aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/include/uhdlib/transport/tx_streamer_impl.hpp
blob: 9dc3b0c35de48a8bc6e5cdcc715fbd23594a2f74 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
//
// Copyright 2019 Ettus Research, a National Instruments Brand
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#pragma once

#include <uhd/config.hpp>
#include <uhd/convert.hpp>
#include <uhd/stream.hpp>
#include <uhd/types/metadata.hpp>
#include <uhd/utils/tasks.hpp>
#include <uhd/utils/log.hpp>
#include <uhdlib/transport/tx_streamer_zero_copy.hpp>
#include <limits>
#include <vector>

namespace uhd { namespace transport {

namespace detail {

/*!
 * Cache of metadata for send calls with zero samples
 *
 * Metadata is cached when we get a send requesting a start of burst with no
 * samples. It is applied here on the next call to send() that actually has
 * samples to send.
 */
class tx_metadata_cache
{
public:
    //! Stores metadata in the cache
    UHD_FORCE_INLINE void store(const tx_metadata_t& metadata)
    {
        _metadata_cache  = metadata;
        _cached_metadata = true;
    }

    //! Checks for cached metadata
    UHD_FORCE_INLINE void check(tx_metadata_t& metadata)
    {
        if (_cached_metadata) {
            // Only use cached time_spec if metadata does not have one
            if (!metadata.has_time_spec) {
                metadata.has_time_spec = _metadata_cache.has_time_spec;
                metadata.time_spec     = _metadata_cache.time_spec;
            }
            metadata.start_of_burst = _metadata_cache.start_of_burst;
            metadata.end_of_burst   = _metadata_cache.end_of_burst;
            _cached_metadata        = false;
        }
    }

private:
    // Whether there is a cached metadata object
    bool _cached_metadata = false;

    // Cached metadata value
    uhd::tx_metadata_t _metadata_cache;
};

class tx_eov_data_wrapper
{
public:
    tx_eov_data_wrapper(const uhd::tx_metadata_t& metadata)
        : _eov_positions(metadata.eov_positions)
        , _remaining(metadata.eov_positions_size)
        , _read_pos(0)
    {
    }

    UHD_FORCE_INLINE size_t* data() const
    {
        return _eov_positions;
    }

    UHD_FORCE_INLINE size_t remaining() const
    {
        return _remaining;
    }

    UHD_FORCE_INLINE size_t pop_front()
    {
        assert(_eov_positions && _remaining > 0);
        _remaining--;
        return _eov_positions[_read_pos++];
    }

private:
    size_t* _eov_positions;
    size_t _remaining;
    size_t _read_pos;
};

} // namespace detail

/*!
 * Implementation of tx streamer API
 */
template <typename transport_t>
class tx_streamer_impl : public tx_streamer
{
public:
    tx_streamer_impl(const size_t num_chans, const uhd::stream_args_t stream_args)
        : _zero_copy_streamer(num_chans)
        , _zero_buffs(num_chans, &_zero)
        , _out_buffs(num_chans)
    {
        _setup_converters(num_chans, stream_args);
        _zero_copy_streamer.set_bytes_per_item(_convert_info.bytes_per_otw_item);

        if (stream_args.args.has_key("spp")) {
            _spp = stream_args.args.cast<size_t>("spp", _spp);
        }
    }

    virtual void connect_channel(const size_t channel, typename transport_t::uptr xport)
    {
        const size_t mtu = xport->get_mtu();
        _hdr_len = std::max(_hdr_len, xport->get_chdr_hdr_len());
        _zero_copy_streamer.connect_channel(channel, std::move(xport));

        if (mtu < _mtu) {
            set_mtu(mtu);
        }
    }

    size_t get_num_channels() const override
    {
        return _zero_copy_streamer.get_num_channels();
    }

    size_t get_max_num_samps() const override
    {
        return _spp;
    }

    /*! Get width of each over-the-wire item component. For complex items,
     *  returns the width of one component only (real or imaginary).
     */
    size_t get_otw_item_comp_bit_width() const
    {
        return _convert_info.otw_item_bit_width;
    }

    size_t send(const uhd::tx_streamer::buffs_type& buffs,
        const size_t nsamps_per_buff,
        const uhd::tx_metadata_t& metadata_,
        const double timeout) override
    {
        uhd::tx_metadata_t metadata(metadata_);

        if (nsamps_per_buff == 0 && metadata.start_of_burst) {
            _metadata_cache.store(metadata);
            return 0;
        }

        _metadata_cache.check(metadata);

        const bool eob_on_last_packet = metadata.end_of_burst;

        const int32_t timeout_ms = static_cast<int32_t>(timeout * 1000);

        detail::tx_eov_data_wrapper eov_positions(metadata);

        // If there are EOVs specified in the metadata, it will be necessary
        // to break up the packet sends based on where the EOVs should be
        // generated in the sequence of packets.
        //
        // `nsamps_to_send_remaining` represents the total number of
        // samples remaining to send to fulfill the caller's request.
        size_t nsamps_to_send_remaining = nsamps_per_buff;

