1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
|
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#include <uhd/exception.hpp>
#include <uhd/rfnoc/ddc_block_control.hpp>
#include <uhd/rfnoc/property.hpp>
#include <uhd/rfnoc/registry.hpp>
#include <uhd/rfnoc/defaults.hpp>
#include <uhd/types/ranges.hpp>
#include <uhd/utils/log.hpp>
#include <uhdlib/usrp/cores/dsp_core_utils.hpp>
#include <uhdlib/utils/compat_check.hpp>
#include <uhdlib/utils/math.hpp>
#include <boost/math/special_functions/round.hpp>
#include <set>
#include <string>
namespace {
constexpr double DEFAULT_RATE = 1e9;
constexpr double DEFAULT_SCALING = 1.0;
constexpr int DEFAULT_DECIM = 1;
constexpr double DEFAULT_FREQ = 0.0;
const uhd::rfnoc::io_type_t DEFAULT_TYPE = uhd::rfnoc::IO_TYPE_SC16;
//! Space (in bytes) between register banks per channel
constexpr uint32_t REG_CHAN_OFFSET = 2048;
} // namespace
using namespace uhd::rfnoc;
const uint16_t ddc_block_control::MINOR_COMPAT = 0;
const uint16_t ddc_block_control::MAJOR_COMPAT = 0;
const uint32_t ddc_block_control::RB_COMPAT_NUM = 0; // read this first
const uint32_t ddc_block_control::RB_NUM_HB = 8;
const uint32_t ddc_block_control::RB_CIC_MAX_DECIM = 16;
const uint32_t ddc_block_control::SR_N_ADDR = 128 * 8;
const uint32_t ddc_block_control::SR_M_ADDR = 129 * 8;
const uint32_t ddc_block_control::SR_CONFIG_ADDR = 130 * 8;
const uint32_t ddc_block_control::SR_FREQ_ADDR = 132 * 8;
const uint32_t ddc_block_control::SR_SCALE_IQ_ADDR = 133 * 8;
const uint32_t ddc_block_control::SR_DECIM_ADDR = 134 * 8;
const uint32_t ddc_block_control::SR_MUX_ADDR = 135 * 8;
const uint32_t ddc_block_control::SR_COEFFS_ADDR = 136 * 8;
class ddc_block_control_impl : public ddc_block_control
{
public:
RFNOC_BLOCK_CONSTRUCTOR(ddc_block_control)
, _fpga_compat(regs().peek32(RB_COMPAT_NUM)),
_num_halfbands(regs().peek32(RB_NUM_HB)),
_cic_max_decim(regs().peek32(RB_CIC_MAX_DECIM)),
_residual_scaling(get_num_input_ports(), DEFAULT_SCALING)
{
UHD_ASSERT_THROW(get_num_input_ports() == get_num_output_ports());
UHD_ASSERT_THROW(_cic_max_decim > 0 && _cic_max_decim <= 0xFF);
uhd::assert_fpga_compat(MAJOR_COMPAT,
MINOR_COMPAT,
_fpga_compat,
get_unique_id(),
get_unique_id(),
false /* Let it slide if minors mismatch */
);
RFNOC_LOG_DEBUG("Loading DDC with " << _num_halfbands
<< " halfbands and "
"max CIC decimation "
<< _cic_max_decim);
// Load list of valid decimation values
std::set<size_t> decims{1}; // 1 is always a valid decimatino
for (size_t hb = 0; hb < _num_halfbands; hb++) {
for (size_t cic_decim = 0; cic_decim < _cic_max_decim; cic_decim++) {
decims.insert((1 << hb) * cic_decim);
}
}
for (size_t decim : decims) {
_valid_decims.push_back(uhd::range_t(double(decim)));
}
// Initialize properties. It is very important to first reserve the
// space, because we use push_back() further down, and properties must
// not change their base address after registration and resolver
// creation.
