1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
|
//
// Copyright 2015, 2017 Ettus Research, A National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//
#ifndef INCLUDED_ADF535X_HPP
#define INCLUDED_ADF535X_HPP
#include "adf5355_regs.hpp"
#include "adf5356_regs.hpp"
#include <uhd/types/ranges.hpp>
#include <uhd/utils/log.hpp>
#include <uhd/utils/math.hpp>
#include <uhd/utils/safe_call.hpp>
#include <stdint.h>
#include <boost/format.hpp>
#include <functional>
#include <algorithm>
#include <iomanip>
#include <utility>
#include <vector>
class adf535x_iface
{
public:
typedef std::shared_ptr<adf535x_iface> sptr;
typedef std::function<void(std::vector<uint32_t>)> write_fn_t;
typedef std::function<void(uint32_t)> wait_fn_t;
static sptr make_adf5355(write_fn_t write, wait_fn_t wait);
static sptr make_adf5356(write_fn_t write, wait_fn_t wait);
virtual ~adf535x_iface() = default;
enum output_t { RF_OUTPUT_A, RF_OUTPUT_B };
enum feedback_sel_t { FB_SEL_FUNDAMENTAL, FB_SEL_DIVIDED };
enum output_power_t {
OUTPUT_POWER_M4DBM,
OUTPUT_POWER_M1DBM,
OUTPUT_POWER_2DBM,
OUTPUT_POWER_5DBM
};
enum muxout_t {
MUXOUT_3STATE,
MUXOUT_DVDD,
MUXOUT_DGND,
MUXOUT_RDIV,
MUXOUT_NDIV,
MUXOUT_ALD,
MUXOUT_DLD
};
virtual void set_reference_freq(double fref, bool force = false) = 0;
virtual void set_pfd_freq(double pfd_freq) = 0;
virtual void set_feedback_select(feedback_sel_t fb_sel) = 0;
virtual void set_output_power(output_power_t power) = 0;
virtual void set_output_enable(output_t output, bool enable) = 0;
virtual void set_muxout_mode(muxout_t mode) = 0;
virtual double set_frequency(
double target_freq, double freq_resolution, bool flush = false) = 0;
virtual double set_charge_pump_current(double target_current, bool flush = false) = 0;
virtual uhd::meta_range_t get_charge_pump_current_range() = 0;
virtual void commit() = 0;
};
using namespace uhd;
namespace {
const double ADF535X_DOUBLER_MAX_REF_FREQ = 60e6;
const double ADF535X_MAX_FREQ_PFD = 125e6;
// const double ADF535X_PRESCALER_THRESH = 7e9;
const double ADF535X_MIN_VCO_FREQ = 3.4e9;
// const double ADF535X_MAX_VCO_FREQ = 6.8e9;
const double ADF535X_MAX_OUT_FREQ = 6.8e9;
const double ADF535X_MIN_OUT_FREQ = (3.4e9 / 64);
// const double ADF535X_MAX_OUTB_FREQ = (6.8e9 * 2);
// const double ADF535X_MIN_OUTB_FREQ = (3.4e9 * 2);
const double ADF535X_PHASE_RESYNC_TIME = 400e-6;
const uint32_t ADF535X_MOD1 = 16777216;
const uint32_t ADF535X_MAX_MOD2 = 16383;
const uint32_t ADF535X_MAX_FRAC2 = 16383;
// const uint16_t ADF535X_MIN_INT_PRESCALER_89 = 75;
} // namespace
template <typename adf535x_regs_t>
class adf535x_impl : public adf535x_iface
{
public:
explicit adf535x_impl(write_fn_t write_fn, wait_fn_t wait_fn)
: _write_fn(std::move(write_fn))
, _wait_fn(std::move(wait_fn))
, _regs()
, _rewrite_regs(true)
, _wait_time_us(0)
, _ref_freq(0.0)
, _pfd_freq(0.0)
, _fb_after_divider(true)
{
_regs.vco_band_div = 3;
_regs.timeout = 11;
_regs.auto_level_timeout = 30;
_regs.synth_lock_timeout = 12;
_regs.adc_clock_divider = 16;
_regs.adc_conversion = adf535x_regs_t::ADC_CONVERSION_ENABLED;
_regs.adc_enable = adf535x_regs_t::ADC_ENABLE_ENABLED;
// Start with phase resync disabled and enable when reference clock is set
_regs.phase_resync = adf535x_regs_t::PHASE_RESYNC_DISABLED;
set_feedback_select(FB_SEL_DIVIDED);
}
~adf535x_impl() override
{
UHD_SAFE_CALL(_regs.power_down = adf535x_regs_t::POWER_DOWN_ENABLED; commit();)
}
void set_feedback_select(const feedback_sel_t fb_sel) override