        // `nsamps_to_send` represents a subset of the total number of
        // samples to send based on whether or not the caller's metadata
        // specifies EOV positions.
        // * If there are no EOVs, it represents the entire send request
        //   made by the caller. It may be broken up into chunks no larger
        //   than _spp later on in the function, but it will not be broken up
        //   due to EOV. There will only be one iteration through the do/
        //   while loop.
        // * If there are EOVs, `nsamps_to_send` represents the number of
        //   samples to send to get to the next EOV position. Again, it may
        //   be broken up into chunks no larger than _spp, but note that the
        //   final chunk will have EOV signalled in its header. There may be
        //   multiple iterations through the do/while loop to fulfill the
        //   caller's entire send request.
        size_t nsamps_to_send;

        // `num_samps_sent` is the return value from each individual call
        // to `_send_one_packet()`.
        size_t num_samps_sent = 0;

        // `total_nsamps_sent` accumulates the total number of samples sent
        // in each chunk, and is used to determine the offset within `buffs`
        // to pass to `_send_one_packet()`.
        size_t total_nsamps_sent = 0;

        size_t last_eov_position = 0;
        bool eov;

        do {
            if (eov_positions.data() and eov_positions.remaining() > 0) {
                size_t next_eov_position = eov_positions.pop_front();
                // Check basic requirements: EOV positions must be monotonically
                // increasing
                if (next_eov_position <= last_eov_position) {
                    throw uhd::value_error("Invalid EOV position specified "
                                           "(violates eov_pos[n] > eov_pos[n-1])");
                }
                // EOV position must be within the range of the samples written
                if (next_eov_position > nsamps_per_buff) {
                    throw uhd::value_error("Invalid EOV position specified "
                                           "(violates eov_pos[n] <= nsamps_per_buff)");
                }
                nsamps_to_send = next_eov_position - last_eov_position;
                eov            = true;
            } else {
                // No EOVs, or the EOV position list has been exhausted:
                // simply send the remaining samples
                nsamps_to_send = nsamps_to_send_remaining;
                eov            = false;
            }

            if (nsamps_to_send == 0) {
                // Send requests with no samples are handled here, such as end of
                // burst. Send packets need to have at least one sample based on the
                // chdr specification, so we use _zero_buffs here.
                _send_one_packet(_zero_buffs,
                    0, // buffer offset
                    1, // num samples
                    metadata,
                    false,
                    timeout_ms);

                return 0;

            } else if (nsamps_to_send <= _spp) {
                // If last packet, apply saved EOB state to metadata
                metadata.end_of_burst =
                    (eob_on_last_packet and nsamps_to_send == nsamps_to_send_remaining);

                num_samps_sent = _send_one_packet(
                    buffs, total_nsamps_sent, nsamps_to_send, metadata, eov, timeout_ms);

                metadata.start_of_burst = false;
            } else {
                // Note: since `nsamps_to_send` is guaranteed to be > _spp
                // if the code reaches this else clause, `num_fragments` will
                // always be at least 1.
                const size_t num_fragments = (nsamps_to_send - 1) / _spp;
                const size_t final_length  = ((nsamps_to_send - 1) % _spp) + 1;

                metadata.end_of_burst = false;

                for (size_t i = 0; i < num_fragments; i++) {
                    num_samps_sent = _send_one_packet(
                        buffs, total_nsamps_sent, _spp, metadata, false, timeout_ms);

                    // Advance sample accumulator and decrement remaining
                    // samples for this segment
                    total_nsamps_sent += num_samps_sent;
                    nsamps_to_send_remaining -= num_samps_sent;

                    if (num_samps_sent == 0) {
                        return total_nsamps_sent;
                    }

                    // Setup timespec for the next fragment
                    if (metadata.has_time_spec) {
                        metadata.time_spec =
                            metadata.time_spec
                            + time_spec_t::from_ticks(num_samps_sent, _samp_rate);
                    }

                    metadata.start_of_burst = false;
                }

                // Send the final fragment
                metadata.end_of_burst =
                    (eob_on_last_packet and final_length == nsamps_to_send_remaining);

                num_samps_sent = _send_one_packet(
                    buffs, total_nsamps_sent, final_length, metadata, eov, timeout_ms);
            }

            // Advance sample accumulator and decrement remaining samples
            total_nsamps_sent += num_samps_sent;
            nsamps_to_send_remaining -= num_samps_sent;

            // Loop exit condition: return from `_send_one_packet()` indicates
            // an error
            if (num_samps_sent == 0) {
                break;
            }

            // If there are more samples to be sent, thus requiring another
            // trip around the do/while loop, update the timespec in the
            // metadata for the next fragment (if desired)
            if (nsamps_to_send_remaining > 0 and metadata.has_time_spec) {
                metadata.time_spec =
                    metadata.time_spec
                    + time_spec_t::from_ticks(num_samps_sent, _samp_rate);
            }

            last_eov_position = total_nsamps_sent;

