfnoc;
// TODO move this to a central location
template <class T> T ceil_log2(T num){
return std::ceil(std::log(num)/std::log(T(2)));
}
// TODO remove this once we have actual lambdas
static double lambda_forward_prop(uhd::property_tree::sptr tree, uhd::fs_path prop, double value)
{
return tree->access<double>(prop).set(value).get();
}
static double lambda_forward_prop(uhd::property_tree::sptr tree, uhd::fs_path prop)
{
return tree->access<double>(prop).get();
}
class ddc_block_ctrl_impl : public ddc_block_ctrl
{
public:
static const size_t NUM_HALFBANDS = 3;
static const size_t CIC_MAX_DECIM = 255;
UHD_RFNOC_BLOCK_CONSTRUCTOR(ddc_block_ctrl)
{
// Argument/prop tree hooks
for (size_t chan = 0; chan < get_input_ports().size(); chan++) {
double default_freq = get_arg<double>("freq", chan);
_tree->access<double>(get_arg_path("freq/value", chan))
.set_coercer(boost::bind(&ddc_block_ctrl_impl::set_freq, this, _1, chan))
.set(default_freq);
;
double default_output_rate = get_arg<double>("output_rate", chan);
_tree->access<double>(get_arg_path("output_rate/value", chan))
.set_coercer(boost::bind(&ddc_block_ctrl_impl::set_output_rate, this, _1, chan))
.set(default_output_rate)
;
_tree->access<double>(get_arg_path("input_rate/value", chan))
.add_coerced_subscriber(boost::bind(&ddc_block_ctrl_impl::set_input_rate, this, _1, chan))
;
// Legacy properties (for backward compat w/ multi_usrp)
const uhd::fs_path dsp_base_path = _root_path / "legacy_api" / chan;
// Legacy properties
_tree->create<double>(dsp_base_path / "rate/value")
.set_coercer(boost::bind(&lambda_forward_prop, _tree, get_arg_path("output_rate/value", chan), _1))
.set_publisher(boost::bind(&lambda_forward_prop, _tree, get_arg_path("output_rate/value", chan)))
;
_tree->create<uhd::meta_range_t>(dsp_base_path / "rate/range")
.set_publisher(boost::bind(&ddc_block_ctrl_impl::get_output_rates, this))
;
_tree->create<double>(dsp_base_path / "freq/value")
.set_coercer(boost::bind(&lambda_forward_prop, _tree, get_arg_path("freq/value", chan), _1))
.set_publisher(boost::bind(&lambda_forward_prop, _tree, get_arg_path("freq/value", chan)))
;
_tree->create<uhd::meta_range_t>(dsp_base_path / "freq/range")
.set_publisher(boost::bind(&ddc_block_ctrl_impl::get_freq_range, this))
;
_tree->access<uhd::time_spec_t>("time/cmd")
.add_coerced_subscriber(boost::bind(&block_ctrl_base::set_command_time, this, _1, chan))
;
if (_tree->exists("tick_rate")) {
const double tick_rate = _tree->access<double>("tick_rate").get();
set_command_tick_rate(tick_rate, chan);
_tree->access<double>("tick_rate")
.add_coerced_subscriber(boost::bind(&block_ctrl_base::set_command_tick_rate, this, _1, chan))
;
}
// Rate 1:1 by default
sr_write("N", 1, chan);
sr_write("M", 1, chan);
sr_write("CONFIG", 1, chan); // Enable clear EOB
}
} // end ctor
virtual ~ddc_block_ctrl_impl() {};
double get_output_scale_factor(size_t port=ANY_PORT)
{
port = port == ANY_PORT ? 0 : port;
if (not (_rx_streamer_active.count(port) and _rx_streamer_active.at(port))) {
return SCALE_UNDEFINED;
}
return get_arg<double>("scalar_correction", port);
}
double get_input_samp_rate(size_t port=ANY_PORT)
{
port = port == ANY_PORT ? 0 : port;
if (not (_tx_streamer_active.count(port) and _tx_streamer_active.at(port))) {
return RATE_UNDEFINED;
}
return get_arg<double>("input_rate", port);
}
double get_output_samp_rate(size_t port=ANY_PORT)
{
if (port == ANY_PORT) {
port = 0;
for (size_t i = 0; i < get_input_ports().size(); i++) {
if (_rx_streamer_active.count(i) and _rx_streamer_active.at(i)) {
port = i;
break;
}
}
}
// Wait, what? If this seems out of place to you, you're right. However,
// we need a function call that is called when the graph is complete,
// but streaming is not yet set up.
