aboutsummaryrefslogtreecommitdiffstats
path: root/host/lib/experts/expert_container.cpp
blob: 8d01337f8b60def778572087d4ff565900e60740 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
//
// Copyright 2016 Ettus Research
// Copyright 2018 Ettus Research, a National Instruments Company
//
// SPDX-License-Identifier: GPL-3.0-or-later
//

#include "expert_container.hpp"
#include <uhd/exception.hpp>
#include <uhd/utils/log.hpp>
#include <boost/format.hpp>
#include <boost/function.hpp>
#include <boost/bind.hpp>
#include <boost/make_shared.hpp>
#include <boost/scoped_ptr.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/depth_first_search.hpp>
#include <boost/graph/topological_sort.hpp>
#include <boost/graph/adjacency_list.hpp>

#ifdef UHD_EXPERT_LOGGING
#define EX_LOG(depth, str) _log(depth, str)
#else
#define EX_LOG(depth, str)
#endif

namespace uhd { namespace experts {

typedef boost::adjacency_list<
    boost::vecS,        //Container used to represent the edge-list for each of the vertices.
    boost::vecS,        //container used to represent the vertex-list of the graph.
    boost::directedS,   //Directionality of graph
    dag_vertex_t*,      //Storage for each vertex
    boost::no_property, //Storage for each edge
    boost::no_property, //Storage for graph object
    boost::listS        //Container used to represent the edge-list for the graph.
> expert_graph_t;

typedef std::map<std::string, expert_graph_t::vertex_descriptor> vertex_map_t;
typedef std::list<expert_graph_t::vertex_descriptor>             node_queue_t;

typedef boost::graph_traits<expert_graph_t>::edge_iterator       edge_iter;
typedef boost::graph_traits<expert_graph_t>::vertex_iterator     vertex_iter;

class expert_container_impl : public expert_container
{
private:    //Visitor class for cycle detection algorithm
    struct cycle_det_visitor : public boost::dfs_visitor<>
    {
        cycle_det_visitor(std::vector<std::string>& back_edges):
            _back_edges(back_edges) {}

        template <class Edge, class Graph>
        void back_edge(Edge u, const Graph& g) {
            _back_edges.push_back(
                g[boost::source(u,g)]->get_name() + "->" + g[boost::target(u,g)]->get_name());
        }
        private: std::vector<std::string>& _back_edges;
    };

public:
    expert_container_impl(const std::string& name):
        _name(name)
    {
    }

    ~expert_container_impl()
    {
        clear();
    }

    const std::string& get_name() const
    {
        return _name;
    }

    void resolve_all(bool force = false)
    {
        boost::lock_guard<boost::recursive_mutex> resolve_lock(_resolve_mutex);
        boost::lock_guard<boost::mutex> lock(_mutex);
        EX_LOG(0, str(boost::format("resolve_all(%s)") % (force?"force":"")));
        // Do a full resolve of the graph
        _resolve_helper("", "", force);
    }

    void resolve_from(const std::string&)
    {
        boost::lock_guard<boost::recursive_mutex> resolve_lock(_resolve_mutex);
        boost::lock_guard<boost::mutex> lock(_mutex);
        EX_LOG(0, "resolve_from (overridden to resolve_all)");
        // Do a full resolve of the graph
        // Not optimizing the traversal using node_name to reduce experts complexity
        _resolve_helper("", "", false);
    }

    void resolve_to(const std::string&)
    {
        boost::lock_guard<boost::recursive_mutex> resolve_lock(_resolve_mutex);
        boost::lock_guard<boost::mutex> lock(_mutex);
        EX_LOG(0, "resolve_to (overridden to resolve_all)");
        // Do a full resolve of the graph
        // Not optimizing the traversal using node_name to reduce experts complexity
        _resolve_helper("", "", false);
    }

    dag_vertex_t& retrieve(const std::string& name) const
    {
        try {
            expert_graph_t::vertex_descriptor vertex = _lookup_vertex(name);
            return _get_vertex(vertex);
        } catch(std::exception&) {
            throw uhd::lookup_error("failed to find node " + name + " in expert graph");
        }
    }