_samp_rate_in.reserve(get_num_ports());
_samp_rate_out.reserve(get_num_ports());
_scaling_in.reserve(get_num_ports());
_scaling_out.reserve(get_num_ports());
_decim.reserve(get_num_ports());
_freq.reserve(get_num_ports());
_type_in.reserve(get_num_ports());
_type_out.reserve(get_num_ports());
for (size_t chan = 0; chan < get_num_ports(); chan++) {
_register_props(chan);
}
register_issue_stream_cmd();
}
double set_freq(const double freq,
const size_t chan,
const boost::optional<uhd::time_spec_t> time)
{
// Store the current command time so we can restore it later
auto prev_cmd_time = get_command_time(chan);
if (time) {
set_command_time(time.get(), chan);
}
// This will trigger property propagation:
set_property<double>("freq", freq, chan);
set_command_time(prev_cmd_time, chan);
return get_freq(chan);
}
double get_freq(const size_t chan) const
{
return _freq.at(chan).get();
}
uhd::freq_range_t get_frequency_range(const size_t chan) const
{
const double input_rate = _samp_rate_in.at(chan).get();
// TODO add steps
return uhd::freq_range_t(-input_rate / 2, input_rate / 2);
}
double get_input_rate(const size_t chan) const
{
return _samp_rate_in.at(chan).get();
}
double get_output_rate(const size_t chan) const
{
return _samp_rate_out.at(chan).get();
}
uhd::meta_range_t get_output_rates(const size_t chan) const
{
uhd::meta_range_t result;
const double input_rate = _samp_rate_in.at(chan).get();
// The decimations are stored in order (from smallest to biggest), so
// iterate in reverse order so we can add rates from smallest to biggest
for (auto it = _valid_decims.rbegin(); it != _valid_decims.rend(); ++it) {
result.push_back(uhd::range_t(input_rate / it->start()));
}
return result;
}
double set_output_rate(const double rate, const size_t chan)
{
const int coerced_decim = coerce_decim(get_input_rate(chan) / rate);
set_property<int>("decim", coerced_decim, chan);
return _decim.at(chan).get();
}
// Somewhat counter-intuitively, we post a stream command as a message to
// ourselves. That's because it's easier to re-use the message handler than
// it is to reuse the issue_stream_cmd() API call, because this API call
// will always be forwarded to the upstream block, whereas the message
// handler goes both ways.
// This way, calling issue_stream_cmd() is the same as posting a message to
// our output port.
void issue_stream_cmd(const uhd::stream_cmd_t& stream_cmd, const size_t port)
{
RFNOC_LOG_TRACE("issue_stream_cmd(stream_mode="
<< char(stream_cmd.stream_mode) << ", port=" << port);
res_source_info dst_edge{res_source_info::OUTPUT_EDGE, port};
auto new_action = stream_cmd_action_info::make(stream_cmd.stream_mode);
new_action->stream_cmd = stream_cmd;
issue_stream_cmd_action_handler(dst_edge, new_action);
}
private:
//! Shorthand for num ports, since num input ports always equals num output ports
inline size_t get_num_ports()
{
return get_num_input_ports();
}
inline uint32_t get_addr(const uint32_t base_addr, const size_t chan)
{
return base_addr + REG_CHAN_OFFSET * chan;
}
/**************************************************************************
* Initialization
*************************************************************************/
void _register_props(const size_t chan)
{
// Create actual properties and store them
_samp_rate_in.push_back(property_t<double>(
PROP_KEY_SAMP_RATE, DEFAULT_RATE, {res_source_info::INPUT_EDGE, chan}));
_samp_rate_out.push_back(property_t<double>(
PROP_KEY_SAMP_RATE, DEFAULT_RATE, {res_source_info::OUTPUT_EDGE, chan}));
_scaling_in.push_back(property_t<double>(
PROP_KEY_SCALING, DEFAULT_SCALING, {res_source_info::INPUT_EDGE, chan}));
_scaling_out.push_back(property_t<double>(
PROP_KEY_SCALING, DEFAULT_SCALING, {res_source_info::OUTPUT_EDGE, chan}));
_decim.push_back(property_t<int>(
PROP_KEY_DECIM, DEFAULT_DECIM, {res_source_info::USER, chan}));
_freq.push_back(property_t<double>(
PROP_KEY_FREQ, DEFAULT_FREQ, {res_source_info::USER, chan}));
_type_in.emplace_back(property_t<std::string>(
PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::INPUT_EDGE, chan}));
_type_out.emplace_back(property_t<std::string>(
PROP_KEY_TYPE, IO_TYPE_SC16, {res_source_info::OUTPUT_EDGE, chan}));
UHD_ASSERT_THROW(_samp_rate_in.size() == chan + 1);
UHD_ASSERT_THROW(_samp_rate_out.size() == chan + 1);
UHD_ASSERT_THROW(_scaling_in.size() == chan + 1);
UHD_ASSERT_THROW(_scaling_out.size() == chan + 1);
UHD_ASSERT_THROW(_decim.size() == chan + 1);
UHD_ASSERT_THROW(_freq.size() == chan + 1);
UHD_ASSERT_THROW(_type_in.size() == chan + 1);
UHD_ASSERT_THROW(_type_out.size() == chan + 1);
// give us some shorthands for the rest of this function
property_t<double>* samp_rate_in = &_samp_rate_in.back();
property_t<double>* samp_rate_out = &_samp_rate_out.back();
property_t<double>* scaling_in = &_scaling_in.back();
property_t<double>* scaling_out = &_scaling_out.back();
property_t<int>* decim = &_decim.back();
property_t<double>* freq = &_freq.back();
property_t<std::string>* type_in = &_type_in.back();
property_t<std::string>* type_out = &_type_out.back();
// register them
register_property(samp_rate_in);
register_property(samp_rate_out);
register_property(scaling_in);
register_property(scaling_out);
register_property(decim);
register_property(freq);
register_property(type_in);
register_property(type_out);
/**********************************************************************
* Add resolvers
*********************************************************************/
// Resolver for the output scaling: This cannot be updated, we reset it
// to its previous value.
add_property_resolver({scaling_out},
{scaling_out},
[this,
chan,
&decim = *decim,
&scaling_in = *scaling_in,
&scaling_out = *scaling_out]() {
scaling_out = scaling_in.get() * _residual_scaling.at(chan);
});
// Resolver for _decim: this gets executed when the user directly
// modifies _decim. the desired behaviour is to coerce it first, then
// keep the input rate constant, and re-calculate the output rate.
add_property_resolver({decim},
{decim, samp_rate_out, scaling_in},
[this,
chan,
&decim = *decim,
&samp_rate_out = *samp_rate_out,
&samp_rate_in = *samp_rate_in,
&scaling_in = *scaling_in]() {
RFNOC_LOG_TRACE("Calling resolver for `decim'@" << chan);
decim = coerce_decim(double(decim.get()));
set_decim(decim.get(), chan);
samp_rate_out = samp_rate_in.get() / decim.get();
scaling_in.force_dirty();
});
// Resolver for _freq: this gets executed when the user directly
// modifies _freq.
add_property_resolver(
{freq}, {freq}, [this, chan, &samp_rate_in = *samp_rate_in, &freq = *freq]() {
RFNOC_LOG_TRACE("Calling resolver for `freq'@" << chan);
freq = _set_freq(freq.get(), samp_rate_in.get(), chan);
});
// Resolver for the input rate: we try and match decim so that the output
// rate is not modified. if decim needs to be coerced, only then the
// output rate is modified.
// Note this will also affect the frequency.
add_property_resolver({samp_rate_in},
{decim, samp_rate_out, scaling_in, freq},
[this,
chan,
&decim = *decim,
&freq = *freq,
&scaling_in = *scaling_in,
&samp_rate_out = *samp_rate_out,
&samp_rate_in = *samp_rate_in]() {
RFNOC_LOG_TRACE("Calling resolver for `samp_rate_in'@" << chan);
// If decim changes, it will trigger the decim resolver to run
decim = coerce_decim(samp_rate_in.get() / samp_rate_out.get());
samp_rate_out = samp_rate_in.get() / decim.get();
// If the input rate changes, we need to update the DDS, too,
// since it works on frequencies normalized by the input rate.
freq.force_dirty();
});
// Resolver for the output rate: like the previous one, but flipped.
add_property_resolver({samp_rate_out},
{decim, samp_rate_in},
[this,
chan,
&decim = *decim,
&scaling_in = *scaling_in,
&samp_rate_out = *samp_rate_out,
&samp_rate_in = *samp_rate_in]() {
RFNOC_LOG_TRACE("Calling resolver for `samp_rate_out'@" << chan);
decim = coerce_decim(int(samp_rate_in.get() / samp_rate_out.get()));
// If decim is dirty, it will trigger the decim resolver.