if (_tree->exists("tick_rate")) {
const double tick_rate = _tree->access<double>("tick_rate").get();
set_command_tick_rate(tick_rate, port);
}
if (not (_rx_streamer_active.count(port) and _rx_streamer_active.at(port))) {
return RATE_UNDEFINED;
}
return get_arg<double>("output_rate", port);
}
void issue_stream_cmd(
const uhd::stream_cmd_t &stream_cmd_,
const size_t chan
) {
UHD_RFNOC_BLOCK_TRACE() << "ddc_block_ctrl_base::issue_stream_cmd()" << std::endl;
if (list_upstream_nodes().count(chan) == 0) {
UHD_MSG(status) << "No upstream blocks." << std::endl;
return;
}
uhd::stream_cmd_t stream_cmd = stream_cmd_;
if (stream_cmd.stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE or
stream_cmd.stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE) {
size_t decimation = get_arg<double>("input_rate", chan) / get_arg<double>("output_rate", chan);
stream_cmd.num_samps *= decimation;
}
source_node_ctrl::sptr this_upstream_block_ctrl =
boost::dynamic_pointer_cast<source_node_ctrl>(list_upstream_nodes().at(chan).lock());
if (this_upstream_block_ctrl) {
this_upstream_block_ctrl->issue_stream_cmd(
stream_cmd,
get_upstream_port(chan)
);
}
}
private:
//! Set the CORDIC frequency shift the signal to \p requested_freq
double set_freq(const double requested_freq, const size_t chan)
{
const double input_rate = get_arg<double>("input_rate");
double actual_freq;
int32_t freq_word;
get_freq_and_freq_word(requested_freq, input_rate, actual_freq, freq_word);
sr_write("CORDIC_FREQ", uint32_t(freq_word), chan);
return actual_freq;
}
//! Return a range of valid frequencies the CORDIC can tune to
uhd::meta_range_t get_freq_range(void)
{
const double input_rate = get_arg<double>("input_rate");
return uhd::meta_range_t(
-input_rate/2,
+input_rate/2,
input_rate/std::pow(2.0, 32)
);
}
// FIXME this misses a whole bunch of valid rates. Anything with CIC decim <= 255
// is OK.
uhd::meta_range_t get_output_rates(void)
{
uhd::meta_range_t range;
const double input_rate = get_arg<double>("input_rate");
for (int decim = 1024; decim > 512; decim -= 8){
range.push_back(uhd::range_t(input_rate/decim));
}
for (int decim = 512; decim > 256; decim -= 4){
range.push_back(uhd::range_t(input_rate/decim));
}
for (int decim = 256; decim > 128; decim -= 2){
range.push_back(uhd::range_t(input_rate/decim));
}
for (int decim = 128; decim >= 1; decim -= 1){
range.push_back(uhd::range_t(input_rate/decim));
}
return range;
}
double set_output_rate(const int requested_rate, const size_t chan)
{
const double input_rate = get_arg<double>("input_rate");
const size_t decim_rate = boost::math::iround(input_rate/this->get_output_rates().clip(requested_rate, true));
size_t decim = decim_rate;
// The FPGA knows which halfbands to enable for any given value of hb_enable.