    const dag_vertex_t& lookup(const std::string& name) const
    {
        return retrieve(name);
    }

    const node_retriever_t& node_retriever() const
    {
        return *this;
    }

    std::string to_dot() const
    {
        static const std::string DATA_SHAPE("ellipse");
        static const std::string WORKER_SHAPE("box");

        std::string dot_str;
        dot_str += "digraph uhd_experts_" + _name + " {\n rankdir=LR;\n";
        // Iterate through the vertices and print them out
        for (std::pair<vertex_iter, vertex_iter> vi = boost::vertices(_expert_dag);
             vi.first != vi.second;
             ++vi.first
        ) {
            const dag_vertex_t& vertex = _get_vertex(*vi.first);
            if (vertex.get_class() != CLASS_WORKER) {
                dot_str += str(boost::format(" %d [label=\"%s\",shape=%s,xlabel=\"%s\"];\n") %
                               uint32_t(*vi.first) % vertex.get_name() %
                               DATA_SHAPE % vertex.get_dtype());
            } else {
                dot_str += str(boost::format(" %d [label=\"%s\",shape=%s];\n") %
                               uint32_t(*vi.first) % vertex.get_name() % WORKER_SHAPE);
            }
        }

        // Iterate through the edges and print them out
        for (std::pair<edge_iter, edge_iter> ei = boost::edges(_expert_dag);
             ei.first != ei.second;
             ++ei.first
        ) {
            dot_str += str(boost::format(" %d -> %d;\n") %
                           uint32_t(boost::source(*(ei.first), _expert_dag)) %
                           uint32_t(boost::target(*(ei.first), _expert_dag)));
        }
        dot_str += "}\n";
        return dot_str;
    }

    void debug_audit() const
    {
#ifdef UHD_EXPERT_LOGGING
        EX_LOG(0, "debug_audit()");

        //Test 1: Check for cycles in graph
        std::vector<std::string> back_edges;
        cycle_det_visitor cdet_vis(back_edges);
        boost::depth_first_search(_expert_dag, boost::visitor(cdet_vis));
        if (back_edges.empty()) {
            EX_LOG(1, "cycle check ... PASSED");
        } else {
            EX_LOG(1, "cycle check ... ERROR!!!");
            for(const std::string& e:  back_edges) {
                EX_LOG(2, "back edge: " + e);
            }
        }
        back_edges.clear();

        //Test 2: Check data node input and output edges
        std::vector<std::string> data_node_issues;
        for(const vertex_map_t::value_type& v:  _datanode_map) {
            size_t in_count = 0, out_count = 0;
            for (std::pair<edge_iter, edge_iter> ei = boost::edges(_expert_dag);
                 ei.first != ei.second;
                 ++ei.first
            ) {
                if (boost::target(*(ei.first), _expert_dag) == v.second)
                    in_count++;
                if (boost::source(*(ei.first), _expert_dag) == v.second)
                    out_count++;
            }
            bool prop_unused = false;
            if (in_count > 1) {
                data_node_issues.push_back(v.first + ": multiple writers (workers)");
            } else if (in_count > 0) {
                if (_expert_dag[v.second]->get_class() == CLASS_PROPERTY) {
                    data_node_issues.push_back(v.first + ": multiple writers (worker and property tree)");
                }
            } else {
                if (_expert_dag[v.second]->get_class() != CLASS_PROPERTY) {
                    data_node_issues.push_back(v.first + ": unreachable (will always hold initial value)");
                } else if (_expert_dag[v.second]->get_class() == CLASS_PROPERTY and not _expert_dag[v.second]->has_write_callback()) {
                    if (out_count > 0) {
                        data_node_issues.push_back(v.first + ": needs explicit resolve after write");
                    } else {
                        data_node_issues.push_back(v.first + ": unused (no readers or writers)");
                        prop_unused = true;
                    }
                }
            }
            if (out_count < 1) {
                if (_expert_dag[v.second]->get_class() != CLASS_PROPERTY) {
                    data_node_issues.push_back(v.first + ": unused (is not read by any worker)");
                } else if (_expert_dag[v.second]->get_class() == CLASS_PROPERTY and not _expert_dag[v.second]->has_read_callback()) {
                    if (not prop_unused) {
                        data_node_issues.push_back(v.first + ": needs explicit resolve to read");
                    }
                }
            }
        }