{
_fb_after_divider = (fb_sel == FB_SEL_DIVIDED);
if (_fb_after_divider) {
_regs.feedback_select = adf535x_regs_t::FEEDBACK_SELECT_DIVIDED;
} else {
_regs.feedback_select = adf535x_regs_t::FEEDBACK_SELECT_FUNDAMENTAL;
}
}
void set_pfd_freq(const double pfd_freq) override
{
if (pfd_freq > ADF535X_MAX_FREQ_PFD) {
UHD_LOGGER_ERROR("ADF535x")
<< boost::format("%f MHz is above the maximum PFD frequency of %f MHz\n")
% (pfd_freq / 1e6) % (ADF535X_MAX_FREQ_PFD / 1e6);
return;
}
_pfd_freq = pfd_freq;
set_reference_freq(_ref_freq);
}
void set_reference_freq(const double fref, const bool force = false) override
{
// Skip the body if the reference frequency does not change
if (uhd::math::frequencies_are_equal(fref, _ref_freq) and (not force))
return;
_ref_freq = fref;
//-----------------------------------------------------------
// Set reference settings
int ref_div_factor = static_cast<int>(std::floor(_ref_freq / _pfd_freq));
// Reference doubler for 50% duty cycle
const bool doubler_en = (_ref_freq <= ADF535X_DOUBLER_MAX_REF_FREQ);
if (doubler_en) {
ref_div_factor *= 2;
}
// Reference divide-by-2 for 50% duty cycle
// if R even, move one divide by 2 to regs.reference_divide_by_2
const bool div2_en = (ref_div_factor % 2 == 0);
if (div2_en) {
ref_div_factor /= 2;
}
_regs.reference_divide_by_2 =
div2_en ? adf535x_regs_t::REFERENCE_DIVIDE_BY_2_ENABLED
: adf535x_regs_t::REFERENCE_DIVIDE_BY_2_DISABLED;
_regs.reference_doubler = doubler_en ? adf535x_regs_t::REFERENCE_DOUBLER_ENABLED
: adf535x_regs_t::REFERENCE_DOUBLER_DISABLED;
_regs.r_counter_10_bit = ref_div_factor;
UHD_ASSERT_THROW((_regs.r_counter_10_bit & ((uint16_t)~0x3FF)) == 0);
//-----------------------------------------------------------
// Set timeouts (code from ADI driver)
_regs.timeout = std::max(1, std::min(int(ceil(_pfd_freq / (20e3 * 30))), 1023));
UHD_ASSERT_THROW((_regs.timeout & ((uint16_t)~0x3FF)) == 0);
_regs.synth_lock_timeout =
static_cast<uint8_t>(ceil((_pfd_freq * 2) / (100e3 * _regs.timeout)));
UHD_ASSERT_THROW((_regs.synth_lock_timeout & ((uint16_t)~0x1F)) == 0);
_regs.auto_level_timeout =
static_cast<uint8_t>(ceil((_pfd_freq * 5) / (100e3 * _regs.timeout)));
//-----------------------------------------------------------
// Set VCO band divider
_regs.vco_band_div = static_cast<uint8_t>(ceil(_pfd_freq / 2.4e6));
//-----------------------------------------------------------
// Set ADC delay (code from ADI driver)
_regs.adc_enable = adf535x_regs_t::ADC_ENABLE_ENABLED;
_regs.adc_conversion = adf535x_regs_t::ADC_CONVERSION_ENABLED;
_regs.adc_clock_divider =
std::max(1, std::min(int(ceil(((_pfd_freq / 100e3) - 2) / 4)), 255));
_wait_time_us = static_cast<uint32_t>(
ceil(16e6 / (_pfd_freq / ((4 * _regs.adc_clock_divider) + 2))));
//-----------------------------------------------------------
// Phase resync
_regs.phase_resync = adf535x_regs_t::PHASE_RESYNC_ENABLED;
_regs.phase_adjust = adf535x_regs_t::PHASE_ADJUST_DISABLED;
_regs.sd_load_reset = adf535x_regs_t::SD_LOAD_RESET_ON_REG0_UPDATE;
_regs.phase_resync_clk_div =
static_cast<uint16_t>(floor(ADF535X_PHASE_RESYNC_TIME * _pfd_freq));
_rewrite_regs = true;
}
double set_frequency(const double target_freq,
const double freq_resolution,
const bool flush = false) override
{
return _set_frequency(target_freq, freq_resolution, flush);
}
double set_charge_pump_current(const double current, const bool flush) override
{
const auto cp_range = get_charge_pump_current_range();