        } while (nsamps_to_send_remaining > 0);

        return total_nsamps_sent;
    }

protected:
    //! Returns the tick rate for conversion of timestamp
    double get_tick_rate() const
    {
        return _zero_copy_streamer.get_tick_rate();
    }

    //! Returns the maximum payload size
    size_t get_mtu() const
    {
        return _mtu;
    }

    //! Sets the MTU and checks spp. If spp would exceed the new MTU, it is
    // reduced accordingly.
    void set_mtu(const size_t mtu)
    {
        _mtu = mtu;
        const size_t spp_from_mtu = (_mtu - _hdr_len) / _convert_info.bytes_per_otw_item;
        if (spp_from_mtu < _spp) {
            _spp = spp_from_mtu;
        }
    }

    //! Configures scaling factor for conversion
    void set_scale_factor(const size_t chan, const double scale_factor)
    {
        _converters[chan]->set_scalar(scale_factor);
    }

    //! Configures sample rate for conversion of timestamp
    void set_samp_rate(const double rate)
    {
        _samp_rate = rate;
    }

    //! Configures tick rate for conversion of timestamp
    void set_tick_rate(const double rate)
    {
        _zero_copy_streamer.set_tick_rate(rate);
    }

private:
    //! Converter and associated item sizes
    struct convert_info
    {
        size_t bytes_per_otw_item;
        size_t bytes_per_cpu_item;
        size_t otw_item_bit_width;
    };

    //! Convert samples for one channel and sends a packet
    size_t _send_one_packet(const uhd::tx_streamer::buffs_type& buffs,
        const size_t buffer_offset_in_samps,
        const size_t num_samples,
        const tx_metadata_t& metadata,
        const bool eov,
        const int32_t timeout_ms)
    {
        assert(buffs.size() == get_num_channels());

        if (!_zero_copy_streamer.get_send_buffs(
                _out_buffs, num_samples, metadata, eov, timeout_ms)) {
            return 0;
        }

        size_t byte_offset = buffer_offset_in_samps * _convert_info.bytes_per_cpu_item;

        for (size_t i = 0; i < get_num_channels(); i++) {
            const void* input_ptr = static_cast<const uint8_t*>(buffs[i]) + byte_offset;
            _converters[i]->conv(input_ptr, _out_buffs[i], num_samples);

            _zero_copy_streamer.release_send_buff(i);
        }

        return num_samples;
    }

    //! Create converters and initialize _bytes_per_cpu_item
    void _setup_converters(const size_t num_chans, const uhd::stream_args_t stream_args)
    {
        // Note to code archaeologists: In the past, we had to also specify the
        // endianness here, but that is no longer necessary because we can make
        // the wire endianness match the host endianness.
        convert::id_type id;
        id.input_format  = stream_args.cpu_format;
        id.num_inputs    = 1;
        id.output_format = stream_args.otw_format + "_chdr";
        id.num_outputs   = 1;

        auto starts_with = [](const std::string& s, const std::string v) {
            return s.find(v) == 0;
        };

        const bool otw_is_complex = starts_with(stream_args.otw_format, "fc")
                                    || starts_with(stream_args.otw_format, "sc");

        convert_info info;
        info.bytes_per_otw_item = convert::get_bytes_per_item(id.output_format);
        info.bytes_per_cpu_item = convert::get_bytes_per_item(id.input_format);

        if (otw_is_complex) {
            info.otw_item_bit_width = info.bytes_per_otw_item * 8 / 2;
        } else {
            info.otw_item_bit_width = info.bytes_per_otw_item * 8;
        }

        _convert_info = info;

        for (size_t i = 0; i < num_chans; i++) {
            _converters.push_back(convert::get_converter(id)());
            _converters.back()->set_scalar(32767.0);
        }
    }

    // Converter item sizes
    convert_info _convert_info;

    // Converters
    std::vector<uhd::convert::converter::sptr> _converters;

    // Manages frame buffers and packet info
    tx_streamer_zero_copy<transport_t> _zero_copy_streamer;

    // Buffer used to handle send calls with no data
    std::vector<const void*> _zero_buffs;

    const uint64_t _zero = 0;

    // Container for buffer pointers used in send method
    std::vector<void*> _out_buffs;

    // Sample rate used to calculate metadata time_spec_t
    double _samp_rate = 1.0;

    // MTU, determined when xport is connected and modifiable by subclass
    size_t _mtu = std::numeric_limits<std::size_t>::max();

    // Size of CHDR header in bytes
    size_t _hdr_len = 0;

    // Maximum number of samples per packet. Note that this is not necessarily
    // related to the MTU, it is a user-chosen value. However, it is always
    // bounded by the MTU.
    size_t _spp = std::numeric_limits<std::size_t>::max();

    // Metadata cache for send calls with no data
    detail::tx_metadata_cache _metadata_cache;
};

}} // namespace uhd::transport