// However, the decim resolver will set the output rate based
// on the input rate, so we need to force the input rate first.
if (decim.is_dirty()) {
samp_rate_in = samp_rate_out.get() * decim.get();
}
});
// Resolver for the input scaling: When updated, we forward the changes
// to the output scaling.
add_property_resolver({scaling_in},
{scaling_out},
[this, chan, &decim = *decim, &scaling_out = *scaling_out]() {
// We don't actually change the value here, because the
// resolution might be not be complete. The resolver for the
// output scaling can take care of things.
scaling_out.force_dirty();
});
// Resolver for the output scaling: This cannot be updated, we reset it
// to its previous value.
add_property_resolver({scaling_out},
{scaling_out},
[this,
chan,
&decim = *decim,
&scaling_in = *scaling_in,
&scaling_out = *scaling_out]() {
scaling_out = scaling_in.get() * _residual_scaling.at(chan);
});
// Resolvers for type: These are constants
add_property_resolver({type_in}, {type_in}, [this, &type_in = *type_in]() {
type_in.set(IO_TYPE_SC16);
});
add_property_resolver({type_out}, {type_out}, [this, &type_out = *type_out]() {
type_out.set(IO_TYPE_SC16);
});
}
void register_issue_stream_cmd()
{
register_action_handler(ACTION_KEY_STREAM_CMD,
[this](const res_source_info& src, action_info::sptr action) {
stream_cmd_action_info::sptr stream_cmd_action =
std::dynamic_pointer_cast<stream_cmd_action_info>(action);
if (!stream_cmd_action) {
throw uhd::runtime_error(
"Received stream_cmd of invalid action type!");
}
issue_stream_cmd_action_handler(src, stream_cmd_action);
});
}
void issue_stream_cmd_action_handler(
const res_source_info& src, stream_cmd_action_info::sptr stream_cmd_action)
{
res_source_info dst_edge{
res_source_info::invert_edge(src.type), src.instance};
const size_t chan = src.instance;
uhd::stream_cmd_t::stream_mode_t stream_mode =
stream_cmd_action->stream_cmd.stream_mode;
RFNOC_LOG_TRACE("Received stream command: " << char(stream_mode) << " to "
<< src.to_string()
<< ", id==" << stream_cmd_action->id);
auto new_action = stream_cmd_action_info::make(stream_mode);
new_action->stream_cmd = stream_cmd_action->stream_cmd;
if (stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_DONE
|| stream_mode == uhd::stream_cmd_t::STREAM_MODE_NUM_SAMPS_AND_MORE) {
if (src.type == res_source_info::OUTPUT_EDGE) {
new_action->stream_cmd.num_samps *= _decim.at(chan).get();
} else {
new_action->stream_cmd.num_samps /= _decim.at(chan).get();
}
RFNOC_LOG_TRACE("Forwarding num_samps stream command, new value is "
<< new_action->stream_cmd.num_samps);
} else {
RFNOC_LOG_TRACE("Forwarding continuous stream command...")
}
post_action(dst_edge, new_action);
}
/**************************************************************************
* FPGA communication (register IO)
*************************************************************************/
/*! Update the decimation value
*
* \param decim The new decimation value. It must be valid decimation value.
* \throws uhd::assertion_error if decim is not valid.