const auto coerced_current = cp_range.clip(current, true);
const int current_step = std::round((coerced_current / cp_range.step()) - 1);
UHD_ASSERT_THROW(current_step >= 0 and current_step < 16);
_regs.charge_pump_current =
static_cast<typename adf535x_regs_t::charge_pump_current_t>(current_step);
if (flush) {
commit();
}
if (std::abs(current - coerced_current) > 0.01e-6) {
UHD_LOG_WARNING("ADF535x",
"Requested charge pump current was coerced! Requested: "
<< std::setw(4) << current << " A Actual: " << coerced_current
<< " A");
}
return coerced_current;
}
uhd::meta_range_t get_charge_pump_current_range() override
{
return _get_charge_pump_current_range();
}
void set_output_power(const output_power_t power) override
{
typename adf535x_regs_t::output_power_t setting;
switch (power) {
case OUTPUT_POWER_M4DBM:
setting = adf535x_regs_t::OUTPUT_POWER_M4DBM;
break;
case OUTPUT_POWER_M1DBM:
setting = adf535x_regs_t::OUTPUT_POWER_M1DBM;
break;
case OUTPUT_POWER_2DBM:
setting = adf535x_regs_t::OUTPUT_POWER_2DBM;
break;
case OUTPUT_POWER_5DBM:
setting = adf535x_regs_t::OUTPUT_POWER_5DBM;
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
if (_regs.output_power != setting)
_rewrite_regs = true;
_regs.output_power = setting;
}
void set_output_enable(const output_t output, const bool enable) override
{
switch (output) {
case RF_OUTPUT_A:
_regs.rf_out_a_enabled = enable
? adf535x_regs_t::RF_OUT_A_ENABLED_ENABLED
: adf535x_regs_t::RF_OUT_A_ENABLED_DISABLED;
break;
case RF_OUTPUT_B:
_regs.rf_out_b_enabled = enable
? adf535x_regs_t::RF_OUT_B_ENABLED_ENABLED
: adf535x_regs_t::RF_OUT_B_ENABLED_DISABLED;
break;
}
}
void set_muxout_mode(const muxout_t mode) override
{
switch (mode) {
case MUXOUT_3STATE:
_regs.muxout = adf535x_regs_t::MUXOUT_3STATE;
break;
case MUXOUT_DVDD:
_regs.muxout = adf535x_regs_t::MUXOUT_DVDD;
break;
case MUXOUT_DGND:
_regs.muxout = adf535x_regs_t::MUXOUT_DGND;
break;
case MUXOUT_RDIV:
_regs.muxout = adf535x_regs_t::MUXOUT_RDIV;
break;
case MUXOUT_NDIV:
_regs.muxout = adf535x_regs_t::MUXOUT_NDIV;
break;
case MUXOUT_ALD:
_regs.muxout = adf535x_regs_t::MUXOUT_ANALOG_LD;
break;
case MUXOUT_DLD:
_regs.muxout = adf535x_regs_t::MUXOUT_DLD;
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
}
void commit() override
{
_commit();
}
protected:
double _set_frequency(double, double, bool);
uhd::meta_range_t _get_charge_pump_current_range();
void _commit();
private: // Members
typedef std::vector<uint32_t> addr_vtr_t;
write_fn_t _write_fn;
wait_fn_t _wait_fn;
adf535x_regs_t _regs;
bool _rewrite_regs;
uint32_t _wait_time_us;
double _ref_freq;
double _pfd_freq;
double _fb_after_divider;
};
// ADF5355 Functions
template <>
inline double adf535x_impl<adf5355_regs_t>::_set_frequency(
double target_freq, double freq_resolution, bool flush)
{
if (target_freq > ADF535X_MAX_OUT_FREQ or target_freq < ADF535X_MIN_OUT_FREQ) {
throw uhd::runtime_error("requested frequency out of range.");
}
if ((uint32_t)freq_resolution == 0) {
throw uhd::runtime_error("requested resolution cannot be less than 1.");
}
/* Calculate target VCOout frequency */
// Increase RF divider until acceptable VCO frequency
double target_vco_freq = target_freq;
uint32_t rf_divider = 1;
while (target_vco_freq < ADF535X_MIN_VCO_FREQ && rf_divider < 64) {
target_vco_freq *= 2;
rf_divider *= 2;
}
switch (rf_divider) {
case 1:
_regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV1;
break;
case 2:
_regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV2;