uint32_t hb_enable = 0;
while ((decim % 2 == 0) and hb_enable < NUM_HALFBANDS) {
hb_enable++;
decim /= 2;
}
UHD_ASSERT_THROW(hb_enable <= NUM_HALFBANDS);
UHD_ASSERT_THROW(decim <= CIC_MAX_DECIM);
// What we can't cover with halfbands, we do with the CIC
sr_write("DECIM_WORD", (hb_enable << 8) | (decim & 0xff), chan);
// Rate change = M/N
sr_write("N", std::pow(2.0, double(hb_enable)) * (decim & 0xff), chan);
sr_write("M", 1, chan);
if (decim > 1 and hb_enable == 0) {
UHD_MSG(warning) << boost::format(
"The requested decimation is odd; the user should expect passband CIC rolloff.\n"
"Select an even decimation to ensure that a halfband filter is enabled.\n"
"Decimations factorable by 4 will enable 2 halfbands, those factorable by 8 will enable 3 halfbands.\n"
"decimation = dsp_rate/samp_rate -> %d = (%f MHz)/(%f MHz)\n"
) % decim_rate % (input_rate/1e6) % (requested_rate/1e6);
}
// Caclulate algorithmic gain of CIC for a given decimation.
// For Ettus CIC R=decim, M=1, N=4. Gain = (R * M) ^ N
const double rate_pow = std::pow(double(decim & 0xff), 4);
// Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account
// gain compensation blocks already hardcoded in place in DDC (that provide simple 1/2^n gain compensation).
// CORDIC algorithmic gain limits asymptotically around 1.647 after many iterations.
static const double CORDIC_GAIN = 1.648;
//
// The polar rotation of [I,Q] = [1,1] by Pi/8 also yields max magnitude of SQRT(2) (~1.4142) however
// input to the CORDIC thats outside the unit circle can only be sourced from a saturated RF frontend.
// To provide additional dynamic range head room accordingly using scale factor applied at egress from DDC would
// cost us small signal performance, thus we do no provide compensation gain for a saturated front end and allow
// the signal to clip in the H/W as needed. If we wished to avoid the signal clipping in these circumstances then adjust code to read:
// _scaling_adjustment = std::pow(2, ceil_log2(rate_pow))/(CORDIC_GAIN*rate_pow*1.415);
const double scaling_adjustment = std::pow(2, ceil_log2(rate_pow))/(CORDIC_GAIN*rate_pow);
update_scalar(scaling_adjustment, chan);
return input_rate/decim_rate;
}
//! Set frequency and decimation again
void set_input_rate(const double /* rate */, const size_t chan)
{
const double desired_freq = _tree->access<double>(get_arg_path("freq", chan) / "value").get_desired();
set_arg<double>("freq", desired_freq, chan);
const double desired_output_rate = _tree->access<double>(get_arg_path("output_rate", chan) / "value").get_desired();
set_arg<double>("output_rate", desired_output_rate, chan);
}
// Calculate compensation gain values for algorithmic gain of CORDIC and CIC taking into account
// gain compensation blocks already hardcoded in place in DDC (that provide simple 1/2^n gain compensation).
// Further more factor in OTW format which adds further gain factor to weight output samples correctly.
void update_scalar(const double scalar, const size_t chan)
{
const double target_scalar = (1 << 15) * scalar;
const int32_t actual_scalar = boost::math::iround(target_scalar);
// Calculate the error introduced by using integer representation for the scalar, can be corrected in host later.
const double scalar_correction =
target_scalar / actual_scalar / double(1 << 15) // Rounding error, normalized to 1.0
* get_arg<double>("fullscale"); // Scaling requested by host
set_arg<double>("scalar_correction", scalar_correction, chan);
// Write DDC with scaling correction for CIC and CORDIC that maximizes dynamic range in 32/16/12/8bits.
sr_write("SCALE_IQ", actual_scalar, chan);
}
};
UHD_RFNOC_BLOCK_REGISTER(ddc_block_ctrl, "DDC");
|