*/
void set_decim(int decim, const size_t chan)
{
// Step 1: Calculate number of halfbands
uint32_t hb_enable = 0;
uint32_t cic_decim = decim;
while ((cic_decim % 2 == 0) and hb_enable < _num_halfbands) {
hb_enable++;
cic_decim /= 2;
}
// Step 2: Make sure we can handle the rest with the CIC
UHD_ASSERT_THROW(hb_enable <= _num_halfbands);
UHD_ASSERT_THROW(cic_decim > 0 and cic_decim <= _cic_max_decim);
const uint32_t decim_word = (hb_enable << 8) | cic_decim;
regs().poke32(get_addr(SR_DECIM_ADDR, chan), decim_word);
// Rate change = M/N
regs().poke32(get_addr(SR_N_ADDR, chan), decim);
// FIXME:
// - eiscat DDC had a real mode, where M needed to be 2
// - TwinRX had some issues with M == 1
regs().poke32(get_addr(SR_M_ADDR, chan), 1);
if (cic_decim > 1 and hb_enable == 0) {
RFNOC_LOG_WARNING(
"The requested decimation is odd; the user should expect passband "
"CIC rolloff.\n"
"Select an even decimation to ensure that a halfband filter is "
"enabled.\n"
"Decimations factorable by 4 will enable 2 halfbands, those "
"factorable by 8 will enable 3 halfbands.\n"
"decimation = dsp_rate/samp_rate -> "
<< decim);
}
constexpr double DDS_GAIN = 2.0;
// Calculate algorithmic gain of CIC for a given decimation.
// For Ettus CIC R=decim, M=1, N=4. Gain = (R * M) ^ N
// The Ettus CIC also tries its best to compensate for the gain by
// shifting the CIC output. This reduces the gain by a factor of
// 2**ceil(log2(cic_gain))
const double cic_gain = std::pow(double(cic_decim * 1), 4);
// DDS gain:
const double total_gain =
DDS_GAIN * cic_gain / std::pow(2, uhd::math::ceil_log2(cic_gain));
update_scaling(total_gain, chan);
}
//! Update scaling based on the current gain
//
// Calculates the closest fixpoint value that this block can correct for in
// hardware (fixpoint). The residual gain is written to _residual_scaling.
void update_scaling(const double dsp_gain, const size_t chan)
{
constexpr double FIXPOINT_SCALING = 1 << 15;
const double compensation_factor = 1. / dsp_gain;
// Convert to fixpoint
const double target_factor = FIXPOINT_SCALING * compensation_factor;
const int32_t actual_factor = boost::math::iround(target_factor);
// Write DDC with scaling correction for CIC and DDS that maximizes
// dynamic range
regs().poke32(get_addr(SR_SCALE_IQ_ADDR, chan), actual_factor);
// Calculate the error introduced by using fixedpoint representation for
// the scaler, can be corrected in host later.
_residual_scaling[chan] = dsp_gain * double(actual_factor) / FIXPOINT_SCALING;
}
/*! Return the closest possible decimation value to the one requested
*/
int coerce_decim(const double requested_decim) const
{
UHD_ASSERT_THROW(requested_decim > 0);
return static_cast<int>(_valid_decims.clip(requested_decim, true));
}
//! Set the DDS frequency shift the signal to \p requested_freq
double _set_freq(
const double requested_freq, const double input_rate, const size_t chan)
{
double actual_freq;
int32_t freq_word;
std::tie(actual_freq, freq_word) =
get_freq_and_freq_word(requested_freq, input_rate);
regs().poke32(
get_addr(SR_FREQ_ADDR, chan), uint32_t(freq_word), get_command_time(chan));
return actual_freq;
}
/**************************************************************************
* Attributes
*************************************************************************/
//! Block compat number
const uint32_t _fpga_compat;
//! Number of halfbands
const size_t _num_halfbands;
//! Max CIC decim
const size_t _cic_max_decim;
//! List of valid decimation values
uhd::meta_range_t _valid_decims;
//! Cache the current residual scaling
std::vector<double> _residual_scaling;
//! Properties for type_in (one per port)
std::vector<property_t<std::string>> _type_in;
//! Properties for type_out (one per port)
std::vector<property_t<std::string>> _type_out;
//! Properties for samp_rate_in (one per port)
std::vector<property_t<double>> _samp_rate_in;
//! Properties for samp_rate_out (one per port)
std::vector<property_t<double>> _samp_rate_out;
//! Properties for scaling_in (one per port)
std::vector<property_t<double>> _scaling_in;
//! Properties for scaling_out (one per port)
std::vector<property_t<double>> _scaling_out;
//! Properties for decim (one per port)
std::vector<property_t<int>> _decim;
//! Properties for freq (one per port)
std::vector<property_t<double>> _freq;
};
UHD_RFNOC_BLOCK_REGISTER_DIRECT(ddc_block_control, 0xDDC00000, "DDC")
|