break;
case 4:
_regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV4;
break;
case 8:
_regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV8;
break;
case 16:
_regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV16;
break;
case 32:
_regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV32;
break;
case 64:
_regs.rf_divider_select = adf5355_regs_t::RF_DIVIDER_SELECT_DIV64;
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
// Compute fractional PLL params
double prescaler_input_freq = target_vco_freq;
if (_fb_after_divider) {
prescaler_input_freq /= rf_divider;
}
const double N = prescaler_input_freq / _pfd_freq;
const auto INT = static_cast<uint16_t>(floor(N));
const auto FRAC1 = static_cast<uint32_t>(floor((N - INT) * ADF535X_MOD1));
const double residue = (N - INT) * ADF535X_MOD1 - FRAC1;
const double gcd = double(
uhd::math::gcd(static_cast<int>(_pfd_freq), static_cast<int>(freq_resolution)));
const auto MOD2 = static_cast<uint16_t>(
std::min(floor(_pfd_freq / gcd), static_cast<double>(ADF535X_MAX_MOD2)));
const auto FRAC2 = static_cast<uint16_t>(
std::min(ceil(residue * MOD2), static_cast<double>(ADF535X_MAX_FRAC2)));
const double coerced_vco_freq =
_pfd_freq * (_fb_after_divider ? rf_divider : 1)
* (double(INT)
+ ((double(FRAC1) + (double(FRAC2) / double(MOD2)))
/ double(ADF535X_MOD1)));
const double coerced_out_freq = coerced_vco_freq / rf_divider;
UHD_LOG_TRACE("ADF5355",
boost::format("ADF5355 Frequencies (MHz): Requested=%f "
"Actual=%f TargetVCO=%f ActualVCO=%f")
% (target_freq / 1e6) % (coerced_out_freq / 1e6) % (target_vco_freq / 1e6)
% (coerced_vco_freq / 1e6));
UHD_LOG_TRACE("ADF5355",
boost::format("ADF5355 Settings: N=%f INT=%d FRAC1=%u MOD2=%d FRAC2=%u") % N % INT
% FRAC1 % MOD2 % FRAC2);
/* Update registers */
_regs.int_16_bit = INT;
_regs.frac1_24_bit = FRAC1;
_regs.frac2_14_bit = FRAC2;
_regs.mod2_14_bit = MOD2;
_regs.phase_24_bit = 0;
if (flush)
commit();
return coerced_out_freq;
}
template <>
inline uhd::meta_range_t adf535x_impl<adf5355_regs_t>::_get_charge_pump_current_range()
{
return uhd::meta_range_t(.3125e-6, 5e-6, .3125e-6);
}
template <>
inline void adf535x_impl<adf5355_regs_t>::_commit()
{
const size_t ONE_REG = 1;
if (_rewrite_regs) {
// For a full state sync write registers in reverse order 12 - 0
addr_vtr_t regs;
for (uint8_t addr = 12; addr > 0; addr--) {
regs.push_back(_regs.get_reg(addr));
}
_write_fn(regs);
_wait_fn(_wait_time_us);
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
_rewrite_regs = false;
} else {
// Frequency update sequence from data sheet
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(6)));
_regs.counter_reset = adf5355_regs_t::COUNTER_RESET_ENABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(4)));
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(2)));
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(1)));
_regs.autocal_en = adf5355_regs_t::AUTOCAL_EN_DISABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
_regs.counter_reset = adf5355_regs_t::COUNTER_RESET_DISABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(4)));
_regs.autocal_en = adf5355_regs_t::AUTOCAL_EN_ENABLED;
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
}
}
// ADF5356 Functions
template <>
inline double adf535x_impl<adf5356_regs_t>::_set_frequency(
double target_freq, double freq_resolution, bool flush)
{
if (target_freq > ADF535X_MAX_OUT_FREQ or target_freq < ADF535X_MIN_OUT_FREQ) {