        if (data_node_issues.empty()) {
            EX_LOG(1, "data node check ... PASSED");
        } else {
            EX_LOG(1, "data node check ... WARNING!");
            for(const std::string& i:  data_node_issues) {
                EX_LOG(2, i);
            }
        }
        data_node_issues.clear();

        //Test 3: Check worker node input and output edges
        std::vector<std::string> worker_issues;
        for(const vertex_map_t::value_type& v:  _worker_map) {
            size_t in_count = 0, out_count = 0;
            for (std::pair<edge_iter, edge_iter> ei = boost::edges(_expert_dag);
                 ei.first != ei.second;
                 ++ei.first
            ) {
                if (boost::target(*(ei.first), _expert_dag) == v.second)
                    in_count++;
                if (boost::source(*(ei.first), _expert_dag) == v.second)
                    out_count++;
            }
            if (in_count < 1) {
                worker_issues.push_back(v.first + ": no inputs (will never resolve)");
            }
            if (out_count < 1) {
                worker_issues.push_back(v.first + ": no outputs");
            }
        }
        if (worker_issues.empty()) {
            EX_LOG(1, "worker check ... PASSED");
        } else {
            EX_LOG(1, "worker check ... WARNING!");
            for(const std::string& i:  worker_issues) {
                EX_LOG(2, i);
            }
        }
        worker_issues.clear();
#endif
    }

    inline boost::recursive_mutex& resolve_mutex() {
        return _resolve_mutex;
    }

protected:
    void add_data_node(dag_vertex_t* data_node, auto_resolve_mode_t resolve_mode)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);

        //Sanity check node pointer
        if (data_node == NULL) {
            throw uhd::runtime_error("NULL data node passed into expert container for registration.");
        }

        //Sanity check the data node and ensure that it is not already in this graph
        EX_LOG(0, str(boost::format("add_data_node(%s)") % data_node->get_name()));
        if (data_node->get_class() == CLASS_WORKER) {
            throw uhd::runtime_error("Supplied node " + data_node->get_name() + " is not a data/property node.");
            // Throw leaves data_node undeleted
        }
        if (_datanode_map.find(data_node->get_name()) != _datanode_map.end()) {
            throw uhd::runtime_error("Data node with name " + data_node->get_name() + " already exists");
            // Throw leaves data node undeleted
        }

        try {
            //Add a vertex in this graph for the data node
            expert_graph_t::vertex_descriptor gr_node = boost::add_vertex(data_node, _expert_dag);
            EX_LOG(1, str(boost::format("added vertex %s") % data_node->get_name()));
            _datanode_map.insert(vertex_map_t::value_type(data_node->get_name(), gr_node));

            //Add resolve callbacks
            if (resolve_mode == AUTO_RESOLVE_ON_WRITE or resolve_mode == AUTO_RESOLVE_ON_READ_WRITE) {
                EX_LOG(2, str(boost::format("added write callback")));
                data_node->set_write_callback(boost::bind(&expert_container_impl::resolve_from, this, _1));
            }
            if (resolve_mode == AUTO_RESOLVE_ON_READ or resolve_mode == AUTO_RESOLVE_ON_READ_WRITE) {
                EX_LOG(2, str(boost::format("added read callback")));
                data_node->set_read_callback(boost::bind(&expert_container_impl::resolve_to, this, _1));
            }
        } catch (...) {
            clear();
            throw uhd::assertion_error("Unknown unrecoverable error adding data node. Cleared expert container.");
        }
    }

    void add_worker(worker_node_t* worker)
    {
        boost::lock_guard<boost::mutex> lock(_mutex);

        //Sanity check node pointer
        if (worker == NULL) {
            throw uhd::runtime_error("NULL worker passed into expert container for registration.");
        }