throw uhd::runtime_error("requested frequency out of range.");
}
if ((uint32_t)freq_resolution == 0) {
throw uhd::runtime_error("requested resolution cannot be less than 1.");
}
/* Calculate target VCOout frequency */
// Increase RF divider until acceptable VCO frequency
double target_vco_freq = target_freq;
uint32_t rf_divider = 1;
while (target_vco_freq < ADF535X_MIN_VCO_FREQ && rf_divider < 64) {
target_vco_freq *= 2;
rf_divider *= 2;
}
switch (rf_divider) {
case 1:
_regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV1;
break;
case 2:
_regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV2;
break;
case 4:
_regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV4;
break;
case 8:
_regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV8;
break;
case 16:
_regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV16;
break;
case 32:
_regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV32;
break;
case 64:
_regs.rf_divider_select = adf5356_regs_t::RF_DIVIDER_SELECT_DIV64;
break;
default:
UHD_THROW_INVALID_CODE_PATH();
}
// Compute fractional PLL params
double prescaler_input_freq = target_vco_freq;
if (_fb_after_divider) {
prescaler_input_freq /= rf_divider;
}
const double N = prescaler_input_freq / _pfd_freq;
const auto INT = static_cast<uint16_t>(floor(N));
const auto FRAC1 = static_cast<uint32_t>(floor((N - INT) * ADF535X_MOD1));
const double residue = (N - INT) * ADF535X_MOD1 - FRAC1;
const double gcd = double(
uhd::math::gcd(static_cast<int>(_pfd_freq), static_cast<int>(freq_resolution)));
const auto MOD2 = static_cast<uint16_t>(
std::min(floor(_pfd_freq / gcd), static_cast<double>(ADF535X_MAX_MOD2)));
const auto FRAC2 = static_cast<uint16_t>(
std::min(round(residue * MOD2), static_cast<double>(ADF535X_MAX_FRAC2)));
const double coerced_vco_freq =
_pfd_freq * (_fb_after_divider ? rf_divider : 1)
* (double(INT)
+ ((double(FRAC1) + (double(FRAC2) / double(MOD2)))
/ double(ADF535X_MOD1)));
const double coerced_out_freq = coerced_vco_freq / rf_divider;
UHD_LOG_TRACE("ADF5356",
boost::format("ADF5356 Frequencies (MHz): Requested=%f "
"Actual=%f TargetVCO=%f ActualVCO=%f")
% (target_freq / 1e6) % (coerced_out_freq / 1e6) % (target_vco_freq / 1e6)
% (coerced_vco_freq / 1e6));
UHD_LOG_TRACE("ADF5356",
boost::format("ADF5356 Settings: N=%f INT=%d FRAC1=%u MOD2=%d FRAC2=%u") % N % INT
% FRAC1 % MOD2 % FRAC2);
/* Update registers */
_regs.int_16_bit = INT;
_regs.frac1_24_bit = FRAC1;
_regs.frac2_msb = FRAC2;
_regs.mod2_msb = MOD2;
_regs.phase_24_bit = 0;
if (flush)
commit();
return coerced_out_freq;
}
template <>
inline uhd::meta_range_t adf535x_impl<adf5356_regs_t>::_get_charge_pump_current_range()
{
return uhd::meta_range_t(.3e-6, 4.8e-6, .3e-6);
}
template <>
inline void adf535x_impl<adf5356_regs_t>::_commit()
{
const size_t ONE_REG = 1;
if (_rewrite_regs) {
// For a full state sync write registers in reverse order 12 - 0
addr_vtr_t regs;
for (uint8_t addr = 13; addr > 0; addr--) {
regs.push_back(_regs.get_reg(addr));
}
_write_fn(regs);
_wait_fn(_wait_time_us);
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
_rewrite_regs = false;
} else {
// Frequency update sequence from data sheet
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(13)));
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(6)));
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(2)));
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(1)));
_write_fn(addr_vtr_t(ONE_REG, _regs.get_reg(0)));
}
}
#endif // INCLUDED_ADF535X_HPP
|