        //Sanity check the data node and ensure that it is not already in this graph
        EX_LOG(0, str(boost::format("add_worker(%s)") % worker->get_name()));
        if (worker->get_class() != CLASS_WORKER) {
            throw uhd::runtime_error("Supplied node " + worker->get_name() + " is not a worker node.");
        }
        if (_worker_map.find(worker->get_name()) != _worker_map.end()) {
            throw uhd::runtime_error("Resolver with name " + worker->get_name() + " already exists.");
        }

        try {
            //Add a vertex in this graph for the worker node
            expert_graph_t::vertex_descriptor gr_node = boost::add_vertex(worker, _expert_dag);
            EX_LOG(1, str(boost::format("added vertex %s") % worker->get_name()));
            _worker_map.insert(vertex_map_t::value_type(worker->get_name(), gr_node));

            //For each input, add an edge from the input to this node
            for(const std::string& node_name:  worker->get_inputs()) {
                vertex_map_t::const_iterator node = _datanode_map.find(node_name);
                if (node != _datanode_map.end()) {
                    boost::add_edge((*node).second, gr_node, _expert_dag);
                    EX_LOG(1, str(boost::format("added edge %s->%s") % _expert_dag[(*node).second]->get_name() % _expert_dag[gr_node]->get_name()));
                } else {
                    throw uhd::runtime_error("Data node with name " + node_name + " was not found");
                }
            }

            //For each output, add an edge from this node to the output
            for(const std::string& node_name:  worker->get_outputs()) {
                vertex_map_t::const_iterator node = _datanode_map.find(node_name);
                if (node != _datanode_map.end()) {
                    boost::add_edge(gr_node, (*node).second, _expert_dag);
                    EX_LOG(1, str(boost::format("added edge %s->%s") % _expert_dag[gr_node]->get_name() % _expert_dag[(*node).second]->get_name()));
                } else {
                    throw uhd::runtime_error("Data node with name " + node_name + " was not found");
                }
            }
        } catch (uhd::runtime_error& ex) {
            clear();
            //Promote runtime_error to assertion_error
            throw uhd::assertion_error(std::string(ex.what()) + " (Cleared expert container because error is unrecoverable).");
        } catch (...) {
            clear();
            throw uhd::assertion_error("Unknown unrecoverable error adding worker. Cleared expert container.");
        }
    }

    void clear()
    {
        boost::lock_guard<boost::mutex> lock(_mutex);
        EX_LOG(0, "clear()");

        // Iterate through the vertices and release their node storage
        typedef boost::graph_traits<expert_graph_t>::vertex_iterator vertex_iter;
        for (std::pair<vertex_iter, vertex_iter> vi = boost::vertices(_expert_dag);
             vi.first != vi.second;
             ++vi.first
        ) {
            try {
                delete _expert_dag[*vi.first];
                _expert_dag[*vi.first] = NULL;
            } catch (...) {
                //If a dag_vertex is a worker, it has a virtual dtor which
                //can possibly throw an exception. We will not let that
                //terminate clear() and leave things in a bad state.
            }
        }

        //The following calls will not throw because they all contain
        //intrinsic types.

        // Release all vertices and edges in the DAG
        _expert_dag.clear();

        // Release all nodes in the map
        _worker_map.clear();
        _datanode_map.clear();
    }

private:
    void _resolve_helper(std::string start, std::string stop, bool force)
    {
        //Sort the graph topologically. This ensures that for all dependencies, the dependant
        //is always after all of its dependencies.
        node_queue_t sorted_nodes;
        try {
            boost::topological_sort(_expert_dag, std::front_inserter(sorted_nodes));
        } catch (boost::not_a_dag&) {
            std::vector<std::string> back_edges;
            cycle_det_visitor cdet_vis(back_edges);
            boost::depth_first_search(_expert_dag, boost::visitor(cdet_vis));
            if (not back_edges.empty()) {
                std::string edges;
                for(const std::string& e:  back_edges) {
                    edges += "* " + e + "";
                }
                throw uhd::runtime_error("Cannot resolve expert because it has at least one cycle!\n"
                                         "The following back-edges were found:" + edges);
            }
        }
        if (sorted_nodes.empty()) return;

        //Determine the start and stop node. If one is not explicitly specified then
        //resolve everything
        expert_graph_t::vertex_descriptor start_vertex = sorted_nodes.front();
        expert_graph_t::vertex_descriptor stop_vertex = sorted_nodes.back();
        if (not start.empty()) start_vertex = _lookup_vertex(start);
        if (not stop.empty()) stop_vertex = _lookup_vertex(stop);

        //First Pass: Resolve all nodes if they are dirty, in a topological order
        std::list<dag_vertex_t*> resolved_workers;
        bool start_node_encountered = false;
        for (node_queue_t::iterator node_iter = sorted_nodes.begin();
             node_iter != sorted_nodes.end();
             ++node_iter
        ) {
            //Determine if we are at or beyond the starting node
            if (*node_iter == start_vertex) start_node_encountered = true;

            //Only resolve if the starting node has passed
            if (start_node_encountered) {
                dag_vertex_t& node = _get_vertex(*node_iter);
                std::string node_val;
                if (force or node.is_dirty()) {
                    node.resolve();
                    if (node.get_class() == CLASS_WORKER) {
                        resolved_workers.push_back(&node);
                    }
                    EX_LOG(1, str(boost::format("resolved node %s (%s) [%s]") %
                                    node.get_name() % (node.is_dirty()?"dirty":"clean") % node.to_string()));
                } else {
                    EX_LOG(1, str(boost::format("skipped node %s (%s) [%s]") %
                                    node.get_name() % (node.is_dirty()?"dirty":"clean") % node.to_string()));
                }
            }

            //Determine if we are beyond the stop node
            if (*node_iter == stop_vertex) break;
        }

        //Second Pass: Mark all the workers clean. The policy is that a worker will mark all of
        //its dependencies clean so after this step all data nodes that are not consumed by a worker
        //will remain dirty (as they should because no one has consumed their value)
        for (std::list<dag_vertex_t*>::iterator worker = resolved_workers.begin();
             worker != resolved_workers.end();
             ++worker
        ) {
            (*worker)->mark_clean();
        }
    }

    expert_graph_t::vertex_descriptor _lookup_vertex(const std::string& name) const
    {
        expert_graph_t::vertex_descriptor vertex;
        //Look for node in the data-node map
        vertex_map_t::const_iterator vertex_iter = _datanode_map.find(name);
        if (vertex_iter != _datanode_map.end()) {
            vertex = (*vertex_iter).second;
        } else {
            //If not found, look in the worker-node map
            vertex_iter = _worker_map.find(name);
            if (vertex_iter != _worker_map.end()) {
                vertex = (*vertex_iter).second;
            } else {
                throw uhd::lookup_error("Could not find node with name " + name);
            }
        }
        return vertex;
    }

    dag_vertex_t& _get_vertex(expert_graph_t::vertex_descriptor desc) const {
        //Requirement: Node must exist in expert graph
        dag_vertex_t* vertex_ptr = _expert_dag[desc];
        if (vertex_ptr) {
            return *vertex_ptr;
        } else {
            throw uhd::assertion_error("Expert graph malformed. Found a NULL node.");
        }
    }

    void _log(size_t depth, const std::string& str) const
    {
        std::string indents;
        for (size_t i = 0; i < depth; i++) indents += "- ";
        UHD_LOG_DEBUG("EXPERT","[expert::" + _name + "] " << indents << str)
    }

private:
    const std::string       _name;
    expert_graph_t          _expert_dag;        //The primary graph data structure as an adjacency list
    vertex_map_t            _worker_map;        //A map from vertex name to vertex descriptor for workers
    vertex_map_t            _datanode_map;      //A map from vertex name to vertex descriptor for data nodes
    boost::mutex            _mutex;
    boost::recursive_mutex  _resolve_mutex;
};

expert_container::sptr expert_container::make(const std::string& name)
{
    return boost::make_shared<expert_container_impl>(name);
}

}}